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1. Introduction

Lifetime data modeling and statistical analysis are crucial in many applicable fields, including
engineering, finance, medicinal research, and insurance. As a result, in these fields, several lifespan
distributions have been introduced. In particular, modeling datasets restricted to the interval (0, 1) has
become more popular in the last several years. This method has proven to be very helpful in addressing
the success and failure rates of products in a variety of industries. Its versatility in managing these
kinds of probabilistic models has led to the emergence of several unit distributions that are confined
inside the interval (0, 1). Additionally, areas like banking, actuarial, and medical fields are realizing
more and more how important these kinds of distributions are. The beta distribution (BD) is one
of the most popular distributions that is employed on these kinds of datasets due to its adaptability.
The BD has a disadvantage, though, in that it is not always suitable for real-world scenarios, such
as hydrological data. Reference [1] presented the Kumaraswamy distribution (KumD), which is a
distribution close to the BD. In addition to the KumD, plenty of other unit distributions have been
developed to attempt to better suit the constantly increasing amount of data-sets on the unit interval
that may result from various complicated events. Fortunately, statisticians have recently become
more interested in putting out distributions that are determined by the unit interval that corresponds
to any continuous distribution. Readers may examine, unit-Birnbaum-Saunders distribution [2],
unit-Lindley distribution [3], unit-inverse Gaussian distribution [4], unit-Weibull distribution (UWD)
[5], unit-Gompertz distribution (UGD) [6], unit-exponentiated half-logistic distribution (UEHLD)
[7], unit Burr-III distribution [8], unit Burr-XII distribution [9], unit-improved second-degree Lindley
distribution [10], unit Teissier distribution [11], unit exponentiated Lomax distribution [12], unit
half-logistic geometric distribution [13], unit inverse exponentiated Weibull distribution [14], unit
generalized half-normal distribution [15], unit-power Burr X distribution (UPBXD) [16], unit half
normal distribution [17], unit power Lomax distribution [18], unit Maxwell-Boltzmann distribution
[19], and power new power function distribution [20], among others.

One of the key components in many technical and medical disciplines is modeling heavy-tailed
data. One of the most significant heavy-tailed alternatives to the gamma, Weibull, and exponential
distributions is the Lomax distribution (LD). It has been used in a number of fields, including biolog-
ical sciences [21], firm size [22], life testing and reliability [23], and analysis of wealth and income
data [24, 25]. Despite having many uses, the LD is unable to handle data that have bathtub upside-
down failure shapes. In order to improve the flexibility of the LD in representing different kinds of
data, a number of extensions have recently been built utilizing several techniques. A number of the
most significant LD extensions are Marshall-Olkin LD [26], exponentiated-Lomax distribution (ELD)
[27], McDonald- LD [28], Weibull-LD [29], weighted power LD [30], gamma-LD [31], exponenti-
ated Weibull-Lomax distribution [32], type II half logistic-LD [33], Nadarajah-Haghighi-LD [34], and
modified Kies-LD [35], among others.
For the purpose of this study, the ELD is required. The probability density function (PDF) and cumu-
lative distribution function of the ELD with scale parameter a > 0, and shape parameters b > 0, and
c > 0, are respectively, given as

f (x) = abc(1 + ax)−b−1
[
1 − (1 + ax)−b

]c−1
; x > 0, (1.1)
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and
F(x) =

[
1 − (1 + ax)−b

]c
; x > 0, (1.2)

where a is scale parameter and b, c are two shape parameters. Some important information about the
ELD are as follows: For a = 1, the PDF (1.1) reduces to the exponentiated Pareto distribution, for
c = 1, the PDF (1.1) provides LD.
The development of more flexible models through the use of various techniques, including the inverse
transformation technique, has therefore gained increasing attention. Along with increasing the distribu-
tion’s flexibility, this strategy keeps the number of parameters constant. The recently created inverted
ELD (IELD) by Reference [36] is the subject of this discussion. Let Y = 1

X , where X ∼ ELD (a, b, c),
the PDF and CDF of the IELD with scale parameter a > 0, and shape parameters b > 0, and c > 0, are
respectively, given as

f (y) =
abc
y2

(
1 +

a
y

)−b−11 − (
1 +

a
y

)−bc−1

; y > 0, (1.3)

and

F(y) = 1 −
1 − (

1 +
a
y

)−bc

; y > 0. (1.4)

The IELD displays an increasing, decreasing, reversed j-shaped and inverted bathtub-shaped hazard
rate function (HRF), which is widespread in most real-world systems and highly valuable in survival
analysis. The IELD can be regarded as a fitting model for positive data with an extended right tail,
presuming a smooth increasing HRF and being applicable to a variety of domains.

This paper’s goal is to create novel flexible three-parameter distribution for modeling data given
in the interval (0, 1). We adopted the transformation Z = Y

1+Y , where Y holds the IELD, and utilized
the IELD to create a unit IELD (UIELD). We are motivated to introduce the UIELD for the following
reasons:

1. The UIELD reveals an increasing, decreasing, j-shaped, and U-shaped HRF, hence, its functional
flexibility is helpful for modeling skewed data seen in a variety of domains.

2. Several pivotal statistical attributes of the UIELD are ascertained, comprising moments, quantile
function (QF), incomplete moments (IM), probability-weighted moments (PWMs), uncertainty
measures, and stress-strength (SS) reliability.

3. The maximum likelihood estimates (MLEs) as well as the approximate confidence intervals
(ACIs) are derived using progressively type-II (PTII) censored sampling. The Bayesian esti-
mates (BEs) are then computed using the squared error loss function (SEL) and the Markov chain
Monte Carlo (MCMC) technique. The highest posterior density (HPD) credible intervals are also
computed. Three optimization criteria are employed to select the most suitable scheme.

4. It is important to note that evaluating the various point and interval estimates conceptually is more
difficult when analyzing their efficacy. As a result, a simulation study is provided to achieve this
objective.

5. Three separate real-world datasets were used for the empirical validation of our UIELD frame-
work, yielding strong proof of its statistical performance and practical applicability. Our sug-
gested framework’s superior fitting ability was consistently shown across all assessed metrics in
comparison to six well-known models (UWD, KumD, BD, UEHLD, UGD, and UPBXD).

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue x, 0–0



4

Here is a summary of the paper’s organizational framework. Section 2 presents the UIELD’s mathe-
matical description. Its mathematical properties are examined in Section 3. Section 4 looks at MLEs,
BEs, ACIs, HPD credible intervals, the best censoring methods, in addition to the simulation research.
In Section 5, we talk about applying it to real-world datasets. Section 6 serves as the article’s conclu-
sion.

2. Description of the New Model

In this section, the UIELD defined on the interval (0,1) with scale parameter a and shape parameters,
b and c is introduced. For this purpose, assume that Z = Y

1+Y where Y ∼ IELD (a, b, c), hence the CDF
of the Z ∼ UIELD (a, b, c), is obtained as follows:

G(z; ζ) = P(Z ⩽ z) = P
( Y
1 + Y

⩽ z
)
= P

(
Y ⩽

z
1 − z

)
= FY

( z
1 − z

)
= 1 −

1 − (
1 +

a(1 − z)
z

)−bc

; 0 < z < 1.
(2.1)

For z ≤ 0, we easily set G(z; ζ) = 0, and for z > 1 we set G(z; ζ) = 1. Note that ζ ≡ (a, b, c), is set of
parameters that satisfies a > 0, b > 0, and c > 0.

g(z; ζ) =
abc
z2

(
1 +

a(1 − z)
z

)−b−11 − (
1 +

a(1 − z)
z

)−bc−1

; 0 < z < 1, (2.2)

and g(z; ζ) = 0, for g(z; ζ) < (0, 1). For c = 1, the PDF (1.3) reduces to the unit ILD (UILD) as a new
unit model. The survival function (SF) and the HRF, for z ∈ (0, 1), are as follows

Ḡ(z; ζ) =
1 − (

1 +
a(1 − z)

z

)−bc

,

and

h(z; ζ) =
abc
z2

(
1 +

a(1 − z)
z

)−b−11 − (
1 +

a(1 − z)
z

)−b−1

.

The density and HRF plots of the UIELD are given in Figures 1 and 2 for specific values of parameters.
It can be observed from Figure 1 that the PDF of the UIELD can be quite flexible, exhibiting a variety
of asymmetric shapes: left-skewed, reversed J-shaped, U-shaped, or even a ”decreasing-increasing-
decreasing” pattern. In contrast, the HRF in Figure 2 is thankfully simpler adopting J-shaped, U-
shaped, increasing, or decreasing forms.

3. Some Fundamental Characteristics

Here, we establish some basic mathematical characteristics of the UIELD, such as PWMs, moments
and IMs, QF, some entropy measures and S-S reliability parameter.
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Figure 1. Plots of the PDF for the UIELD
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Figure 2. Plots of the HRF for the UIELD
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3.1. Quantile Function

For p ∈ (0, 1), the QF of Z is obtained by inverting CDF (2.2) as follows:

p = 1 −
1 − (

1 +
a(1 − Q(p))

Q(p)

)−bc

,

that supplies;

Q(p) =
[
1 + A(p, c, b, a)

]−1, A(p, c, b, a) =
1
a

[(
1 − (1 − p)1/c

)−1/b
− 1

]
. (3.1)

In particular, the first quartile, say Q1, is produced by setting p = 0.25 in (3.1), the second quartile or
median, say Q2 is produced by setting p = 0.5 and the third quartile is produced by setting p = 0.75 in
(3.1).

3.2. Moments Measures

The main characteristics of a distribution, such as skewness, kurtosis, dispersion, and central ten-
dency, may be studied using moments. The moments of the UIELD can be obtained as an infinite
power series as mentioned below. The mth moment of the UIELD is obtained by using PDF (2.2) as
follows:

µ′m = abc

1∫
0

zm−2
(
1 +

a(1 − z)
z

)−b−11 − (
1 +

a(1 − z)
z

)−bc−1

dz. (3.2)

Suppose that y =
(
1 + a(1−z)

z

)−b
then the mth moment of (3.2) will be as follows

µ′m = abc

1∫
0

(
1 −

1
a

(1 − y
−1
/b)

)−m[
1 − y

]c−1dy. (3.3)

Using the following expansion

(1 − k)−d =

∞∑
i1=0

Γ(d + i1)ki1

Γ(d)i1!
, |k| < 1,

and binomial expansion in Equation (3.3), we have

µ′m =

∞∑
i1=0

i1∑
i2=0

(
i2

i1

)
(−1)i2Γ(m + i1)c
Γ(m)(i1!)ai1−1 B

(
1 −

i2

b
, c

)
, i2 < b,

where B(., .) is the beta function (BF). Furthermore, the mth central moment of Z, is given by

µm = E(Z − µ′1)m =

m∑
l=0

(−1)l

(
m
l

)
(µ′1)lµ′m−l.
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The 3D plots of mean, variance, coefficient of skewness and coefficient of kurtosis for the UIELD are
provided in Figures 3 and 4 for different values of shape parameter c.
Furthermore, the mth moment of the UIELD is obtained by using PDF (2.2) as follows:

ϑm(t) = abc

t∫
0

zm−2
(
1 +

a(1 − z)
z

)−b−11 − (
1 +

a(1 − z)
z

)−bc−1

dz.

Using binomial expansions and after some simplification the mth incomplete moment of the UIELD is
as follows:

ϑm(t) =
∞∑

i1=0

i1∑
i2=0

(
i2

i1

)
(−1)i2Γ(m + i1)c
Γ(m)(i1!)ai1−1 B

1 − i2

b
, c,

(
1 +

a(1 − t)
t

)−b ,

where B(., ., x) is the incomplete BF. Perhaps the prominent uses of the first incomplete moment are the
Lorenz curve, represented by L(t) = ϑ1(t)

/
µ′1 and Bonferroni curves, represented by B(t)= L(t)/F(t).

These curves are very useful in the fields of economics, demography, insurance, engineering, and
medicine.
The UIELD’s mth inverse moment is obtained using PDF (2.2) in the manner shown below:

E(Z−m) = abc

1∫
0

z−m−2
(
1 +

a(1 − z)
z

)−b−11 − (
1 +

a(1 − z)
z

)−bc−1

dz.

The mth inverse moment of the UIELD is as follows after simplifying and applying binomial expan-
sions

E(Z−m) =
∞∑

i1=0

i1∑
i2=0

(
i2

i1

)
(−1)i2Γ(m + i1)c
Γ(m)(i1!)ai1−1 B

(
1 +

i2

b
, c

)
.

After simplification and using binomial expansions twice times, the mth inverse moment of the UIELD.
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Figure 3. 3D Plots of some measures of moments associated with the UIELD at c = 0.5
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Figure 4. 3D Plots of some measures of moments associated with the UIELD at c = 1.5

3.3. Stress-Stress Reliability

Industrial component reliability metrics are widely used, particularly in the field of engineering. A
system or product’s reliability is determined by how likely it is to operate in the required time frame
under standard (or defined) environmental conditions and fulfill its intended purpose. A component’s
life under random stress (Z2) and random strength (Z1) is described by an SS model. When the stress
applied to a component exceeds its strength, the component fails instantly, and when Z2 > Z1, it
performs adequately. The ς = P [Z2 < Z1] is typically referred to as ”SS reliability” in statistical
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literature. The SS reliability models are frequently used in mechanical engineering to examine the
connection between material strength and applied stress in mechanical systems and components. These
models are crucial for risk assessment and design validation because they evaluate the likelihood that
a system will function as intended under operating loads without malfunctioning. In medical research,
the SS reliability Z1 represents the treatment effect of an experimental therapy, and Z2 denotes the
corresponding effect in the control group. This framework enables direct quantification of therapeutic
superiority in randomized clinical trials.

Let Z1 and Z2 are two independent random variables, where Z1 ∼ UIELD (z; a, b1, c1) and Z2 ∼

UIELD (z; a, b2, c2), thus, the following is the determination of the UIELD’s SS reliability:

ς = 1 −

1∫
0

ab1c1

z2

(
1 +

a(1 − z)
z

)−b1−11 − (
1 +

a(1 − z)
z

)−b1
c1−11 − (

1 +
a(1 − z)

z

)−b2
c2

dz. (3.4)

Through employing the binomial expansions twice times in Equation (3.4), the SS reliability can pos-
sibly be expressed as follows.

ς = 1 −
∞∑

j1, j2=0

(−1) j1+ j2

(
c1 − 1

j1

) (
c2

j2

)
b1c1

b1( j1 + 1) + b2 j2
.

3.4. Entropy Measures

Entropy, which was first applied in physics, is one of the most widely used methods for evaluating
the degree of uncertainty related to a random variable. In several fields, including statistics, chemistry,
and biology, entropy measurement is crucial. Less information found in a sample is associated with
higher entropy. We examine some information metrics in this context, including Rényi (Ré) entropy
[37], Tsallis entropy [38], and Arimoto entropy [39]. For a random variable Z, the Ré entropy is defined
by:

R(v) =
1

(1 − v)
log


∞∫

0

( f (z))vdz

 , v > 0, v , 1. (3.5)

Inserting PDF (2.2) in (3.5), then we have

R(v) =
1

1 − v
log


1∫

0

(abc)v

z2v

(
1 +

a(1 − z)
z

)−v(b+1)1 − (
1 +

a(1 − z)
z

)−bv(c−1)

dz

 . (3.6)

With the use of binomial expansions in integration (3.6) provides the following expression

I =
∞∑

k1,k2=0
(−1)k1+k2

(
v(c − 1)

k1

) (
bk1 + v(b + 1)

k2

) 1∫
0

z−2v−k2(1 − z)k2dz

=
∞∑

k1,k2=0
(−1)k1+k2

(
v(c − 1)

k1

) (
bk1 + v(b + 1)

k2

)
(a)v+k2(bc)vB(1 − 2v − k2, k2 + 1) , 2v + k2 < 1.

(3.7)
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Hence, the Ré entropy of the UIELD is obtained by setting (3.7) in (3.6) as seen below:

R(v) =
1

1 − v
log

 ∞∑
k1,k2=0

(−1)k1+k2

(
v(c − 1)

k1

) (
bk1 + v(b + 1)

k2

)
(a)v+k2(bc)vB(1 − 2v − k2, k2 + 1)

 .
The Tsallis entropy of the Z is given by:

T (v) =
1

(v − 1)

1 −
∞∫

0

( f (z))vdz

 , v > 0, v , 1. (3.8)

Inserting PDF (2.2) and integration (3.7) in (3.8), then the Tsallis entropy of the UIELD is given by:

T (v) =
1

(v − 1)

1 − ∞∑
k1,k2=0

(−1)k1+k2

(
v(c − 1)

k1

) (
bk1 + v(c − 1)

k2

)
(a)v+k2(bc)vB(1 − 2v − k2, k2 + 1)

 .
The Arimoto entropy of the Z is given by:

A(v) =
v

1 − v



∞∫

0

( f (z))vdz


1/v

− 1

 , v > 0, v , 1. (3.9)

Inserting PDF (2.2) and integration (3.7) in (3.9), then the Arimoto entropy of the UIELD is given by:

A(v) =
v

1 − v


 ∞∑

k1,k2=0

(−1)k1+k2

(
v(c − 1)

k1

) (
bk1 + v(c − 1)

k2

)
(a)v+k2(bc)vB(1 − 2v − k2, k2 + 1)


1/v

− 1

 .
4. Progressively Type-II censored scheme

This section discusses different ways data can be censored in experiments, where censoring means
not having complete information about all subjects. Two common types are:
Type-I censoring: This stops the experiment after a fixed time, regardless of how many failures oc-
curred.
Type-II censoring: This lets the experiment run until a pre-determined number of failures are ob-
served.

Recently, a more flexible approach called progressive censoring scheme has become popular. This
method makes better use of resources compared to traditional methods. PTII censoring is an extension
of Type-II censoring. We start with n items in a test and aim to observe m failures. When the first failure
happens, we randomly remove R1 of the remaining n − 1 items. After the second failure, we remove
R2 of the remaining items, and so on. The experiment ends after the ‘mth failure, with all remaining
items Rm = n − m − R1 − R2 − ... − Rm−1 being removed. The number of items removed at each stage
(R1, R2, etc.) is decided before the experiment starts. This approach is written as z1:m:n, z2:m:n, ..., zm:m:n,
where ‘z‘ represents the observed failure times. Finally, the text clarifies that the total number of items
(n) is equal to the number of failures (m) plus the number of items removed at each stage (R1 to Rm).

This section talks about the statistical properties of PTII censored data. Assume, we have an exper-
iment with n items undergoing a life test. We assume the times it takes for these items to fail follow
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a continuous probability distribution. This distribution is characterized by its CDF denoted by G(z)
and its PDF denoted by g(z). The text refers to a result by Balakrishnan and Aggarwala [40] which
describes the formula for the joint density function of the observed failure times when using PTII cen-
soring (m failures observed with progressive removal of surviving items). This joint density function
essentially describes the probability of observing a specific set of failure times under these conditions.
The likelihood function

L(ζ) = Q
m∏

i=1

f (z(i:m:n); ζ)
[
1 − F(z(i:m:n); ζ)

]Ri , (4.1)

where ζ is a vector of parameters, and Q is a fixed value and does not depend on ζ, where Q =
n (n − 1 − R1) (n − 2 − R1 − R2) . . .

(
n − m + 1 −

∑m−1
j=1 R j

)
.

4.1. Estimation Methods

The ML and Bayesian estimation methods have been discussed for parameters of UIELD based in
PTII censoring scheme in this section.

4.1.1. Maximum Likelihood Estiamtors

In this sub-subsection, the MLEs of the UIELD parameters a, b, and c under PTII censored data are
provided. Assume that z1:m:n, z2:m:n, . . . , zm:m:n is a PTII censored sample from a life testing of size m
obtained from the UIELD. The likelihood function (LF) is

L(ζ) =Q (abc)m
m∏

i=1

1
z2

i:m:n

(
1 +

a(1 − zi:m:n)
zi:m:n

)−b−11 − (
1 +

a(1 − zi:m:n)
zi:m:n

)−bcRi+c−1

. (4.2)

The natural logarithm of the LF for the UIELD distribution, based on a PTII censored sample, is

ℓ(ζ) = ln(Q) + m (ln a + ln b + ln c) − 2
m∑

i=1

ln zi:m:n − (b + 1)
m∑

i=1

ln
(
1 +

a(1 − zi:m:n)
zi:m:n

)
+

m∑
i=1

(cRi + c − 1) ln
1 − (

1 +
a(1 − zi:m:n)

zi:m:n

)−b . (4.3)

To find the MLE for the parameters a, b and c in the model, we need to maximize this log-LF in
Equation (4.3). Also, we need to solve three nonlinear equations. These equations are derived from
the maximized log-LF as follows:

∂ ln(ζ)
∂a

=
m
a
−

m∑
i=1

(b + 1)zi:m:n(1 − zi:m:n)
zi:m:n + a(1 − zi:m:n)

+

m∑
i=1

(cRi + c − 1)b[
1 −

(
1 + a(1−zi:m:n)

zi:m:n

)−b
] (

1 +
a(1 − zi:m:n)

zi:m:n

)−b−1 (1 − zi:m:n)
zi:m:n

,

(4.4)

∂ℓ(ζ)
∂b
=

m
b
−

m∑
i=1

ln
(
1 +

a(1 − zi:m:n)
zi:m:n

)
+ b

m∑
i=1

(cRi + c − 1)

(
1 + a(1−zi:m:n)

zi:m:n

)−b
ln

(
1 + a(1−zi:m:n)

zi:m:n

)
1 −

(
1 + a(1−zi:m:n)

zi:m:n

)−b , (4.5)
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and

∂ℓ(ζ)
∂c
=

m
c
+

m∑
i=1

(Ri + 1) ln
1 − (

1 +
a(1 − zi:m:n)

zi:m:n

)−b . (4.6)

Equation (4.3) can be explicitly maximized in R using the ’maxlike’ function, which implements ei-
ther the Nelder-Mead (NM) or Newton-Raphson (NR) maximization procedures for MLE calculations.
This process addresses the non-linear log-likelihood equations obtained by differentiating Equation
(4.3) with respect to the distribution parameters ζ = (a, b, c) and setting the result to zero.

4.2. Bayesian Estimation

As a powerful and useful alternative to traditional techniques, the Bayesian approach has gained
significant attention in statistical analysis over the past few decades. Bayesian methods for parameter
estimation have been successfully applied across a wide range of fields, including physics, the food
chain, epidemiology, environmental science, COVID-19, and econometrics. In this subsection, Bayes
estimates of the unknown parameters are derived using a SEL, and the corresponding HPD credible
confidence interval is obtained. It is assumed that the various parameters of the UIELD are independent
and have prior distributions that are both informative and non-informative.

We now examine the BEs for the ζ function under the SEL function using PTII sampling. The BEs
of the parameters in the ζ BEs vector are constructed based on the posterior distributions given the data.
The proposed method is briefly described below. The SEL function for the assumed prior distribution
is then minimized using the posterior mean as follows:

ζ̃ = E(ζ |Z),

where ζ̃( j) represents the BEs vector for ζ at iteration ( j). The choice of the loss function in Bayesian
estimation depends on the specific problem and the data assumptions. The SEL function is often
preferred for several reasons:

Firstly, SEL provides mathematical convenience by yielding simpler mathematical expressions and
computational algorithms. Its optimization properties make it easier to find MLEs, either analytically
or numerically.

Secondly, when model errors are assumed to follow a normal distribution, SEL aligns with the
goal of maximizing the likelihood function. This is because the negative log-likelihood of the normal
distribution is proportional to the squared error loss.

Lastly, SEL is robust to outliers in the data, especially when errors are normally distributed. It
imposes larger penalties on significant errors compared to smaller ones, which can be beneficial de-
pending on the problem’s context. Additionally, using the R software’s coda and HDInterval packages,
as developed by Plummer and Meredith [42], we can determine the MCMC results and the HPD cred-
ible interval for ζ, respectively.

Assume z1:m:n, z2:m:n, . . . , zm:m:n represent associated observations, and z1:m:n, z2:m:n, . . . , zm:m:n denote
a random sample of size m drawn from the UIELD based on PTII censored sample with unknown
parameters. In the Bayesian analysis, we assume independent gamma priors for the model parameters
due to their flexibility and suitability for positive-valued quantities. The gamma distribution is also a
conjugate prior for many likelihoods involving scale or rate parameters, which simplifies the derivation
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of the posterior distributions. In this work, we adopt relatively non-informative gamma priors with
hyperparameters chosen to reflect vague prior knowledge, following the approach commonly used in
the literature (see, e.g., [?], [44], [45] and [46]). We assume that these are separate random variables
(RVs) following the gamma distribution, with the PDF provided by

Π(ζ) ∝ aϕ1−1bϕ2−1cϕ3−1e−(ω1a+ω2b+ω3c). (4.7)

To determine the appropriate hyperparameters for the independent joint prior, use the estimates and
the variance-covariance matrix from the MLE technique. By equating the mean and variance of the
gamma priors, the estimated hyperparameters can be expressed as follows:

ϕ1 =

[
1
I

∑I
j=1 â j

]2

1
L−1

∑I
i=1

[
â j − 1

I

∑I
i=1 â j

]2 ; ϕ2 =

[
1
I

∑I
j=1 b̂ j

]2

1
L−1

∑I
i=1

[
b̂ j − 1

I

∑I
i=1 b̂ j

]2 , ϕ3 =

[
1
I

∑I
j=1 ĉ j

]2

1
L−1

∑I
i=1

[
ĉ j − 1

I

∑I
i=1 ĉ j

]2 ,

ω1 =

1
I

∑I
i=1 â j

1
L−1

∑I
i=1

[
â j − 1

I

∑I
i=1 â j

]2 ; ω2 =

1
I

∑I
i=1 b̂ j

1
L−1

∑I
i=1

[
b̂ j − 1

I

∑I
i=1 b̂ j

]2 , ω3 =

1
I

∑I
i=1 ĉ j

1
L−1

∑I
i=1

[
ĉ j − 1

I

∑I
i=1 ĉ j

]2 ,

where I denotes the number of MLE iterations. For more information about these techniques (selecting
hyper-parameters), refer to [47].

The parameters’ posterior distribution can be stated as follows:

π∗ (ζ | data) =
Π(ζ) L(ζ | data)

∞∫
0

∞∫
0

∞∫
0
Π(ζ) L(ζ | data) dadbdc

. (4.8)

Equation (4.9) demonstrates how to formulate the joint posterior proportional to the prior as an equa-
tion.

π∗ (ζ | data) ∝ am+ϕ1+1bm+ϕ2+1cm+ϕ3+1e−(ω1a+ω2b+ω3c)
m∏

i=1

1
z2

i:m:n

(
1 +

a(1 − zi:m:n)
zi:m:n

)−b−1

m∏
i=1

1 − (
1 +

a(1 − zi:m:n)
zi:m:n

)−bcRi+c−1

.

(4.9)

The full conditional distributions for a, b and c can be expressed, up to a proportional constant, as:

π∗ (a | b, c, data) ∝am+ϕ1+1e−ω1a
m∏

i=1

(
1 +

a(1 − zi:m:n)
zi:m:n

)−b−11 − (
1 +

a(1 − zi:m:n)
zi:m:n

)−bcRi+c−1

,

π∗ (b | a, c, data) ∝bm+ϕ2+1e−ω2b
m∏

i=1

(
1 +

a(1 − zi:m:n)
zi:m:n

)−b−11 − (
1 +

a(1 − zi:m:n)
zi:m:n

)−bcRi+c−1

,

π∗ (c | a, b, data) ∝cm+ϕ3+1e−ω3c
m∏

i=1

1 − (
1 +

a(1 − zi:m:n)
zi:m:n

)−bcRi+c−1

.

(4.10)
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We can use both the Metropolis-Hastings algorithm and the Gibbs sampling technique to generate
samples from the posterior distributions, since none of these posterior PDFs correspond to a single
common distribution. For further insights into this approach, see references [48, 49, 50].

4.3. Method of Optimization

The ideal censoring scheme for gathering data has been a topic of much recent research (Burkschat
[51], and Pradhan and Kundu [52]). In progressive censoring, where items are removed at specific
points during the experiment, many different combinations (R1,R2, . . . ,Rm) of removal times are pos-
sible given the predetermined number of total items (n) and observed failures (m).

Before choosing a specific sampling plan, we need a way to determine which progressive censoring
approach provides the most informative data about the unknown parameters we’re trying to estimate.
There are two main challenges:

• Generating unknown parameter data: How can we estimate the unknown parameters using a
particular progressive censoring scheme?
• Comparing information content: How can we compare the value of two different progressive

censoring schemes?

To address these challenges for UIELD based on PTII censored sample with different schemes, this
paper establishes a set of optimality criteria which listed in Table 1. Table 1 also provides various
popular information measures that can be used to identify the best progressive censoring strategy for a
given experiment.

Table 1. optimization criteria and methods

Criterion Method Target
Optim1 Min-trace [I3×3]−1 Minimum
Optim2 Min-det [I3×3]−1 Minimum
Optim3 Max-trace [I3×3] Maximum

The text defines three optimality criteria (Optim1,Optim2, andOptim3) to identify the most infor-
mative progressive censoring scheme for estimating multiple unknown parameters. For information
about optimum censoring plans, the reader can refer to [53, 54, 55, 56, 57, 58].

• Optim3: This criterion maximizes the observed Fisher information, represented by a 3x3 matrix
([I3×3]). Fisher information essentially measures how much information an experiment provides
about the parameters being estimated. Here, a larger value indicates more informative data.
• Optim1 and Optim2: These criteria both aim to minimize the amount of uncertainty in the esti-

mates. They achieve this by minimizing the determinant and trace (sum of diagonal elements) of
the inverse of the Fisher information matrix ([I3×3]−1). A smaller value suggests less uncertainty.

4.3.1. Fisher information matrix

A core concept in statistics, the Fisher information matrix quantifies the amount of information data
holds about an unknown parameter. It is utilized to understand the behavior of maximum-likelihood
estimates as they approach infinity and to determine the variance of an estimator. The inverse of the
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Fisher information matrix serves as an estimator for the asymptotic covariance matrix. To compute
the Fisher information matrix, one uses the expected values of the negative second-partial and mixed-
partial derivatives of the log-likelihood function with respect to

I3×3 =


κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33


ζ=ζ̂

where κ11 =
∂2ℓ(x;ζ)
∂a2 , κ21 = κ12 =

∂2ℓ(x;ζ)
∂a∂b , κ31 = κ13 =

∂2ℓ(x;ζ)
∂a∂c , κ22 =

∂2ℓ(x;ζ)
∂b2 , κ32 = κ23 =

∂2ℓ(x;ζ)
∂b∂c , and

κ33 =
∂2ℓ(x;ζ)
∂c2 .

4.4. Simulation

This section explains how researchers employed computer simulations, specifically Monte Carlo
methods, to identify unknown parameters of a distribution known as UIELD, using the PTII censoring
scheme. We compared two estimation techniques: the widely used ML and Bayesian approaches.
To evaluate these methods, they analyzed bias, the accuracy of the estimates through average mean
squared errors (MSEs), and the reliability of the estimates using the length of confidence intervals
(LCI), specifically, LCI of ACI, denoted as LACI, and LCI of Bayesian credible interval, denoted as
LCCI. Additionally, they assessed the frequency with which the CIs included the true value, known as
coverage probabilities (CP), using CI techniques.

The simulations were conducted for various combinations of predetermined settings (n,m) and dif-
ferent schemes. Ultimately, the researchers used the simulation results to estimate the UIELD param-
eters from data samples generated using the PTII censoring scheme. The entire estimation process
adhered to a specific sequence of steps carried out through computer simulations, as detailed below:

• Initial sample values: We start by setting initial values for the variables n, and m. These variables
likely represent key parameters or settings for the simulation as: n=100, and 200, & for m=50,
70, 150, and 170.
• Additional initializations: We also establish initial values for the UIELD parameters in the fol-

lowing scenarios:
Case 1: a = 1.6; b = 1.2; c = 1.3 & Case 2: a = 0.6; b = 0.8; c = 1.3 & Case 3:
a = 0.6; b = 0.8; c = 0.5.
• Involves generating a specific sample: We generate a sample known as a PTII sample, which

likely refers to a specific type of data point utilized in the simulation. This process operates under
the assumption that the number of units removed after each failure follows a fixed pattern (fixed
scheme) as follows:
Scheme 1: R1 = Rm =

n−m
2 , and Ri = 0; i = 2, ...,m − 1.

Scheme 2: Rm = n − m, and Ri = 0; i = 1, 2, ...,m − 1.
Scheme 3: R1 = n − m, and Ri = 0; i = 2, ...,m.

The following conclusions can be drawn from Tables 2, 3, 4, and 5:

• The estimates for the unidentified UIELD parameters a, b, and c are outstanding based on the
least MSE, bias, LACI, LCCI, and CP values.
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• As n (or m) increases, all estimates perform as expected. When n − m decreases, all estimates
maintain consistent performance.
• The MCMC estimates, which use SEL function, outperform the MLE in terms of the smallest

MSE, Bias, and LCI values due to the gamma prior for the parameters a, b, and c.
• Scheme 2 has better results comparing to schemes 1 and 3, where this has smaller values of

Optim1, Optim2, and Optim3 for most cases.
• For intervals estimation, the LCCI gets small values compared to LACI. Most of the coverage

probabilities were high, ranging around 95%.

Figure 5. Par chart of optimal criteria

Figure 5 discussed bar chart of optimal criteria for Optim1, and Optim3. Scheme 2 has better results
compared to schemes 1 and 3, where this has smaller values of Optim1, Optim2, and Optim3 for most
cases.
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Table 2. ML and Bayesian estimation for parameters: a = 1.6; b = 1.2; c = 1.3

ML Bayesian
n scheme m Bias MSE LACI CP Bias MSE LCCI CP

100

1

50
a -1.2427 1.6052 0.9674 94.58% 0.5348 0.8274 0.9247 94.70%
b 0.3916 0.4024 1.9574 95.99% 0.3608 0.3943 1.0015 94.90%
c -1.0376 1.0807 0.2478 95.89% -0.1258 0.0202 0.1195 94.90%

70
a -1.2183 1.5404 0.9294 96.10% 0.2386 0.1678 0.8051 94.90%
b 0.3559 0.3568 1.8156 96.40% 0.1105 0.0371 0.6062 95.90%
c -0.8850 0.7908 0.2342 95.97% -0.1157 0.0201 0.0865 95.20%

2

50
a -0.0834 0.9818 3.8723 96.60% 0.3244 0.7060 2.7350 94.90%
b 0.4598 0.7259 2.8133 93.60% 0.1825 0.1183 0.9706 94.70%
c 0.0857 0.2058 1.7470 94.90% 0.2095 0.1800 1.2258 94.80%

70
a 0.0357 0.9207 3.3071 96.85% 0.1326 0.5940 2.3741 95.15%
b 0.2697 0.3230 1.9618 94.00% 0.0932 0.0458 0.6907 95.49%
c 0.0691 0.1592 1.5410 95.10% 0.1599 0.1074 0.9544 95.35%

3

50
a -0.9641 1.0249 1.2121 97.70% 0.7087 0.9777 1.0782 95.70%
b -0.2619 0.2262 1.5571 95.00% 0.2416 0.2081 1.1691 94.60%
c -1.1355 1.2905 0.9128 93.40% 0.2037 1.0426 0.9027 94.90%

70
a -0.6297 1.0071 0.6705 98.46% 0.3766 0.3940 0.5853 95.15%
b 0.2388 0.2136 1.3804 96.50% 0.2800 0.1165 0.7814 95.25%
c -1.0315 1.0670 0.1162 95.70% -0.1267 0.0200 0.0834 95.49%

200

1

150
a -1.1268 1.0626 0.5208 94.59% 0.1259 0.0277 0.3683 94.59%
b 0.3586 0.3952 1.5289 95.29% 0.0671 0.0140 0.3608 94.70%
c -0.8720 0.7643 0.2469 95.19% -0.1160 0.0201 0.0616 94.90%

170
a -1.1320 0.9323 0.8035 94.70% 0.0879 0.0210 0.3928 95.20%
b 0.3150 0.3042 1.6006 95.40% -0.0603 0.0071 0.3268 95.30%
c -0.7216 0.5280 0.2335 96.90% -0.1017 0.0184 0.0808 95.20%

2

150
a 0.0538 0.5944 3.0179 94.38% 0.2239 0.2624 1.5106 94.78%
b 0.1101 0.0923 1.1111 94.78% 0.0396 0.0168 0.4342 94.58%
c 0.0442 0.0743 1.0558 95.98% 0.0950 0.0441 0.6218 95.80%

170
a 0.0296 0.5753 2.9520 94.80% 0.1300 0.2046 1.3694 95.80%
b 0.0763 0.0694 0.9894 95.20% 0.0272 0.0120 0.3906 95.38%
c 0.0434 0.0744 1.0563 96.20% 0.0757 0.0336 0.5838 95.98%

3

150
a -0.9308 0.8716 0.3028 93.60% 0.2254 0.0805 0.2439 95.10%
b 0.2557 0.1442 1.1013 95.00% 0.2064 0.0537 0.4069 94.80%
c -1.0170 1.0361 0.1166 94.60% -0.1305 0.0172 0.0527 94.80%

170
a -0.6028 0.8096 0.2935 95.20% 0.1313 0.0300 0.2359 95.80%
b 0.1565 0.1185 1.0351 96.00% 0.0748 0.0141 0.3590 94.99%
c -0.8891 0.7941 0.1023 96.20% -0.1058 0.0151 0.0535 95.80%
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Table 3. ML and Bayesian estimation for parameters: a = 0.6; b = 0.8; c = 1.3

ML Bayesian
n scheme m Bias MSE LACI CP Bias MSE LCCI CP

100

1

50
a -0.5191 0.2729 0.2316 95.19% 0.1069 0.0367 0.2137 93.60%
b 0.2264 0.1291 1.0951 96.35% 0.2840 0.1033 0.5770 94.80%
c -1.0687 1.1452 0.2176 95.74% -0.1037 0.0118 0.0912 94.80%

70
a -0.4897 0.2447 0.2174 95.42% 0.0690 0.0135 0.1700 94.80%
b 0.2158 0.1144 1.0925 96.80% 0.0889 0.0173 0.3684 95.38%
c -0.9224 0.8576 0.2032 95.80% -0.0914 0.0218 0.1298 95.58%

2

50
a 0.0767 0.3959 2.4507 95.25% 0.1409 0.1358 1.1376 94.80%
b 0.2276 0.1748 1.3762 95.04% 0.0967 0.0279 0.4889 94.11%
c 0.1754 0.4437 2.5218 95.45% 0.2216 0.1793 1.2727 94.80%

70
a 0.0612 0.3147 2.1527 96.60% 0.1247 0.1196 1.0198 95.28%
b 0.1197 0.0688 0.9157 95.94% 0.0502 0.0125 0.3505 94.38%
c 0.1504 0.3183 2.1337 95.92% 0.1910 0.1567 1.0661 95.80%

3

50
a -0.5302 0.2847 0.2342 95.56% 0.1544 0.0730 0.2149 95.40%
b 0.0413 0.0471 0.8357 94.92% 0.0406 0.0353 0.7831 94.80%
c -1.1656 1.3595 0.1244 95.95% -0.0674 0.0110 0.0528 94.80%

70
a -0.5237 0.2763 0.1780 96.60% 0.0797 0.0166 0.1206 95.80%
b 0.0320 0.0293 0.8092 95.60% 0.0229 0.0268 0.4548 95.80%
c -1.0616 1.1300 0.0922 96.80% -0.0511 0.0092 0.0496 95.38%

200

1

150
a -0.5015 0.2533 0.1687 95.17% 0.0369 0.0031 0.1128 89.00%
b 0.2032 0.0917 0.7650 95.53% 0.0536 0.0063 0.2287 94.90%
c -0.9105 0.8328 0.2038 94.89% -0.0945 0.0100 0.0818 95.00%

170
a -0.4561 0.2118 0.1520 95.69% 0.0277 0.0019 0.1089 94.90%
b 0.1976 0.0732 0.7250 95.69% 0.0044 0.0025 0.1904 95.19%
c -0.7731 0.6057 0.1930 95.49% -0.0911 0.0091 0.0811 95.80%

2

150
a 0.0293 0.0981 1.2231 95.56% 0.1053 0.0540 0.6697 94.90%
b 0.0574 0.0217 0.5320 95.70% 0.0219 0.0043 0.2456 94.90%
c 0.0442 0.0862 1.1387 95.49% 0.1045 0.0494 0.7150 94.90%

170
a 0.0232 0.0910 1.1242 95.67% 0.0910 0.0454 0.6036 95.90%
b 0.0495 0.0197 0.5153 95.97% 0.0165 0.0034 0.2243 95.90%
c 0.0394 0.0836 1.1236 96.19% 0.0882 0.0405 0.6349 95.90%

3

150
a -0.5036 0.2767 0.0872 95.43% 0.0381 0.0261 0.0810 95.00%
b 0.0319 0.0401 0.6517 95.64% 0.0402 0.0343 0.3072 94.60%
c -1.0498 1.1035 0.1145 94.57% -0.0511 0.0091 0.0401 95.40%

170
a -0.4507 0.2582 0.0715 95.59% 0.0375 0.0028 0.0591 96.70%
b 0.0224 0.0184 0.6072 96.39% 0.0206 0.0070 0.2295 94.90%
c -0.9314 0.8714 0.0825 96.39% -0.0401 0.0015 0.0392 96.70%
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Table 4. ML and Bayesian estimation for parameters: a = 0.6; b = 0.8; c = 0.5

ML Bayesian
n scheme m Bias MSE LACI CP Bias MSE LCCI CP

100

1

50
a -0.4674 0.2248 0.3134 95.03% 0.1013 0.0401 0.2464 94.90%
b 0.1668 0.1309 1.2593 94.80% 0.2032 0.0831 0.7134 94.90%
c -0.3708 0.1381 0.0981 95.84% -0.0557 0.0036 0.0778 91.50%

70
a -0.4353 0.1973 0.2935 95.33% 0.0460 0.0108 0.2715 95.69%
b 0.1594 0.1191 1.1192 95.53% 0.0630 0.0217 0.4756 95.79%
c -0.3042 0.0943 0.0892 95.82% -0.0520 0.0034 0.0683 96.70%

2

50
a 0.0977 0.5219 2.8075 95.93% 0.1222 0.1089 0.9911 94.79%
b 0.3298 0.3591 1.9625 94.01% 0.1429 0.0701 0.7677 94.50%
c 0.0457 0.0236 0.5757 95.71% 0.0460 0.0090 0.2874 94.60%

70
a 0.0804 0.3078 2.1529 95.99% 0.1069 0.0849 0.8628 94.93%
b 0.2171 0.1992 1.5296 94.61% 0.0733 0.0326 0.6006 94.95%
c 0.0334 0.0137 0.4405 95.85% 0.0319 0.0049 0.2270 94.91%

3

50
a -0.4633 0.2195 0.2707 94.87% 0.2614 0.2061 0.2461 94.12%
b -0.1074 0.0543 0.8107 95.04% 0.0940 0.0508 0.7860 95.26%
c -0.4226 0.1788 0.0522 94.64% -0.0383 0.0263 0.0461 94.68%

70
a -0.4278 0.2032 0.2380 95.36% 0.0660 0.0136 0.2072 95.29%
b 0.0996 0.0479 0.8073 95.97% 0.0814 0.0441 0.5339 95.36%
c -0.3729 0.1399 0.0501 95.60% -0.0355 0.0037 0.0460 95.45%

200

1

150
a -0.4443 0.2020 0.2673 94.95% 0.0287 0.0036 0.1525 94.36%
b 0.1517 0.1214 0.9451 95.60% 0.0286 0.0078 0.3183 94.39%
c -0.2802 0.0789 0.0761 93.63% -0.0467 0.0035 0.0728 95.00%

170
a -0.3617 0.1400 0.2532 96.27% 0.0197 0.0035 0.1420 95.19%
b 0.1481 0.0750 0.8080 95.86% 0.0089 0.0061 0.3006 96.29%
c -0.2129 0.0464 0.0718 95.54% -0.0459 0.0031 0.0608 95.94%

2

150
a 0.0506 0.1080 1.2736 94.73% 0.0838 0.0416 0.5959 95.12%
b 0.0858 0.0536 0.8431 94.83% 0.0362 0.0094 0.3509 95.11%
c 0.0202 0.0052 0.2707 94.94% 0.0206 0.0018 0.1437 95.22%

170
a 0.0468 0.0978 1.2079 95.77% 0.0800 0.0379 0.5703 95.89%
b 0.0656 0.0397 0.7379 95.67% 0.0278 0.0080 0.3131 95.79%
c 0.0201 0.0049 0.2610 95.36% 0.0191 0.0016 0.1314 95.90%

3

150
a -0.4189 0.2040 0.1317 95.01% 0.0416 0.0351 0.1208 94.90%
b 0.0916 0.0507 0.7891 95.44% 0.0811 0.0199 0.3375 94.90%
c -0.3512 0.1235 0.0521 94.46% -0.0316 0.0044 0.0461 96.10%

170
a -0.4048 0.2030 0.1209 96.96% 0.0299 0.0029 0.1149 95.90%
b 0.0912 0.0285 0.7822 95.67% 0.0303 0.0073 0.3040 95.70%
c -0.2924 0.0861 0.0494 95.73% -0.0306 0.0031 0.0446 96.80%
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5. Applications

We use traditional criteria values to compare fitted models, such as the Information Criterion (IC) of
Akaike (ICA), IC of consistent Akaike (ICCA), IC of Bayesian (ICB), IC of Hannan-Quinn (ICHQ),
Anderson-Darling Statistic (ADS), Cramer-von-Mises Statistic (CVMS), Kolmogorov-Smirnov Dis-
tance (KSD), p-value of Kolmogorov-Smirnov (KSP), and Standard Error (StEr). Our main statisti-
cal objective is to apply a fitting approach model to examine three real datasets relevant to different
fields. In this context, we compare the fit of the proposed UEHLD with that of the UWD, KumD, BD,
UEHLD, UG, and UPBXD.

Data I: Based on Griffiths et al. [59], the data set represents the proportion of income spent on
food for each household in the sample. The unit variable represents a numerical variable containing
the proportion of income spent on food for each of the 38 households in the sample.** This variable
likely falls between 0 (no income spent on food) and 1 (all income spent on food). These data have
been obtained as in Table 6.

Data II:The second dataset includes the failure times of an airplane’s air conditioning system (mea-
sured in hours), as documented by [60]. This ”failure times” dataset is: 12, 120, 11, 23, 261, 87, 7,
120, 14, 62, 71, 11, 14, 47, 225, 71, 246, 21, 42, 20, 5, 3, 14, 11, 16, 90, 1, 16, 52, 95. Once more, we
perform a normalization procedure by dividing these values by 265 to obtain data ranging from 0 to 1.
In other words, we work with the following dataset in Table 6.

Data III: Third, we analyze data on the number of months it takes for renal dialysis patients to
become infected, as reported by [61]. The ”times of infection” dataset is: 12.5, 13.5, 3.5, 4.5, 5.5, 6.5,
6.5, 7.5, 3.5, 7.5, 12.5, 3.5, 2.5, 2.5, 7.5, 8.5, 9.5, 10.5, 11.5, 7.5, 14.5, 14.5, 21.5, 25.5, 27.5, 21.5,
22.5, 22.5. We now perform a normalization operation by dividing these data by thirty, resulting in
values ranging from 0 to 1. The collected data have been updated as following in Table 6.

Table 6. Observed Data Sets Used in the Analysis

Data I 0.2561 0.2023 0.2911 0.1898 0.1619 0.3683 0.2800 0.2068 0.1605
0.2281 0.1921 0.2542 0.3016 0.2570 0.2914 0.3625 0.2266 0.3086
0.3705 0.1075 0.3306 0.2591 0.2502 0.2388 0.4144 0.1783 0.2251
0.2631 0.3652 0.5612 0.2424 0.3419 0.3486 0.3285 0.3509 0.2354
0.5140 0.5430

Data II 0.0189 0.0453 0.0868 0.9849 0.3283 0.0264 0.4528 0.0528 0.2340
0.1962 0.3585 0.1774 0.8491 0.2679 0.9283 0.0792 0.1585 0.0755
0.4528 0.0415 0.0113 0.0528 0.0415 0.0528 0.2679 0.0415 0.0604
0.3396 0.0038 0.0604

Data III 0.4500 0.4833 0.1167 0.8500 0.1167 0.2500 0.2833 0.3167 0.1167
0.1500 0.1833 0.2167 0.9167 0.2167 0.2500 0.2500 0.0833 0.0833
0.2500 0.3500 0.3833 0.4167 0.4167 0.7500 0.4833 0.7167 0.7167
0.7500

To compare fitted models, we used the measurements of the criteria listed in Tables 7, 8, and 9,
respectively, for each data set. Figures 6, 7, and 8 display the dataset’s Total Time on Test (TTT),
hazard line, estimated CDF with empirical CDF, estimated PDF with histogram, QQ plots, and P-P
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Table 7. MLE and some statistical measures for each distribution: Data I

Estimates StEr KSD KSP ICA ICB ICCA ICHQ CVMS ADS

UIELD
a 0.0098 0.0046

0.0901 0.8904 -66.4426 -61.5299 -65.7367 -64.6947 0.0409 0.3159b 90.2878 42.7320
c 6.3824 1.9927

UPBXD
a 2.7831 0.0420

0.1417 0.3935 -66.3996 -60.0272 -64.2341 -63.1920 0.2171 1.4953b 0.2007 0.0226
c 3161.6115 524.9722

UWD
a 0.2320 0.0656

0.0964 0.8384 -65.8687 -61.4594 -65.5259 -64.3703 0.0414 0.3296
b 4.1286 0.4995

KumD
a 2.9543 0.3691

0.1237 0.5641 -62.9782 -59.7030 -62.6353 -61.8129 0.1193 0.8627
b 26.9556 10.8204

BD
a 6.0716 1.3586

0.1101 0.7056 -66.1693 -61.4177 -65.3500 -64.5276 0.0695 0.5196
b 14.8221 3.3988

UGD
a 0.0209 0.0120

0.1337 0.4655 -61.2804 -58.0052 -60.9375 -60.1151 0.0937 0.6499
b 2.6623 0.3297

UEHLD
a 3.0100 0.3559

0.1192 0.6103 -63.5101 -60.2349 -63.1672 -62.3448 0.1100 0.7991
b 14.8214 5.6451

Table 8. MLE and some statistical measures for each distribution: Data II

Estimates StEr KSD KSP ICA ICB ICCA ICHQ CVMS ADS

UIELD
a 0.0277 0.0283

0.1091 0.8678 -32.2007 -27.9971 -31.2776 -30.8559 0.0615 0.3620b 2.1073 1.3892
c 0.6370 0.1724

UWD
a 0.2787 0.0858

0.1742 0.3228 -26.3847 -23.5823 -25.9402 -25.4882 0.1593 1.0191
b 1.4562 0.2262

KumD
a 0.5451 0.1148

0.1879 0.2401 -23.0778 -20.2754 -22.6334 -22.1813 0.2110 1.3470
b 1.3835 0.3361

BD
a 0.5141 0.1118

0.1958 0.2003 -22.4926 -19.6902 -22.0482 -21.5961 0.2173 1.3859
b 1.3430 0.3643

UGD
a 0.4060 0.2500

0.1146 0.8253 -32.1935 -29.3912 -31.7491 -31.2970 0.0838 0.5213
b 0.4687 0.1350

UEHLD
a 0.6894 0.1200

0.1786 0.2940 -26.8532 -24.0508 -26.4088 -25.9567 0.1586 1.0162
b 1.1676 0.2679

UPBXD
a 1.3207 0.1042

0.1749 0.3179 -30.1454 -25.5465 -29.9435 28.8345 0.3699 2.2458b 0.2360 0.0432
c 6.1192 1.2555
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Table 9. MLE and some statistical measures for each distribution: Data III

Estimates StEr KSD KSP ICA ICB ICCA ICHQ CVMS ADS

UIELD
a 0.0067 0.0059

0.1008 0.9384 -6.6025 -2.6059 -5.6025 -5.3807 0.0339 0.2598b 47.9149 42.2413
c 1.0242 0.2549

UWD
a 0.6125 0.1424

0.1240 0.7825 -6.1222 -3.4578 -5.6422 -5.3076 0.0660 0.4416
b 1.6989 0.2668

KumD
a 1.2652 0.2544

0.1377 0.6628 -3.3249 -0.6605 -2.8449 -2.5104 0.1136 0.7049
b 2.0799 0.5714

BD
a 1.3567 0.3332

0.1412 0.6321 -3.5552 -0.8908 -3.0752 -2.7407 0.1101 0.6859
b 2.1058 0.5496

UGD
a 0.5085 0.4500

0.1127 0.8691 -6.0811 -5.4167 -7.6011 -7.2665 0.0360 0.2689
b 0.7921 0.3578

UEHLD
a 1.4691 0.2530

0.1265 0.7613 -4.7989 -2.1345 -4.3189 -3.9844 0.0835 0.5455
b 1.5705 0.3992

UPBXD
a 1.5323 0.0961

0.1367 0.6718 -4.3124 -1.3158 -3.3124 -3.0906 0.1765 1.0386b 0.3018 0.0504
c 6.7265 1.3549

plots for the UIELD for each dataset. These graphical goodness-of-fit methods in Figures 6, 7, and 8
also support the results shown in Tables 7, 8, and 9 for each dataset.
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Figure 6. Different plot for fitting for UIELD: Data I

Figure 12, 13, and 14 illustrates the profile log-likelihood of the UIELD for each parameter by fixing
one parameter and varying the other. Figures 9, 10, and 11 demonstrate that each dataset performs well,
as evidenced by the two roots of the parameters representing global maxima. Figures 12, 13, and 14
present contour plots with varying parameters and the log-likelihood of the UIELD, confirming that
the estimates have unique points.

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue x, 0–0



25

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

i/n

T
(i
/n

)

0.0 0.4 0.8

1
0

2
0

3
0

4
0

Hazard rate 

z

h
(z

)

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Emprical & CDF

z

F
(z

)

PDF

z

f(
z
)

0.0 0.4 0.8

0
1

2
3

4
5

6
7

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

QQ

quantile(z)

z

PP

probability(z)

F
(z

)

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 7. Different plot for fitting for UIELD: Data II
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Figure 8. Different plot for fitting for UIELD: Data III

6. Summary and Conclusion

This paper presents a novel probability distribution known as UIELD. It is intended exclusively
to represent data that is contained inside the unit interval, or 0 to 1. A variety of shapes, including
left-skewed, reversed J-shaped, U-shaped, and even more complex patterns, are available for the
density function of the UIELD. Compared to simpler distributions, this enables it to fit a wider range
of data. The UIELD’s HRF, in contrast to the density function, shows more distinct shapes, such as
J-, U-, ascending, and decreasing shapes. The UIELD’s mathematical features are explored, including
formulas for its moments, incomplete moments, quantile function, and other significant properties.
Both conventional and Bayesian techniques for estimating the UIELD’s parameters are examined.
Estimation procedures are considered under PTII censoring schemes, a technique to gather data when
observation times are costly or inconvenient. Simulations are used to assess the effectiveness of point
and interval estimates from both techniques based on some measures of precision. In addition, the
selection of the optimal progressive censoring scheme is investigated under three different optimization
criteria. Simulation research demonstrated that the MCMC approach with the SEL function performed
better than the MLE in terms of MSE, bias, and lower LCI values for different estimates of parameters.
When considering interval estimates, the LCCI values were significantly lower than the LACI values.
Furthermore, most of the coverage probabilities were high, ranging around 95%. This implies that
the constructed CIs captured the true parameter values with a probability of 95%. A comparison of
the three schemes revealed that Scheme 2 outperformed Schemes 1 and 3, indicating its superiority in
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Figure 9. Profile likelihood for parameters of UIELD: Data I
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Figure 11. Profile likelihood for parameters of UIELD: Data III
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Figure 12. Contour plot for parameters of UIELD: Data I
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Figure 14. Contour plot for parameters of UIELD: Data III

terms of the proposed optimization criteria. The adaptability of the UIELD is validated by three real
data sets, which show that it achieves a close fit compared to alternatives. This study is limited by its
use of the MCMC method within the Bayesian estimation framework and symmetric loss function.
As future work, the Bayesian estimation study of the proposed model using some asymmetric loss
function and Tierney-Kadane approximation method can be discussed under PTII censoring schemes
with random removals.
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