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Abstract: Wireless Sensor Networks (WSNs) are a core enabler of applications such as 

environmental monitoring, military surveillance, and smart city infrastructure, where 

precise node location high quality location estimation is of paramount importance. This 

paper proposes an improved localization scheme for WSN sensor nodes, where the DV-

Hop range free localization scheme estimations are optimized via the variable velocity 

strategy (VVS) and human conception optimization (HCO) techniques. The proposed 

technique is evaluated via building a wireless sensor network (WSN) with realistic 

constraints that are included using simulations, so that the nature of the wireless 

communication channel and its impact on estimation accuracy is exploited.   The effect of 

noise and the RF wireless channel and on the localization, algorithms are included in the 

simulations. The experimental results show that the proposed DV-HOP-VVS-HCO 

outperforms the standard DV-Hop technique by about 11% to 13% at moderate SNR 

values. The proposed algorithm is more adaptable to the sensor to anchors counts and of 

course the topology changes. The results indicate that the proposed DV-HOP-VVS-HCO 

model is more robust than the standard DV-Hop and can withstand the increase in the 

node populations and density.  The DV-HOP-VVS-HCO achieves better means of 

localization error with percentage improvement of about 23% as compared to DV-Hop 

especially at denser WSNs. 

Keywords: DV-Hop, VVS, HCO, WSN, Node Localization, Range free Localization, 

Localization Accuracy. 

1. Introduction 

Wireless Sensor Networks (WSNs) are networks of numerous sensor nodes that communicate wirelessly for 

measuring information about their environment. These networks should be cost effective, energy-efficient, 

and flexible. WSNs are important in many applications such as environmental monitoring, military 

surveillance, traffic control, healthcare, and industrial automation [1, 2]. Knowing the exact locations of the 

sensor nodes is crucial, because data without location information is usually meaningless [3,4]. 

Node localization in Wireless Sensor Networks (WSNs) is also important for many aspects including 

efficient routing, data delivery, target tracking and monitoring.  Self-Organization, Network Management, 

Data Fusion and Recovery, Data Validation and Cleansing, Clustering and Routing, Controlled Energy, 

Efficient Routing, Security and Authentication are also dependent on WSN node accurate localization. 

Localization in WSNs can be realized using different techniques which can be divided into range-based and 

range-free techniques. Range-based techniques based on accurate distance or angle measurements but 

require employment of additional hardware like GPS and intensive calculations, that always result in more 

energy consumption and more expensive [5, 6].  On the other hand, the range-free approaches can estimate 

node locations via connectivity information, so that they don’t require any additional hardware. An example 

to this category is the Distance Vector Hop (DV-Hop) algorithm [9,16] that can estimate node location based 
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on the hop counts and connectivity, so that they are more economic and energy-efficient [7, 8]. While 

traditional range-free approaches such as DV-Hop are widely deployed, they have limited localization 

accuracy because of the erratic communication ranges, different hop distances and the difficulty of 

anisotropic counter influence factors on localization [9, 10]. In addition, progressive errors in location 

estimation commonly occur. 

Range-free localization algorithms like DV-Hop are appealing as they only require message exchange and 

hop count information. This results in a lower implementation cost than other range methods. The 

localization performance is sensitive to network density and anchor distribution. Generally, anchors can 

always be uniformly distributed to achieve high accuracy. Swarm optimization techniques have also been 

used to improve the performance of the DV-Hop technique [6], [9] in conjunction with a global search 

capacity with a local refinement to enhance the estimation accuracy. Combining both human-like reflection 

and variable velocity techniques incorporates adaptive behavior to the optimization. In addition, by 

centering the search at the initial DV-Hop estimates, the solution space for the problem is constrained and 

gibbering in improving the convergence speed. 

Numerous attempts to overcome the limitations by different techniques including proposing optimization 

algorithms based on natural phenomena like Particle Swarm Optimization (PSO), Genetic Algorithms (GA), 

and Ant Colony Optimization (ACO) [11–13]. Through promising approaches, they are frequently 

confronted with several problems, e.g., convergence rate, local minima issues, and heavy computational 

loads, which is a crucial aspect for resource-limited WSNs [14, 15]. On the other hand, DV-Hop localization 

has limitations which are addressed in research and different solutions are proposed. These challenges 

include estimation accuracy as the DV-Hop accumulates errors over the number of hop distances that are 

averaged, which degenerates the localization accuracy. Researchers such as Chien-Chung Chen, Shuang 

Hao, Jianhua Zhang, Pankaj Kumar Garg, Xue Liu and M. Zorzi [6] proposed solutions via hybrid methods, 

error correction techniques, and improved distance estimations. However, these techniques impact energy 

consumption, as the network nodes in WSNs became power-starved and hence nodes lose their 

communication in DV-Hop as a cause for excessive energy consumption, which is solved by Shuang Hao 

and Mahesh N. S. [7] by proposing energy-efficient DV-Hop enhancements and elimination of the redundant 

transmissions.  Xue Liu, Sudhir S. P., and Jianhua Zhang [9] also dealt with error propagation problem 

through adaptive hop-count adjustments and combining DV-Hop with other methods, The anchors 

placement and their count also affect performance of DV-Hop. Poor placement can result in inaccurate 

localization, as found by Wenyuan Xu, Sudhir S. P., and Pankaj Kumar Garg [7, 9] They could improve 

localization accuracy by leveraging optimized anchor placement strategies and using more intelligent node 

selection techniques. The interference, mobility, and dynamic changes can result in less reliable DV-Hop.  M. 

Ilyas, S. K. Das, and M. Zorzi, et al. Zorzi addressed mobility, dynamic hop-count adjustments, and various 

alternative path estimation techniques; and hybrid approaches to enhance performance. Hybrid localization 

techniques are proposed by Jianhua Zhang, Pankaj Kumar Garg, and Michele Zorzi by integrating DV-Hop 

with machine learning, RSSI, or other localization techniques.  

In this paper an enhancement for the standard Distance Vector Hop (DV-Hop) scheme is introduced and. In 

it, an optimization to DV-Hop parameters by using the “Variable Velocity Strategy Human Conception 

Optimization (VVS-HCO)” optimization algorithm. The technique is named DV-HOP-VVS-HCO due to 

optimizing DV-Hop using the VVS-HCO optimization algorithm. This proposed technique can overcome the 

limitations of the pure DV-Hop algorithm and even outperform the existing optimization algorithms by 

adaptively controlling particle velocity and improving the convergence speed and estimation accuracy as 

shown in results. Additionally, simplified radio irregularity modelling via imposing AWGN is introduced in 

the algorithm to accommodate non-isotropic radio propagation characteristics in practical environments. 

The main contributions of this work can be summarized as follows: 1) Improving DV-Hop precision via 

Variable Velocity Strategy (VVS-HCO), 2) Hop size adjustment by tuning parameters (like a gain/tuning 

factor) is introduced to adjust the hop-sizes, providing more accurate distance estimations between nodes. 3) 

Radio Path Loss (RPL) model is applied within the VVS-HCO to represent the non-uniformity of radio 
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signals that often distorts the distance estimates (measurements) between the nodes. 4) A realistic modeling 

for WSN implementation including RF impairments is incorporated in the simulations of the proposed DV-

HOP-VVS-HCO technique. In this paper, we propose an Improved Distance Vector Hop (IDV-

Hop) algorithm enhanced by a Variable Velocity Strategy Human Conception Optimization (VVS-HCO).   

The remainder of this paper is structured as follows: Section 2 describes related work, including current 

localization approaches along with their shortcomings. In Section 3, the standard DV-Hop technique is 

described, and the trilateration process is explained. Section 4 is dedicated to the variable velocity strategy 

(VVS) and human conception optimization (HCO) techniques Section 5 introduces the fusion of DV-Hop and 

VVS-HCO into the DV-HOP-VVS_HCO proposed optimized localization technique. The network setup can 

be found in Section 6. The steps adopted for implementing the simulated WSN and the localization scenario 

via the DV-HOP-VVS-HCO can be found in Section 7. Section 8 is dedicated to the results, and the paper is 

concluded in Section 9. 

2. Related Work 

Localization in WSNs plays an important role in many applications including environment monitoring, 

military surveillance, and smart city systems. Localization techniques can be classified into range-based 

techniques and range free techniques. Range based techniques include Time of Arrival (ToA), Time 

Difference of Arrival (TDoA) and Angle of Arrival (AoA). However, these techniques are very accurate, but 

they are computationally intensive, require additional hardware. These requirements are not suitable in 

WSNs where the nodes are battery powered and designed to consume minimal energy from their batteries. 

The other class of the localization techniques is the range free based techniques. They don’t require 

additional hardware and need low computational power [15] that suits WSNs. Various range free 

localization techniques are deployed, such as DV-Hop, Centroid, APIT, and Amorphous [17]. Also, many 

hybrids range-free techniques are developed for improving accuracy and energy consumption [19]. DV-Hop 

attracts the attention for its simplicity and moderate accuracy as compared to other range free methods [16]. 

However, the traditional DV-Hop has a limited localization accuracy in the anisotropic environment, since 

the unpredictable communication range, and varying hop size would distort distance estimation [17]. To 

overcome these limitations, many enhancements for the DV-Hop algorithm have been suggested. For 

instance, Duan et al. enhanced DV-Hop by randomly deploying the reference nodes to cover the entire 

monitored region and utilizing PSO to minimize the localization error. Adding anchor nodes to the system 

will improve accuracy but it will not be more efficient in large and remote environment because of the 

requirement of the anchor node placement as in [18]. Similarly, Panda et al. proposed a reasonably power-

efficient range-free localization system in which beacon nodes simply introduce their information and all 

other unknown nodes estimate their hop counts. This approach reduces energy consumption; however, it 

suffers from an inaccuracy problem when the nodes are not distributed uniformly in wireless sensor 

network [19]. 

Sun et al. [10] introduced a distributed range-free localization algorithm in which unknown nodes use local 

information to infer their locations and thus reduce message delivery and energy consumption. However, 

this approach does not consider transmission disparities and can be used to derive inconsistent results in 

practice [20]. Wu et al. improved DV-Hop based on the genetic algorithm (GA) approach, adjusting hop 

sizes with a factor and fine tuning them by the line search procedure. Although this increases accuracy, it is 

computation ally intensive and can be suboptimal for sparsely or nonuniformly distributed node 

deployments [21]. Table 1 summarizes the findings of some recent studies.   

Other optimization methods including GWO (Grey Wolf Optimization) and CTO (Class Topper 

Optimization) were also used to improve DV-Hop. Palanisamy et al. employed the GWO to estimate the per 

hop standard deviation, obtaining more accurate results with a slight growth on computational cost [22]. 

Nandan et al. incorporated CTO to DV-Hop and the introduction of a scaling factor to modify the hop size 

and enhance localization accuracy. However, they usually fail to converge in multi-agent systems in a 

complex or dynamic environment [23]. The current trends have been hybrid methodologies. Lakshmi et al. 
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complemented PSO with DV-Hop to calculate distances based on the hop size that was between anchor 

nodes, and to enhance localization accuracy [24]. Ghadami et al. suggested an RRO-based DV-Hop, where 

they adapted the hop sizes by a correction factor and further by means of a line search method [25]. 

Although these techniques are promising, they are too computationally intensive or not effective for 

anisotropic conditions. 

To mitigate these shortcomings, researchers have investigated multi-objective optimization and improved 

algorithms. Yu et al. presented DV-Hop method of nsga II by imposing constraints on anchor nodes to 

increase the accuracy [26]. Li et al. employed multi-objective functions for minimizing model size and 

performing global optimization [27]. Additionally, Wang et al. proposed a PCWOA algorithm to improve 

DV-Hop localization by reducing the memory consumption and improve the accuracy of the solutions [28]. 

Notwithstanding these advancements, challenges persist, in particular, for processing anisotropic cases and 

lowering the computational burden. Ma et al. enhanced DV-Hop algorithm, in which by correcting the 

single-hop distances with the RSSI values and by adapting the 16average hop distances based on the real 

differences and the estimated ones [29]. Drakoulas et al. combined 2D Hyperbolic Localization Method with 

Improved Adaptive Genetic Algorithm (IAGA) for more accurate estimation in anisotropic networks [30]. 

However, such approaches generally depend on additional hardware and complex computations, which are 

less practical to be used in resource-limited WSNs. 

In conclusion, although some achievements have been made into DV-Hop and other range-free algorithms, 

several issues remain outstanding. They suffer from poor accuracy in anisotropic media, high complexity, 

and the potential existence of local optima in optimization-based methods. In an effort to fill these gaps, an 

improved DV-Hop algorithm that incorporates Variable Velocity Strategy Human Conception Optimization 

(VVS-HCO) and a Radio Irregularity Model is proposed in this paper. By adaptively tuning the actual rate of 

optimization, this method can achieve dynamic optimization speed changes, enabling convergence 

acceleration and accuracy improvement in real-world, irregular environments, and thus outperforms all 

tested existing approaches in terms of localization error, variance, and accuracy. The recent developments on 

DV-Hop localization are summarized in Table 1. 

Table 1: An Overview of Recent DV-Hop Localization Enhancement Evolution. 

Article Year Techniques Contributions Limitations 

Liu et al. [10] 2024 DV-Hop with Neural 

Networks 

Improved localization 

accuracy using neural 

networks for distance 

estimation. 

High computational cost; 

requires large training 

datasets. 

Zhang et al. [33] 2024 DV-Hop with Whale 

Optimization Algorithm 

(WOA) 

Improved convergence 

speed and accuracy in large-

scale networks. 

Limited performance in 

anisotropic 

environments. 

Lei et al. [34] 2024 DV-Hop with Sparrow 

Search Algorithm (SSA) 

Reduced localization error 

by optimizing hop sizes 

using SSA. 

Computationally 

intensive; struggles with 

dynamic node 

movements. 

Mani et al. [35] 2024 DV-Hop with Adaptive 

Genetic Algorithm 

(AGA) 

Enhanced accuracy by 

dynamically adjusting GA 

parameters. 

High computational 

overhead; struggles with 

irregular node placement. 

Ma et al. [37] 2024 DV-Hop with RSSI and 

Least Squares Method 

Corrected single-hop 

distances using RSS 

I, improving accuracy. 

Requires additional 

hardware; struggles with 

signal interference. 

Cao et al. [38] 2024 DV-Hop with 2D 

Hyperbolic Localization 

and IAGA 

Enhanced accuracy in 

anisotropic networks using 

adaptive GA. 

Computationally 

intensive; struggles with 

irregular signal 

propagation. 
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Article Year Techniques Contributions Limitations 

Singh et al. [32] 2025 DV-Hop with 

Reinforcement Learning 

(RL) 

Enhanced accuracy by 

dynamically adjusting hop 

sizes using RL. 

Struggles with sparse 

networks; high energy 

consumption. 

Yang et al. [35] 2025 DV-Hop with Grey Wolf 

Optimization (GWO) 

Improved precision by 

predicting standard 

deviation per hop using 

GWO. 

Marginal increase in 

computational cost; 

struggles with sparse 

networks. 

 

Efficient operation of the network requires accurate localization of sensor nodes, which have several 

applications: environmental monitoring, disaster management, intelligent transportation system, etc. 

Traditional localization, such as DV-Hop and RSSI-based localization, are error prone for signal interference, 

environmental noises, and the network irregular topologies. To cope with these issues, a proposed method in 

this paper combines DV-HOP and Variable Velocity Strategy with Human Conception Optimization (VVS-

HCO) to improve location estimation accuracy of sensor nodes. In the following part, a description of that 

novel localization technique is introduced. 

3. Localization via the DV-HOP algorithm 

DV-HOP operates in three phases:   

1. Hop Count Propagation: Anchor nodes broadcast their positions, and other nodes record the minimum 

hop counts.   

2. Average Hop Distance Calculation: Anchors compute the average distance per hop based on known 

positions.   

3. Position Estimation: Unknown nodes use trilateration or multilateration to estimate their locations.   

3.1 Mathematical Formulation of DV-HOP   

3.1.1 Hop Count Propagation   

Each anchor node   broadcasts its position (     ) along with a hop count initialized to  . Neighboring nodes 

increment the hop count and forward the message. The minimum hop count     from anchor   to node   is 

recorded.   

 

3.1.2 Average Hop Distance Calculation   

The Average Hop Distance (AHD) is determined using anchor nodes with known positions. It is calculated 

as the ratio of the sum of actual distances between anchor pairs to the corresponding sum of hop counts 

between them: 

Anchors compute the average hop distance (    ) to the node   as in ‎(1):   

     
∑ √(     )

 
 (     )

 
   

∑       
 

(1)  

 

where (     ) are the positions of other anchors, and     is the hop count between them and, 

    √(     )
 

 (     )
 
 (2)  

where     is the Euclidean distance between any two nodes     

Accurate distance estimation in wireless sensor networks (WSNs) relies on the relationship between hop 

counts and actual physical distances. Since hop count-based localization assumes uniform node distribution 

and ideal transmission conditions, real-world factors such as irregular node spacing, varying transmission 

ranges, and environmental interference introduce deviations. To address these uncertainties, the AHD  is 

computed to provide a more precise correlation between hop counts and Euclidean distances. This 



IJT’2025, Vol.05, Issue 02.       6 of 15 
 

 

formulation ensures that the computed hop distance reflects the spatial distribution of nodes while reducing 

estimation bias. 

Once AHD is determined, it is utilized to estimate the distance,   ̂, between an unknown node and an anchor 

node as shown in ‎(3): 

  ̂          (3)  

This serves as an initial estimate of node locations before applying further refinement techniques. Since real-

world networks are subject to signal attenuation and interference, errors may arise in hop-based distance 

estimation. To mitigate these inaccuracies, an adaptive correction factor is introduced as shown in ‎(4): 

 ̂ 
    

        (4)  

where   is a correction factor that can be adjusted using an optimization technique for enhancing the 

estimation accuracy and  ̂ 
    

 denotes the corrected estimated distance. 

3.2 Trilateration for DV-Hop based estimations 

Using trilateration, the coordinates (   ) of an unknown node can be found by solving the least-squares 

problem: 

     (5)  

where 

   (

          

          

  
              

) 

and 

  

(

 

  
    

    
    

    
    

 

  
    

    
    

    
    

 

 
  

      
    

      
      

    
 )

  

 
The solution for the required location   (   ) of a node is obtained via: 

 
  (   )      (6)  

 
where ( )  is the transpose operator for a matrix, ( )   denotes the inverse of a matrix. 

4. Variable Velocity Strategy with Human Conception Optimization (VVS-HCO) 

This optimization algorithm can be considered an enhancement of the well-known Particle Swarm 

Optimization (PSO) technique [9, 36]. Numerous studies implemented PSO in enhancing the DV-Hop based 

localization [9, 36].  

The difference between VVS-HCO and the standard PSO can be summarized as follows [19, 39]: 

1. Variable Parameters: VVS-HCO uses time-varying inertia, oscillating cognitive weights, and increasing 

social weights, while standard PSO uses fixed parameters  

2. Human Conception: VVS-HCO includes knowledge pools, learning transfer, and self-reflection 

mechanisms that standard PSO lacks  

3. Rank-Based Adaptation: VVS-HCO adjusts behavior based on particle performance ranking  

4. Early Stopping: VVS-HCO has human-like intuitive stopping criteria 

4.1 Velocity Update Mechanism 

The velocity of particle   at iteration    ,   
   is updated using Equation ‎(7): 

  
     ( )    

        (          
 )        (        

 )        ( ) (7)  

Where   
    is the updated particle velocity,   ( ) is the time-varying inertia weight ,       are acceleration 

coefficients ,       are random numbers in [   ],         is the personal best position of particle   , and      is 

the global best position,   is the iteration number, and   represents the time. 
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4.1.1 Time-Varying Inertia Weight 

Equation ‎(8) shows how the inertia weight  ( )is updated through runtime   as: 

 ( )       ((         )   )     ⁄  (8)  

Where                    (are typical values) and      is the maximum number of iterations. 

 

4.1.2 Variable Velocity Component 

The particle velocity variation,     ( ),  in the algorithm follows an exponential decaying sinusoidal as 

shown in Equation ‎(9) 

    ( )       (           ⁄ )     (        ⁄ ) (9)  

Where    is the amplitude scaling factor,         is the oscillation period and   is the decay coefficient. 

4.2 Human Conception Optimization (HCO) 

The HCO is designed to follow a Cognitive Learning Factor (CLF) [19],   ( ) as represented in Equation ‎(10) 
  ( )            (   (              )      ⁄ ) (10)  

Where: 
       is the maximum cognitive learning factor  

  is the cognitive decay parameter  

         is the current fitness value  

      is the best fitness value found so far.  

It also defines a Social Learning Factor (SLF),   ( ), as described in Equation ‎(11) 

  ( )         (             )  (     (        ⁄ )) (11)  

Where: 

              are maximum and minimum social learning factors  

  is the social learning growth parameter  

4.3 Modified Velocity Update with HCO 

  
     ( )    

    ( )     (          
 )    ( )     (        

 )        ( )    ( ) (12)  

Where   ( ) is the human conception component that is given by Equation ‎(13): 

  ( )        (  (       ( )))  (          
 ) (13)  

Where: 

  is the human conception strength parameter  

  is the sensitivity parameter  

     is the average fitness of the population  

  ( ) is the fitness of particles i at iteration t  

        is a randomly selected position from elite particles  

  is the variable velocity coefficient  

    ( ) is the variable velocity component 

4.4 Fitness Function for Node Localization 

The Primary Objective Function (POF),   (     ), is structured as in Equation ‎(14) 

  (     )  ∑ (   ̂  √((     )
 

 (     )
 

))

 

 (14)  

Where   is the number of anchor nodes with known positions and    ̂ denotes the estimated distance. Also, 

a regularization term   (     ) is defined as in Equation ‎(15) 

  (     )    ∑ |   ̂  √((     )  (     ) )| (15)  

 

Where: 

   is the set of neighboring nodes of node i  

  is the regularization parameter  
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Hence a Combined Fitness Function (CFF),  (     ), is defined as in Equation ‎(16): 

 (     )    (     )    (     ) (16)  

5. The proposed DV-HOP-VVS-HCO localization algorithm 

This section introduces the step of fusion between DV-Hop and VVS-HCO. 

In this stage, the position estimated by the DV-Hop is optimized and corrected via the VVS-HCO algorithm 

according to the following Equations ‎(17)-‎(20): 

  
      

     
    (17)  

  
      

     
    (18)  

  
       (        (       

   )) (19)  

  
       (        (       

   )) (20)  

where    
    and    

    are the optimized corrections for      , respectively and obtained via the VVS-HCO 

optimization technique. 

The WSN network setup and the proposed approach have been built using Python. The simulation has 

several stages, including the network description and parameter establishment, in network wise and 

geometrical wise. To simulate the wireless RF communication between network elements, a standard RF 

path loss model is employed. Also, the RF signal is assumed to be contaminated with additive white 

Gaussian noise (AWGN) with zero-mean and variance    . It is also assumed that hop distance calculations 

are susceptible to AWGN that will reflect on the average hop distance. Figure 1. shows the block diagram of 

the proposed VVS-HCO-DV-HOP range free localization system. 

   

 

 

Figure 1: DV-HOP-VVS-HCO range free proposed localization system. 

6. Network Parameters and Setup 

The proposed WSN implementation topology is represented by a collection of N sensor nodes randomly 

deployed over a given WSN coverage area. Each node is only equipped with an RF transceiver that allows 

them to share information within the network. Each RF transceiver has a predefined communication range. 

The density of nodes has an important impact on not only the localization accuracy, but also the connectivity 

property of the network.  

The spatial density of sensor nodes,  , in the deployed area and is defined in mathematical form as the ratio 

of the overall number of deployed sensor nodes,  , to the total network area,  . This density measurement 

leads to the information of sparsity, or congestion, of the nodes, hence the communication range and the 

localization robustness. The density is given by: 

Network genera-

tion,  

Noise 

Wireless  

transmission  

DV-Hop for 

sensor nodes 

localization 

Location re-

finement  

via VVS-HCO  

Optimized sen-

sor  

node’s location 
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 (21)  

 It should be noted that: if a node has insufficient neighboring anchor nodes (references) to locate itself, it 

may be not able to estimate its location. Hence more connectivity of the network will decrease the probability 

of unlocalized nodes. 

Another influential factor in the network topology design is the average node degree, which characterizes 

the average number of neighbor nodes that one node can directly communicate with. This factor is a function 

of the transmission range,  , as well as the spatial density of nodes,  . Average degree,      , is calculated as: 

           (22)  

which establishes a direct correspondence between communication range and networks connectivity. Larger 

the node degree the more robust is the localization algorithms since there are more reference points available 

to estimate distance. However, an overly high degree can raise computational complexity and energy 

consumption as the message exchange might be redundant. 

Geometrical relations between network elements are an initial phase in the process of node localization, 

where spatial related information between the nodes in WSN is inferred.  

Distance between any pair of nodes indicates their spatial separation and is necessary to estimate hop based 

or range-based localization algorithms. If there are two sensor nodes having coordinates  

(     ) and (     ), respectively, the inter-node distance  can be expressed via Equation ‎(2). 

 

6.1 Node Placement and Mutual Exclusion  

The WSN nodes and anchors are assumed to be distributed randomly within the WSN coverage area. A 

minimum distance,     between any two nodes is kept avoiding node/node, node/anchor, or anchor/anchor 

overlapping.  

        (23)  

where   is a factor less than   and   is the minimum width of the WSN coverage area. 

In wireless sensor networks, the spatial distribution of nodes plays a critical role in ensuring accurate 

localization and maintaining network connectivity. To prevent node clustering and overlapping, a mutual 

exclusion constraint is enforced during the node deployment phase. This constraint ensures that each sensor 

node maintains a minimum separation distance     from all other nodes in the network, preventing excessive 

proximity that could lead to unreliable distance estimations and localization errors. 

If Equation ‎(23) is violated so that        , indicating that two nodes are positioned too close to each other, 

the affected node is reassigned a new random position within the network's defined area. This reallocation 

process continues iteratively until all nodes comply with the minimum separation requirement of Equation 

‎(23). 

This constraint is called the mutual exclusion which ensures a more uniform node distribution, reducing the 

likelihood of localization ambiguities caused by overlapping nodes. By maintaining sufficient separation, the 

network topology remains well-structured, enabling robust connectivity and improving the performance of 

the subsequent hop-count-based and machine learning-driven localization processes. 

6.2 Hop Count Calculation with AWGN 

The hop count calculation serves as a fundamental step in distance estimation for localization in WSNs. Since 

not all nodes have direct access to anchor nodes with known positions, multi-hop communication is 

employed to approximate distances based on intermediate node connections. The hop count     is 

determined by evaluating the number of transmission hops required for a packet to travel from an anchor 

node to a given unknown node. This approach provides an initial estimate of distances, which is later refined 

using machine learning and optimization techniques. 

The estimation of hop counts relies on a Breadth-First Search (BFS) algorithm [], which systematically 

explores all neighboring nodes before moving to the next level of connectivity. The process begins with each 

anchor node initializing a hop count value of zero and broadcasting a control packet containing its 

identification and hop count to all one-hop neighbors. Upon receiving this packet, each neighboring node 



IJT’2025, Vol.05, Issue 02.       10 of 15 
 

 

records the hop count and forwards the packet to its own neighbors after incrementing the hop count value. 

Nodes that have already received a hop count value discard duplicate packets to prevent redundant 

updates. This iterative process continues until all nodes in the network have recorded the minimum hop 

count to the nearest anchor node. 

The hop count     from an anchor node   to an unknown node   is updated iteratively as: 

       (     )     ( ) (24)  

 

where  ( ) represents the set of the neighboring nodes of  , and     is the hop count for node  . Since BFS 

guarantees that each node records the shortest hop count to the nearest anchor, this approach provides an 

efficient means of estimating connectivity-based distances. 

While BFS-based hop counting provides a structured approach for distance estimation, signal degradation, 

multipath interference, and environmental factors introduce uncertainties that necessitate the incorporation 

of an Additive White Gaussian Noise (AWGN) model. To account for real-world signal distortions and 

propagation losses, the received power at a given node is modeled using the channel path loss model in 

Equation ‎(25). The received signal power      at a distance   from a transmitting node that transmits at 

power of      is expressed as: 

              ( )     (25)  

where the parameter    is the path-loss exponent, which varies based on environmental conditions such as 

open spaces, urban areas, or indoor settings.  Additionally,    accounts for the noise component and follows 

a Gaussian distribution. 

The presence of AWGN introduces uncertainty in the hop count calculation, leading to discrepancies 

between the estimated and actual distances. These discrepancies manifest in different ways depending on 

network conditions. In high-noise environments, packet losses may cause nodes to miss transmissions, 

resulting in an underestimation of the hop count. Conversely, signal fading and interference may necessitate 

additional re-transmissions, leading to an overestimation of the hop count. These variations contribute to 

inaccuracies in distance estimation, highlighting the need for refined computational models to mitigate such 

effects. The probability of successful packet reception     in the presence of AWGN can be expressed as: 

 

     (
          

 
) 

 
(26)  

 ( ) represents the Q-function, which describes the tail probability of the Gaussian distribution. The 

parameter      denotes the received signal-to-noise ratio, while       represents the threshold SNR 

required for successful packet decoding. Additionally,   corresponds to the standard deviation of noise 

fluctuations. When the packet reception probability     drops below a critical threshold, the effective hop 

count increases due to the necessity of packet retransmissions and the introduction of additional 

intermediate hops. 

Once hop counts are established, the average hop distance (AHD) is computed to approximate physical 

distances between nodes according to Equation ‎(1) and consequently the estimated distance can be found 

using Equation ‎(3). 

7. The DV-HOP-VVS-HCO implementation and performance evaluation 

For evaluating the proposed DV-HOP-VVS-HCO localization technique, a simulation of the system is built 

via Python. The simulation scenario is divided into six phases. Phase 1: “Network initialization” in which the 

WSN parameters are set such as the area, wireless environment, and RF transmission parameters within the 

WSN area. Phase 2: “Network deployment” where sensor nodes and anchors are placed within the WSN 

area. In this simulation, the distribution is totally random for both types of nodes. Phase 3: “DV-Hop 

processing” is the stage at which the hop counts and hop distances for each sensor node in networks are 

calculated. In addition, an AWGN is imposed to RF signals to cause errors in estimations. In Phase 4: “Sensor 

localization”, the DV-Hop algorithm is applied to calculate the distances from anchors to each sensor node. 
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In this stage the RF communication constraints are applied to determine the nearest anchors for each node. It 

is required that at least three neighboring anchors are seen by every sensor node. Triangulation is then 

applied to estimate the non-optimized locations or coordinates of each sensor. Phase 5: “VVS-HCO 

Optimization” is the stage in which the estimated non-accurate node locations are refined and optimized via 

the VVS-HCO optimization algorithm. This is the core enhancement for mitigating the errors in location 

estimation. Finally in Phase 6: “Performance evaluation”, the deviation from the true locations for sensors 

that set in Phase 2 is calculated to report the extent of enhancements via deploying the DV-HOP-VVS-HCO 

algorithm. The performance evaluation is obtained via calculating the root mean square error (RMSE). The 

system performance is evaluated over a range of SNRs to evaluate the robustness and superiority of the 

proposed algorithm versus the DV-Hop technique. 

The RMSE is averaged for all the locations of the sensors to find the mean localization error (MLE). RMSE is 

calculated according to Equation  ‎(27) 

 

     √(                )  (                )  

 
(27)  

where (           ) represents the true position of the node, and (                     ) is the estimated 

position. 

The MLE is calculated via Equation ‎(28). 

 

    
 

 
∑       

 
(28)  

where       is a node-wise, i.e. the RMSE for sensor node  , while     is a network-wise. 

The network parameters selected for testing and evaluation the DV-HO-VVS-HCO algorithm is as follows: 

WSN occupies an area of        , and the number of anchors and sensors are initially set to    and     

respectively. The transceiver RF range is set to    . The anchors and sensors are distributed randomly 

within the area. The SNR is varied from      to      . The simulations are averaged for    runs per SNR 

level. The transceiver sensitivity is set to        that is a common value. Table 2 summarizes the settings of 

the simulations. 

Table 2: Simulation settings  

Parameter Area RF communi-

cation range 

Transceiver 

sensitivity 

Number of 

anchor nodes 

Number of 

sensor nodes 

SNR (dB) 

Value 100m x 100m 20m -85 dBm 20 20 - 200 0 - 30 

 

This scenario is challenging and crucial for node localization. In addition, a low RF range is assumed to 

further test the proposed DV-HOP-VVS-HCO localization algorithm under these harsh conditions. 

8. Simulation Results 

In this section, the results obtained from running the simulation of the WSN that is equiped by the proposed 

localization technique is introduced. Both DV-Hop and DV-HOP-VVS-HCO localization techniques are 

tested and evaluated while applying a realistic RF communication channel model within the WSN. The 

settings for important simulation parameters are found in Table 2. The performance evaluation is done via 

measuring the root mean square error (RMSE) and deducing the mean localization error (MLE). The SNR 

and number of nodes are changed to find there impact on the localization accuracy. 

8.1 The Effect of SNR on MLE 

Figure 2 illustrates the impact of signal-to-noise ratio (SNR) on the localization accuracy of two algorithms: 

Standard DV-Hop and the DV-HOP-VVS-HCO. The Y-axis represents the mean localization error (MLE) in 

meters, while the X-axis denotes SNR values ranging from 0 dB to 30 dB. Both algorithms exhibit a 
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significant decrease in RMSE as SNR increases, indicating better localization accuracy under lower noise 

conditions. The standard DV-Hop has an MLE of     initially at     and decreases progressively to around 

      at     . Meanwhile, the DV-HOP-VVS-HCO consistently outperforms the benchmark, starting from 

   meters and obtaining an MLE near      meters at higher SNRs. It should be noted that as SNR increses, 

the hop size estimations and hop counts become more accurate that leads to better estimation accuracy and 

hence lower RMSE.  

 

 

Figure 2: MLE vs. SNR for standard DV-Hop and DV-HOP-VVS-HCO 

Table 3: MLE vs. SNR for standard DV-Hop and DV-HOP-VVS-HCO and percentage MLE improvement 

SNR (dB) DV-Hop 

MLE 

DV-HOP-VVS-HCO MLE % Improvement SNR (dB) 

0   29.65 29.28 1.23 0 

5 28.71 28.29 1.46 5 

10 20.72 20.07 3.14 10 

15 13.02 11.57 11.14 15 

20 12.24 10.61 13.36 20 

25 11.79 10.43 11.53 25 

30 11.69 10.33 11.64 30 
 

 

Table 3 summarizes the results in Figure 2 and introduces the percentage improvement in MLE. It is evident 

that as SNR increases, the proposed technique outperforms the standard DV-Hop. MLE improvement 

reaches 13.36% at SNR of 15 dB. 

 

8.2 Impact of number of sensors on mean localization error (MLE)  

Figure 3 presents the results of changing the number of sensors with respect to the total number of anchors. It 

depicts MLE at SNR of      for DV-Hop and DV-HOP-VVS-HCO. Moreover, it presents how the MLE 

improved via the use of DV-HOP-VVS-HCO as compared to DV-Hop. It is evident that both techniques are 

affected by increasing number of sensors to number of anchors. However, DV-HOP-VVS-HCO is more stable 

with lower sensitivity to noise. Its superiority becomes more noticeable at higher nodes to anchors count ratio 
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(NACR). As NACR reach   , the MLE improvement reaches about    . However, it is expected that the 

MLE will decrease as the NACR increase, the wireless channel and the existence of RF noise affects the 

behavior. The wireless channel impairments cause more error accumulation as the number of node increases. 

Moreover, if the received signal by a node falls below its sensitivity due to channel attenuation, it may be 

reported by the transceiver as noise which causes a node to disconnect from the network and cause more 

localization errors. 

 

 

Figure 3: Impact of increased number of sensors relative to number of anchors 

Most of the studies presented in table 1 test the localization method performance is estimated without 

considering the wireless channel impairments, the channel noise, and the nodes and anchors’ transceiver 

sensitivities. Due to the nodes becoming nearer as NACR increases, they can connect to each other and to the 

anchors successfully. So, most of the nodes become connected to the network and hence can be localized and 

this results in a decrease in the NACR. This scenario is valid if no channel impairments exist. Hence the effect 

of wireless channel nature can impact the performance of a range free localization technique. 

 

8.3 Discussion and Insights 

The experimental results make significant observations. Optimizing the hop distance results in better 

localization accuracy that is less dependent on the tightly fixed hop-size assumptions adopted in classical 

DV-Hop. The proposed DV-HOP-VVS-HCO approach adaptation to noisy conditions is demonstrated 

where stable localization accuracy is maintained under changing the SNR. In addition, NACR suggests that 

the proposed method is more applicable for large-scale WSN implementations with low computation 

overhead. The developed model achieves a good trade-off between accuracy and efficiency and can be also a 

versatile solution for autonomous navigation, smart city, and IoT-based localization system.  

However, the DV-HOP-VVS-HCO localization algorithm adds extra computational load to the original DV-

Hop algorithm, as most of the optimized DV-Hop based localization techniques that are spotted in Table 1 

[31-35], [37, 38], overcome most of their limitations. It proves its robustness against node density, random 

node distributions, different node to anchors count ratios, and wireless channel conditions. It still needs to be 

tested for moving nodes scenarios. 
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Future work could investigate real-world deployment and additional optimizations, such as the adoption of 

reinforcement learning-based for adaptive hop-size estimation, to improve localization robustness in severe 

environments. In addition to testing and adapting it to mobility scenarios. Moreover, the proposed DV-Hop-

VVS-HCO can be compared to other developed range free localization techniques in the literature under the 

effect of different wireless channel models for different environments.   

9. Conclusion  

This paper proposed an improved localization scheme for WSN sensor nodes, where the DV-Hop range free 

localization scheme estimations are optimized for better location estimation of sensor nodes. The variable 

velocity strategy (VVS) and human conception optimization (HCO) techniques are combined within the DV-

Hop to enhance its location estimations for the sensor nodes. The proposed technique is evaluated via 

building a wireless sensor network (WSN) using simulations. The WSN is constructed by randomizing the 

sensors and anchor’s locations. Every node is assumed to be equipped with an RF transceiver with a 

predefined coverage range that is set at the beginning of the simulations, so that the nature of the wireless 

communication channel and its impact on estimation accuracy is exploited.   The effect of noise on the 

wireless channel and on the localization, algorithms are included in the simulations. The experimental 

results show that the proposed DV-HOP-VVS-HCO outperforms the standard DV-Hop technique by about 

11% to 13% at moderate SNR values. Changing the number of sensors also validates the more accurate 

proposed technique: It reduces the dependency on static assumptions, i.e., the algorithm is more adaptable 

to the sensor to anchors counts and of course the topology changes and randomness of node distributions. 

The results indicate that the proposed DV-HOP-VVS-HCO model can withstand the increase in the node 

populations and density in the existence of RF signal attenuation and wireless channel noise.  While the DV-

Hop’ means localization error (MLE) reaches about 25 m at nodes to anchors count ratio (NACR) of 10, the 

DV-HOP-VVS-HCO ‘MLE reaches about 17m with percentage improvement of about 23 . The DV-HOP-

VVS-HCO is an excellent candidate for applications when accurate and robust localization (e.g., 

autonomous navigation and IoT based smart city system) is required especially at moderate values of 

NACR. It proves it acceptable performance and accuracy in realistic WSNs as common wireless transmission 

impairments are modeled in the simulations. 
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