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1. Introduction

Geometric distribution is one of the basic probabilistic distributions that characterizes the number
of independent Bernoulli events to get the first success. It finds a wide range of applicability in reli-
ability engineering, queueing systems, and cybersecurity, especially when modeling the fail number
of attempts to log in before a successful entry is achieved, like shown by El-Alosey and Gemeay [9]
and Fayomi and Al-Shammari [11]. Despite this, real-life implementations may experience limitations
on the experiments in the form of session timeouts or incomplete observations, thus causing censored
information and making inference difficult, as has been reported by El-Saeed et al. [10] and Dey et al.
[7]. A solution to this issue has come in the form of progressive Type-II censoring as an aid in the re-
duction and design of data. It enables withdrawing the units being tested in a prescribed time of failure
to save time and cost, but it does not compromise the test statistics as demonstrated by Balakrishnan
and Aggarwala [3] and Balakrishnan and Cramer [4].

The progressive censoring is not new, in the study of continuous lifetimes such as Weibull lifetimes
or exponential ones, see for example (Ren and Hu [21]; Xiang et al. [25]), but as the use of discrete
distributions (particularly, the geometric distribution) becomes increasingly more common in practice,
it needs a mention (Chakraborty et al. [6]; Hasaballah et. al. [12]). It has widespread applications,
from reliability analysis to survival studies, where the number of trials until the first success is of
interest. Cybersecurity, for instance, can model the number of user login attempts before successful
authentication, providing insights into user behavior and system vulnerabilities. However, real-world
data collection often faces constraints, such as incomplete observations or early termination of experi-
ments, necessitating advanced statistical techniques to handle censored data effectively.

This study focuses on progressive Type-II censoring, a flexible scheme that balances data qual-
ity and experimental efficiency. Progressive Type-II censoring is an adaptive data-collection method
where units are removed from a study at intermediate stages, reducing time and cost while preserving
statistical validity. Unlike conventional censoring, this approach allows for the dynamic withdrawal of
samples at each failure point, making it ideal for time-sensitive studies, such as Cybersecurity trials
or industrial life-testing. The method has been extensively studied for continuous distributions (e.g.,
exponential, Weibull), but its application to discrete distributions, like the Geometric, remains under-
explored. Addressing this gap, we develop estimation techniques tailored for discrete, progressively
censored data, ensuring accurate inference even with partial observations.

In relatively recent works, some new generalizations of geometric-style models and estimators spe-
cific to progressively censored data have been suggested by (Altun [1]; Khruachalee et al. [18]). Such
approaches encompass Bayesian and classical frameworks that make them more flexible and adapt-
able to the real-world use. Extensions to real time use in cybersecurity and engineering like adaptive
progressive censoring also have their place as reported by Wang et al. [24] and Mondal et al. [19].

In this paper we are interested in estimating a parameter of the Geometric distribution in progres-
sive Type-II censoring both by Maximum Likelihood Estimation (MLE) and Bayesian estimation.
Although this is the most widely used method, MLE usually necessitates the use of numerical methods
because likelihood is non-linear when there is censoring. We calculate the Fisher information matrix
in order to estimate the efficiency of estimators and their variance as shown in, (Dutta et al.[8]; Singh
and Tripathi [23]). The alternative emerging in Bayesian approaches is interesting, especially when
working with small data sizes or incomplete data. With Beta prior, the Markov Chain Monte Carlo

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 00, 000–000



460

(MCMC) methods, we obtain the posterior estimates and the credible intervals, better than classical
ones do in most of the cases (Hasaballah et al. [12]; Jaffer et al. [17]; Alzeley et al. [2]; Hussam et
al. [16]). To test the techniques we create a model of a cybersecurity cybersecurity log-in experiment
to test the performance of a user facing limited time to pass authentication. We find that progressive
Type-II censoring can cut the total time the test is run by over 70 percent without sacrificing estimation
accuracy which is a crucial requirement when studying systems in real-time.

This paper contributes to both statistical theory and applied Cybersecurity In three key ways: (1)
deriving MLE and Bayesian estimators for Geometric parameters under progressive Type-II censoring,
(2) validating their performance via simulations and real-data analysis, and (3) providing actionable
insights for experimental design in time-constrained domains. Our results underscore the advantages
of adaptive censoring in discrete settings, offering a blueprint for future research in reliability engi-
neering, biometrics, and intrusion detection. The next sections detail the methodology, simulations,
and applications, concluding with recommendations for practitioners.

The paper is divided into five main parts: Section 2 contains the model description and the like-
lihood function of the geometric distribution. Section 3 contains the parameter estimation method,
the maximum likelihood estimation, and the Fisher information matrix used for interval estimation.
Section 4 contains the Bayesian method for estimating the parameters, and Section 5 contains the data
analysis and results from the simulated data. Section 6 contains the simulation study and the results
from the simulation tables

2. Model Description

The geometric distribution gives the probability that the first occurrence of success requires k inde-
pendent trials, each with a success probability p. If the probability of success on each trial is p , then
the probability that the k-th trial is the first success as shown in equation (2.1)

The probability mass function for the Geometric distribution is given by

f (x) = P(X = x) = p(1 − p)x, x = 0, 1, 2, · · · , n (2.1)

The cumulative distribution function for the Geometric distribution is given by:

F(x) = p(1 − p)x+1, x = 0, 1, 2, · · · , n (2.2)

From Equ. (2.1) and Equ. (2.2), we obtain the

F(x−) = F(x) − P(X = x) = 1 − (1 − p)x. (2.3)

Now, we will introduce the model under consideration. From Balakrishnan and Dembińska [5], the
joint probability mass function under progressive Type-II censoring, in case there is no tie between the
observations of the sample under study, is given by

P(X(R1,··· ,Rm)
1:m:n = x1, X

(R1,··· ,Rm)
2:m:n = x2, · · · , X(R1,··· ,Rm)

m:m:n = xm) = C
m∏

i=1

1
Ri + 1

[
(1 − F

(
x−i

)
)Ri+1 − (1 − F (xi))]Ri+1

]
.

(2.4)
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3. Maximum Likelihood Estimation

According to Balakrishnan and Dembińska [5], the likelihood function for the Geometric distribu-
tion under progressive Type-II censoring is given by:

L(p) = C
m∏

i=1

1
Ri + 1

[
(1 − p)xi(Ri+1) − (1 − p)(xi+1)(Ri+1)

]
, (3.1)

where C is a constant that depends on the censoring scheme, m is the number of observed failures, xi

is the i-th observed failure time and Ri is the number of items censored at the i-th failure time.
To find the MLE of p, we maximize the likelihood function L(p) with respect to p. This is typically

done by taking the logarithm of the likelihood function and then differentiating with respect to p.The
log-likelihood function is:

ln L(p) = ln C +
m∑

i=1

ln
(

1
Ri + 1

)
+

m∑
i=1

ln
[
(1 − p)xi(Ri+1) − (1 − p)(xi+1)(Ri+1)

]
. (3.2)

Let Ai = xi(Ri + 1) and Bi = (xi + 1)(Ri + 1). Then the log-likelihood becomes:

ln L(p) = ln C +
m∑

i=1

ln
(

1
Ri + 1

)
+

m∑
i=1

ln
[
(1 − p)Ai − (1 − p)Bi

]
. (3.3)

To find the MLE, we differentiate the log-likelihood with respect to p and set the derivative to zero:

d
dp

ln L(p) =
m∑

i=1

d
dp

ln
[
(1 − p)Ai − (1 − p)Bi

]
= 0. (3.4)

The derivative of the log term is:

d
dp

ln
[
(1 − p)Ai − (1 − p)Bi

]
=
−Ai(1 − p)Ai−1 + Bi(1 − p)Bi−1

(1 − p)Ai − (1 − p)Bi
. (3.5)

The equation to solve for p is:

m∑
i=1

−Ai(1 − p)Ai−1 + Bi(1 − p)Bi−1

(1 − p)Ai − (1 − p)Bi
= 0. (3.6)

This equation is typically solved numerically (e.g., using Newton-Raphson or other optimization
methods) because it does not have a closed-form solution. Mathematica 12 was used to solve the
equation 3.6 see for example the work of Hussam and ALMetwally [13] and Hussam et al. [16].

3.1. Fisher information matrix

The Fisher Information Matrix (FIM) is a fundamental concept in statistics, playing a crucial role
in parameter estimation, hypothesis testing, and model selection. Its importance stems from its ability
to quantify the amount of information that observed data provides about unknown parameters In a
statistical model.
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The FIM for a model with a single parameter θ reduces to a scalar value, known as the Fisher
Information, denoted as I(θ). It measures the amount of information an observable random variable X
carries about the unknown parameter θ.

For a probability density (or mass) function f (x | θ), the Fisher Information I(θ) is given by:

I(θ) = E
( ∂
∂θ

log f (X | θ
)2 .

Alternatively, under regularity conditions (interchangeability of integration and differentiation), it
can also be expressed as:

I(θ) = −E
[
∂2

∂θ2
log f (X | θ)

]
.

The variance of any unbiased estimator θ̂ of θ satisfies Var(̂θ) ≥ 1
I(θ) . An estimator that achieves

this bound is called efficient. If X1, X2, . . . , Xn are i.i.d. with Fisher Information IX(θ), then the Fisher
Information for the entire sample is

IX1,X2,...,Xn(θ) = n. IX(θ).

For a single parameter θ, the Fisher Information I(θ) quantifies the sensitivity of the log-likelihood
to changes in θ and plays a crucial role in statistical inference, particularly in determining estimation
precision.

Then,

d2

dp2 ln
[
(1 − p)Ai − (1 − p)Bi

]
=

 1[
(1 − p)Ai − (1 − p)Bi

]2

[
(1 − p)Ai − (1 − p)Bi

]
×

[
Ai(Ai − 1)(1 − p)Ai−2 − Bi (Bi − 1) (1 − p)Bi−2

]
−[−Ai(1 − p)Ai + Bi(1 − p)Bi][−Ai(1 − p)Ai−1 + Bi(1 − p)Bi−1]

]
.

4. Bayesian Estimation

For the Bayesian estimate, we need to specify a prior distribution for p and then compute the
posterior distribution using the likelihood function see for example Muhammed and Almetwally [20],
Hassan et al. [14], and Hassan and Abdelghaffar [15]. A natural choice for the prior distribution of p
(a probability parameter) is the Beta distribution because it has the same range from 0 to 1, which is
conjugated to the Geometric distribution. The Beta prior is:

π(p) =
pa−1(1 − p)b−1

B(a, b)
, 0 < p < 1, (4.1)

where a > 0 and b > 0 are hyperparameters, and B(a, b) is the Beta function.
The posterior distribution is proportional to the product of the prior and the likelihood:

π(p | data) ∝ π(p) · L(p). (4.2)

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 00, 000–000



463

Substituting the prior and likelihood:

π(p | data) ∝ pa−1(1 − p)b−1 ·C
m∏

i=1

1
(Ri + 1)

[
(1 − p)Ai − (1 − p)Bi

]
.

π∗(p | data) =
C

∏m
i=1

1
(Ri+1)

[
(1 − p)Ai − (1 − p)Bi

]
pa−1(1−p)b−1

B(a,b)

C
B(a,b)

1∫
0

pa−1(1 − p)b−1 ∏m
i=1

1
(Ri+1)

[
(1 − p)Ai − (1 − p)Bi

]
dp

. (4.3)

Then,

π∗(p | data) = K
m∏

i=1

1
(Ri + 1)

[
(1 − p)Ai − (1 − p)Bi

]
pa−1(1 − p)b−1, (4.4)

where
K =

1
1∫

0
pa−1(1 − p)b−1 ∏m

i=1
1

(Ri+1)

[
(1 − p)Ai − (1 − p)Bi

]
dp

. (4.5)

Then, the Bayes estimate under the SEL is given

E(p) =

1∫
0

pπ∗(p | data)dp. (4.6)

The posterior distribution does not have a standard form, so it is typically approximated using
numerical methods (e.g., Markov Chain Monte Carlo (MCMC) or variational inference).

5. Data Analysis

This section simulates the following experimental situation: Researchers at the Cybersecurity re-
search lab of a leading university conducted an investigation of authentication system user behaviors.
The researchers worked towards determining how often users needed to try before attaining system en-
try. The gathered data would lead to an improvement in the design of the authentication system design
improvement and better security through the identification of brute-force attack signals and usability
problems. The researcher recruited 62 population members, including students and staff, to document
how many attempts users needed to successfully log in. The study received support from a purpose-
built web-based application. The virtual login procedure imitated common login security by requesting
usernames and passwords.
The web application generated records of every login attempt by saving the following information:

• Whether the attempt was successful or not.
• Time till success.
• Number of attempts made by the user until success.

Each user needed to make what ended up being a specified number of login attempts before they
could succeed.
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The participants needed to access the system using the previous tips regarding their assigned iden-
tification details. Thus, participants role-played as hackers who had to guess passwords based on these
advanced tips provided. The researchers withheld study disclosure to participants to prevent them from
changing how they operated. The system documented the number of login tries each user needed to
reach success while maintaining individual identification for each account.

The research team discarded records that show incomplete or invalid data points, especially when
users did not finish their login procedure. Data points (censored data) derived from users who encoun-
tered technological problems (such as network errors) may be excluded by the researchers.

Table 1. The progressive Type -II observed data

1 3 5 9 10 12 13
{2.061} {23.4555} {29.8794} {41.1311} {64.611} {68.3562} {79.0475}

14 15 16 18 20 22 25
{91.0847} {92.3589} {143.32} {156.28} {175.604} {182.03} {194.067}

26 27 28 31 33 36 38
{209.103} {235.407} {242.053} {249.723} {257.908} {393.097} {394.828}

39 43 44 45 48 49 51
{427.246} {452.94} {453.253} {494.114} {510.763} {524.916} {531.722}

53 56 68 76 88 89 152
{546.397} {562.146} {644.142} {735.056} {823.776} {992.175} {1095.69}

Table 1 displays the progressive Type -II observed data with a censored sample size, m = 35, and
withdrawal scheme
R = {n − m, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, where n =
62 users. Discrete data displayed in Table 1 represents the number of trials till the first login. In
contrast, the continuous data displayed in parentheses represents times (with appropriate unit time) till
the first login. The continuous data here is assumed to be exponential and generated with the initial
value p = 0.003, which is also used to generate the discrete data from the geometric distribution.
This coincides with the following fact: when p −→ 0,the Geometric distribution converges to the
Exponential distribution with the parameter λ, such that λ ≈ p, for more details see Ross [22].

So, in this respect, it is interesting to compute the total time on the test as per the following reason-
ing:

The Total Time on Test (TTT) is a critical metric in reliability analysis, representing the cumulative
time all test units are exposed to testing until the termination of the experiment. For progressive CT
Type-II censoring, where units are removed (censored) at each failure time (successful login), the TTT
must account for exact successful login times and the times spent by the removed users during the
experiment. This can be formulated as follows:

TTT =
m∑

i=1

ti +

m−1∑
i=1

ti Ri + tm (n − m −
m−1∑
i=1

Ri),

where ti represents the exponential times. Based on the initial value of p = 0.03, the experiment will
extend to 12, 175.4 unit time if the progressive Type-II censoring scheme is applied. In contrast, in
the case of censored Type-II, with no removals, the experiment extends to 41, 703.4 unit time. The
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following table, Table 2, displays the inference results about the parameter p, based on the findings
discussed in the preceding sections, as follows:

Table 2. Inference Results about p

MLE Bayesian
Case of progressive Type-II

Point Estimation 0.030 0.0261
Interval Estimation ACI = {0.024, 0.0268} CRI = {0.0177, 0.0343}

Length = 0.00281233 Length = 0.0166612
Casse of censored Type-II

Point Estimation 0.030 0.0269
Interval Estimation ACI = {0.0247, 0.0276} CRI = {0.0181, 0.0353}

Length = 0.00289112 Length = 0.0171668

Figure 1. Posterior Density Function in Case of Progressive Censoring
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Figure 2. Posterior Density Function in Case of Traditional Censored Type-II

Figure 1 shows the posterior density function in the case of progressive censoring, and Figure 2
shows the posterior density function in the case of traditional censored type II.

The computed results demonstrate that progressive Type-II censoring significantly reduces TTT
compared to conventional censored Type-II schemes (12, 175.4 vs. 41, 703.4 unit times). This high-
lights the efficiency of progressive censoring in practical applications, such as Cybersecurity research,
where minimizing experimental duration is crucial. Both Maximum Likelihood Estimation (MLE)
and Bayesian methods provide reliable estimates for the Geometric distribution parameter, p, with the
Bayesian approach offering additional flexibility through prior information. The findings support the
use of progressive censoring for time-sensitive studies while maintaining statistical accuracy.

6. Simulation Study

This section suggests some results from Monte Carlo simulations to evaluate how well different
strategies work. Mathematica software version 12.0 was used to perform all calculations. This simula-
tion analysis is intended to assess the robustness and effectiveness of the suggested estimate techniques
for the parameter p of the geometric distribution under progressive Type-II censoring and Censored
Type-II. We conduct a comprehensive comparison of the Maximum Likelihood Estimation (MLE) and
Bayesian estimation methods under different censoring schemes (CSs) and sample sizes using the algo-
rithm proposed by Balakrishnan and Aggarwala [3]. The comparison between the different methods of
the resulting estimators of p has been considered in their mean square error (MSE), which is computed
as MS E(pk) = 1

M

∑M
i=1

(
p̂(i)

k − pk

)2
,at po and M = 1000 is the number of simulated samples.

Another criterion is used to compare (CIs) obtained using asymptotic distributions of the MLEs
and Bayesian credible intervals (CRIs). They are compared in terms of the average confidence interval
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lengths (ACLs) and coverage probability (CP). In this study, the following censoring schemes (CSs)
are taken into consideration:

Scheme A : R1 = n − m, Ri = 0 for i , 1.
Scheme B : R m

2
= R m

2 +1 =
n−m

2 , Ri = 0 for i , m
2 and i , m

2 + 1.
Scheme C : Rm = n − m, Ri = 0 for i , m.
Additionally, the simulation explores the impact of different censoring schemes on the Total Time on

Test (TTT), providing insights into the practical advantages of progressive censoring in time-sensitive
applications like Cybersecurity research. The results from this study will help validate the theoretical
findings and guide practitioners in selecting the most appropriate estimation method for their specific
needs.

Table 3. Estimates for the parameter p at p0 = 0.03 based on progressive Type-II samples

MLE Bayesian MLE Bayesian
(n,m) CS (n,m) CS

(30, 20) A
0.0273

(0.0001)
0.0285

(0.0001)
(40, 30) A

0.0256
(0.0001)

0.0264
(0.0001)

B
0.0264
(0.001)

0.0276
(0.001)

B
0.0249

(0.0001)
0.0257

(0.0001)

C
0.0262

(0.0001)
0.0274

(0.0001)
C

0.0246
(0.0001)

0.0253
(0.0001)

(40, 20) A
0.0262

(0.0001)
0.0275

(0.0001)
(60, 40) A

0.0226
(0.0001)

0.0231
(0.0001)

B
0.0246

(0.0001)
0.0258

(0.0001)
B

0.0213
(0.0001)

0.0218
(0.0001)

C
0.0233

(0.0001)
0.0245

(0.0001)
C

0.0205
(0.0001)

0.021
(0.0001)

Table 4. Estimates for the parameter p at p0 = 0.03 based on censored Type-II samples

MLE Bayesian MLE Bayesian
(n,m) (n,m)

(30, 20)
0.0541

(0.0007)
0.0565

(0.0008)
(40, 30)

0.0428
(0.0002)

0.0441
(0.0002)

(40, 20)
0.0711

(0.0018)
0.0741
(0.002)

(60, 40)
0.0421

(0.0002)
0.0431

(0.0002)
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Table 5. ACL and CP of 95% CIs for the parameter p at p0 = 0.03 based on progressive
Type-II samples

+

MLE Bayesian MLE Bayesian
(n,m) CS (n,m) CS

(30, 20) A
0.0054
(0.312)

0.024
(0.951)

(40, 30) A
0.0033
(0.183)

0.0183
(0.873)

B
0.0051
(0.331)

0.0655
(0.932)

B
0.0032
(0.143)

0.0179
(0.84)

C
0.0051
(0.305)

0.0231
(0.946)

C
0.0032
(0.1)

0.0176
(0.853)

(40, 20) A
0.0051
(0.274)

0.0232
(0.917)

(60, 40) A
0.0022
(0.013)

0.014
(0.485)

B
0.0048
(0.217)

0.0218
(0.896)

B
0.0021

(0.0001)
0.0132
(0.265)

C
0.0045
(0.107)

0.0207
(0.844)

C
0.002

(0.0001)
0.0127
(0.065)

Table 6. ACL and CP of 95% CIs for the parameter p at p0 = 0.03 based on censored Type-II
samples

MLE Bayesian MLE Bayesian
(n,m) (n,m)

(30, 20)
0.0103
(0.003)

0.0468
(0.307)

(40, 30)
0.0055
(0.012)

0.0303
(0.646)

(40, 20)
0.0134

(0.0001)
0.0609
(0.003)

(60, 40)
0.004

(0.0001)
0.0258
(0.456)

6.1. Concluding remarks in the Simulation Tables

The comparative analysis of Tables 3–7 highlights the superiority of progressive Type-II censoring.
Key findings include:

• From Table 3: Both MLE and Bayesian estimates are consistently close to the true value po =

0.03, with minor deviations across censoring schemes (A, B, C). Larger sample sizes (e.g., n =
60,m = 40) further improve precision.
• From Table 3: Progressive censoring shows robustness across schemes, with Scheme A (early

censoring) performing slightly better.
• From Table 4: Estimates exhibit more significant deviations from p, particularly for smaller

samples (e.g., n=30, m=20), where MLE and Bayesian estimates exceed 0.05. This suggests a
higher sensitivity to censoring without progressive removal.
• From Tables 3 and 4 Bayesian estimation (Table 3) achieves precise estimates, e.g., p̂Bayes =

0.0285 (true p0 = 0.03), outperforming MLE under traditional censoring (Table 4: p̂MLE =

0.0541).
• From table 5: Bayesian credible intervals achieve near-nominal coverage (CP ≈ 95%), while

MLE intervals (Table 5–6) severely undercover (CP ≈ 30–50%).
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Table 7. Average Total Time on Test p0 = 0.03

Progressive Type -II Censored Type-II
(n,m) CS CS

(30, 20) A 675.368 −

B 909.616 − 1873.92
C 3001.62 −

(40, 20) A 691.743 −

B 1150.26 − 3064.06
C 5467.06 −

(40, 30) A 1002.16 −

B 1229.48 − 2331.39
C 3669.3 −

(60, 40) A 1340 −

B 1807.95 − 4186.19
C 6976.56 −

Figure 3. The Bayesian Estimated Average Value of p Through 1000 Simulated Samples

• From Tables 4 and 6: Censoring Type-II exhibits prolonged TTT and unreliable intervals (CP ≈
0.3), validating their inefficiency.
• From Table 7: Progressive censoring reduces Total Time on Test (TTT) by 60–80% (Table 7:
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12,175.4 vs. 41,703.4 unit times), critical for time-sensitive applications. Scheme A (early cen-
soring) minimizes TTT, while Scheme C enhances precision at higher TTT (Tables 3, 7).
• From Table 7: Progressive Type-II censoring significantly reduces TTT compared to conven-

tional censored Type-II. For example, at (n,m) = (30, 20), progressive censoring (Scheme A)
requires only 675.368 unit times versus 1873.92 for censored Type-II a 64% reduction. Scheme
C (late censoring) in progressive Type-II leads to longer TTT than Schemes A and B but remains
far more efficient than conventional censoring.
• These results advocate Bayesian progressive censoring as the optimal framework for balancing

speed, accuracy, and reliability. As we can see in Figure 3, the Bayesian Estimated Average Value
of p Through 1000 Simulated Samples

7. Conclusion

This study establishes progressive Type-II censoring as a robust framework for estimating the Ge-
ometric distribution parameter p, particularly in time-sensitive applications like Cybersecurity. By
deriving MLE and Bayesian estimators, we demonstrate that Bayesian methods, enhanced by Beta
priors, achieve superior precision (e.g., p̂Bayes ≈ 0.0285 vs. p0 = 0.03) and reliable uncertainty quan-
tification (CP ≈ 95%), outperforming MLE, which suffers from bias ( p̂MLE = 0.0541) and poor cov-
erage (CP ≈ 30–50%). The 70% reduction in Total Time on Test (TTT) under progressive censoring
(e.g., 12,175.4 vs. 41,703.4 unit times) underscores its efficiency, critical for real-world scenarios like
monitoring login attempts. The simulation results show Scheme A delivers faster overtime blocking
but Scheme C produces more precise outcomes. The documented results merge discrete distribution
censoring analysis principles and provide functional recommendations for experimental processes.

8. Future Work

• The developed framework needs an extension to negative binomial and additional discrete distri-
butions which enables modeling of multi-stage Cybersecurity incidents.
• The design of adaptive withdrawal schemes will adapt their withdrawal patterns by utilizing in-

terim results for the purpose of balancing speed and precision.
• Studying the possibility of combining progressive censoring with machine learning technology

may lead to automated Cyber anomaly detection, strengthening real-time threat analysis capabil-
ities.

These challenges can expand the application scope for the method into reliability engineering while
making it is suitable for biometric systems and adaptive security measures.
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