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Abstract  

Soil salinization driven by seawater intrusion poses a growing threat to agriculture in the 

northeastern Nile Delta, where shallow groundwater tables and intensive irrigation facilitate salt 

accumulation at the surface. This study mapped surface salinity and its impact on vegetation along 

a 50 km area from New Mansoura City to Mansoura using a Landsat 8 OLI. Unsupervised K-means 

clustering identified five land-use/land-cover classes (water, vegetation, barren land, urban, and 

sabkha), allowing for the computation of eight spectral indices per class: Normalized Difference 

Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Salinity Indices S1–S4, 

Normalized Difference Salinity Index (NDSI), and Vegetation Soil Salinity Index (VSSI). Zonal 

statistics quantified index distributions, and linear regression of index values against distance from 

the shoreline assessed spatial trends. Vegetation indices (NDVI, SAVI) effectively highlighted 

canopy stress but showed minimal coastal gradients (β₁ ≈ –1.8 × 10⁻⁶ m⁻¹; R² ≈ 0), reflecting the 

mitigating effect of local irrigation. Brightness-based indices and NDSI captured salt‐crust 

signatures, with mean S1–S3 values increasing from agricultural fields (13 222–14 972) to sabkha 

(19 122–20 080) and positive but low-magnitude coastal slopes (e.g., S1 β₁ = 0.1255 m⁻¹; R² < 

0.003). The hybrid VSSI provided the strongest separation between vegetated and salt-stressed 

zones (mean VSSI: –79 163 vs. –125 610). These results demonstrate differential sensitivity of 

spectral indices to salinity and vegetation stress, which can be used to monitor soil salinity with 

minimum cost and apply further analysis and surveys only when necessary. 
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Introduction 

Soil salinization from seawater intrusion is a 

growing threat to coastal agriculture worldwide. 

Rising sea levels and reduced river flows are 

allowing saltwater to penetrate farther inland, 

increasing soil salt content and harming crops 

(Bear, 1999). In Egypt’s Nile Delta – one of the 

world’s most vulnerable deltas – sea levels have 

been rising, pushing saltwater into soils and 
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aquifers and leading to higher soil salinity. 

Persistent irrigation practices combined with 

seasonal fluctuations in the water table have led 

to widespread salt accumulation, compromising 

soil structure, reducing agricultural 

productivity, and degrading ecosystem health 

(Armanuos et al., 2022; Nofal et al., 2015). 

Human activity in this region is intensive. The 

Dakahlia governorate is a major agricultural 

area where farms grow rice, cotton, wheat and 

high-value vegetables and fruits, many of which 

are irrigated from the Nile’s Damietta Branch 

and local aquifers (Alshrabsy et al., 2024; 

Mansour & Mark, 2025). New Mansoura is a 

planned coastal city developed for housing and 

industry. The local economy also includes agro-

industry and export-oriented horticulture. This 

heavy water use, combined with low elevation 

and rising sea levels, has worsened 

waterlogging and salt intrusion. Sea-level rise 

and reduced flow in the Damietta branch are 

causing brackish water to invade croplands and 

aquifers, leading to soil degradation and 

deteriorated vegetation. Protecting this fertile 

delta requires reliable monitoring of salinity 

levels.  

Remote sensing techniques offer a cost-

effective and spatially comprehensive approach 

for monitoring surface salinity over large areas, 

overcoming the limitations of sparse in-situ 

measurements (Nguyen et al., 2020). 

Researchers have developed numerous spectral 

indices that correlate with soil salt content or 

with vegetation stress resulting from salinity 

(Table 1). Common indices include the 

Normalized Difference Vegetation Index 

(NDVI) and Soil-Adjusted Vegetation Index 

(SAVI), which drops as salt stress reduces plant 

greenness; Normalized Difference Salinity 

Index (NDSI) and various Salinity Indices (S1–

S4) that are designed to highlight bare soils with 

high salt reflectance; and specialized indices 

like the Vegetation Soil Salinity Index (VSSI), 

which combines visible/infrared bands to detect 

salt under partial vegetation cover. Many 

studies have shown strong correlations between 

these indices and measured soil electrical 

conductivity (EC) in field surveys (Dehni & 

Lounis, 2012). 

These spectral indices have been successfully 

applied in coastal and delta regions worldwide. 

In Vietnam’s Mekong Delta (Tra Vinh 

Province), (Nguyen et al., 2020) used Landsat 8 

to compute NDVI, SAVI, VSSI and other 

indices and found that the near-infrared band 

and the VSSI had the strongest correlation with 

measured soil salinity (R²≈0.80 and 0.70, 

respectively). Their Landsat-derived salinity 

maps (for the topsoil) agreed closely with in-

situ EC measurements, demonstrating that 

satellite data can reliably track coastal salinity 

intrusion. In Pakistan’s Indus Delta, (Aeman et 

al., 2023) linked saltwater-driven changes in 

vegetation to electrical conductivity using the 

VSSI: areas undergoing erosion and intrusion 

showed high VSSI values (0.7–1.2) and 

elevated EC, whereas accreting regions had 

lower VSSI and more mangrove growth. Other 

studies in arid and semi-arid deltas have 

reported similar results using multi-temporal 

Landsat analyses (using NDSI, BI, SI, NDVI, 

SAVI, etc.) and have mapped salinity variations 

in Turkish coastal plains (Azabdaftari & Sunar, 

2016).  

The main objective of this study is to assess the 

effectiveness of spectral indices derived from 

Landsat-8 in detecting and mapping surface soil 

salinity along a 50 km stretch between New 

Mansoura and Mansoura. By evaluating how 

well these indices reflect actual salinity patterns 

in a region undergoing rapid environmental and 

anthropogenic changes, we aim to identify 

reliable remote sensing indicators for 

monitoring salinity intrusion. 

We hypothesize that vegetation- and soil-based 

spectral indices, particularly VSSI and NDSI, 

will show strong spatial correspondence with 

observed salinity gradients in this part of the 

Nile Delta, due to their sensitivity to both bare 

soil reflectance and vegetation stress. The 

findings could guide improved land 

management, crop planning, and salinity 

mitigation efforts to sustain agriculture and the 

local economy in the face of environmental 

stress. 
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Table 1 Spectral indices employed for evaluating vegetation condition and soil salinity in the study area. Each 

index is defined by its mathematical expression and associated reference, with formulations designed to enhance 

sensitivity to either vegetation vigor or surface salt accumulation 

Index Equation Reference 

SAVI 𝑆𝐴𝑉𝐼 = ((1 + 𝐿) ∗ 𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑅𝑒𝑑 + 𝑁𝐼𝑅 + 𝐿) (Huete, 1988) 

NDVI 𝑁𝐷𝑉𝐼 =  𝑁𝐼𝑅 − 𝑅𝑒𝑑
𝑁𝐼𝑅 + 𝑅𝑒𝑑⁄  (Khan et al., 2001) 

NDSI 𝑁𝐷𝑆𝐼 =  (𝑁𝐼𝑅 − 𝑅𝑒𝑑) (𝑁𝐼𝑅 + 𝑅𝑒𝑑)⁄  (Khan et al., 2001) 

S1 𝑆1 = √𝐺𝑟𝑒𝑒𝑛2 + 𝑅𝑒𝑑2 (Douaoui et al., 2006) 

S2 𝑆2 = √𝑅𝑒𝑑 ∗ 𝐺𝑟𝑒𝑒𝑛 (Douaoui et al., 2006) 

S3 𝑆3 = √𝐵𝑙𝑢𝑒 ∗ 𝑅𝑒𝑑 (Khan et al., 2001) 

S4 𝑆4 = √𝐺𝑟𝑒𝑒𝑛2 + 𝑅𝑒𝑑2 + 𝑁𝐼𝑅2 (Douaoui et al., 2006) 

VSSI 𝑉𝑆𝑆𝐼 = 2 ∗ 𝐺𝑟𝑒𝑒𝑛 − 5 ∗ (𝑅𝑒𝑑 + 𝑁𝐼𝑅) (Dehni & Lounis, 2012) 

Study area 

The study area is situated along a 50 km 

southeastward profile in the northeastern Nile 

Delta, extending from the northwestern margin 

of New Mansoura City to Mansoura (Figure 1). 

It is a flat, low-lying coastal plain formed by 

Nile sediments and shaped by Mediterranean 

marine influences. Geomorphologically, the 

area comprises a narrow coastal belt of dunes 

and sand flats, backed by a fluvio-marine plain 

and an inland floodplain (Pennington et al., 

2017). Near the coast, the soil is predominantly 

sandy (fine sand) with low organic matter, 

while the soil on the former river delta 

platforms is medium- to fine-textured loams 

and clays (El Nahry et al., 2015). In the 

Mansoura area, recent studies have recorded 

extreme salinization (soil EC up to ~190 dS/m) 

in some fields, attributed to shallow saline 

groundwater and seawater intrusion (Youssef et 

al., 2024).  

 

 

Figure 1: True Color satellite image showing the study area located in the northern part of the east and middle 

delta within the jurisdiction of Damietta and Dakahlia Governates. 
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Methodology  

This study combined geospatial processing in 

QGIS 3.28 with quantitative analysis in Python 

to characterize surface salinity and its impact on 

vegetation in a coastal zone subject to seawater 

intrusion. A Level-2T Landsat 8 OLI image 

(September 2022) was selected for salinity 

assessment based on local climatic conditions. 

As shown in the climate (Figure 2), September 

corresponds to a period of minimal precipitation 

and moderate temperatures. This combination is 

ideal for analyzing salinity using spectral 

indices, as it minimizes surface moisture 

interference that could obscure the spectral 

signature of salt crusts and stressed vegetation. 

Indices such as NDSI, SI, and VSSI are more 

effective under drier conditions, where 

reflectance from salt-affected soils and stressed 

vegetation is clearer and more distinguishable. 

Additionally, avoiding months of peak summer 

temperatures (e.g., July and August) helps 

reduce the confounding effects of thermal stress 

on vegetation, which could mimic or mask 

salinity symptoms. Therefore, the September 

image offers an optimal balance, with low 

moisture and moderate temperature conditions 

that enhance the reliability of salinity index 

detection in coastal environments prone to 

seawater intrusion. 

 

Figure 2 : Monthly Climatology of Average of 

Minimum Surface Air Temperature, Average Mean 

Surface Air Temperature, Average Maximum 

Surface Air, Temperature & Precipitation 1991-

2020; Arab Republic of Egypt 

Eight spectral indices (NDVI, SAVI, NDSI, 

S1–S4, VSSI) were calculated via the Raster 

Calculator tool in QGIS software (Table 1). 

Employing the unsupervised K-means LULC 

classification, we obtained 5 classes: water, 

vegetation, barren, urban, and sabkha classes 

(Figure 3).  In Python, a Pearson correlation 

matrix was calculated with pandas to assess 

interrelationships among indices (Abdi, 2007). 

Subsequently, ordinary least squares (OLS) 

linear regression models were used to evaluate 

how each index varied with coastal distance, 

yielding slope, intercept, ℛ2, and p-values for 

each LULC class. This integrated workflow 

ensured reproducible spatial and statistical 

analysis of salinity trends and vegetation stress. 

Spectral indices 

Landsat 8’s Operational Land Imager (OLI) 

provides multispectral data at 30 m resolution 

across visible, near-infrared (NIR), and 

shortwave-infrared (SWIR) bands, enabling the 

computation of spectral indices that exploit 

contrasts in soil brightness and vegetation stress 

associated with salinization (Cao et al., 2022). 

A Level-2 T Landsat 8 OLI image processed for 

atmospheric and geometric correction by 

Landsat, acquired on 09 September 2022, was 

obtained from the USGS Earth Explorer 

archive, including bands 2 (Blue) through 7 

(SWIR). No additional temporal images or in 

situ salinity measurements were available; 

instead, index performance was validated 

through comparison with established results 

from the literature. 

 

 

Figure 3 LULC map of the study area with class 

proportions. Vegetation is dominant, while sabkha 

and water cover minimal areas, derived from K-

mean classification of Landsat 9 image 

Normalized Difference Vegetation Index 

(NDVI). 

Although originally developed for crop‐health 

assessment, NDVI serves as an indirect salinity 

indicator in semi‐arid and arid environments 

(Table 1), since high soil salinity induces plant 

stress and canopy thinning, which lowers NIR 

reflectance relative to red. Thus, declines in 

NDVI can signal zones of elevated surface 
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salinity where vegetation is adversely affected 

(Figure 4). 

Soil-Adjusted Vegetation Index (SAVI). 

To correct for soil‐background brightness in 

sparse vegetation, SAVI modifies NDVI by 

introducing a canopy‐density factor (L) (Table 

1). This adjustment reduces soil‐line influence, 

particularly important in semi-arid sabkha 

fringes, yielding improved detection of 

vegetation stress due to salinity. Compared to 

NDVI, SAVI offers greater sensitivity to 

salinity‐induced canopy changes in areas of low 

to moderate vegetation cover (Huete, 1988) 

(Figure 4). 

 

 

Figure 4 (a) Normalized Difference Vegetation 

Index (NDVI) map highlighting vegetation density; 

lower values indicate stressed or sparse vegetation. 

(b) Soil-Adjusted Vegetation Index (SAVI) map 

showing no difference in detection in sparsely 

vegetated areas through soil brightness correction. 

 

 

Normalized Difference Salinity Index (NDSI). 

Saline soil often exhibits higher reflectance in 

the red region (due to salt crusts and soil 

brightness) and lower reflectance in the NIR. 

By inverting the NDVI formulation (Table 1), 

NDSI directly targets salt‐encrusted surfaces, 

producing high values in sabkha and salt‐

affected zones. Its simplicity and sensitivity to 

surface salts make it a widely used index in 

deltaic salinity studies (Figure 5).  

Brightness-Based Indices (S1, S2, S3, S4). 

 

Figure 5 Normalized Difference Salinity Index 

(NDSI) map identifying salt-affected zones; higher 

values correspond to increased salinity presence. 

Salt-affected soils typically exhibit high 

reflectance across visible bands, producing 

elevated S1–S4 values (Table 1). The S1–S4 

indices were employed to quantify soil 

brightness and surface reflectance 

characteristics associated with salinity. S1 

captures overall soil brightness by combining 

the red and green bands using a Euclidean norm, 

assigning higher values to bright or salt-

encrusted soils and lower values to darker, 

organic-rich surfaces. Although it may face 

limitations in sandy terrain, S1 is particularly 

effective in the silty, dark soils typical of the 

Nile Delta. S2 quantifies brightness as a 

geometric mean of red and green reflectance, 

offering a more balanced sensitivity to 

vegetated and non-vegetated areas, though it 

may be influenced by mixed land covers. S3 

emphasizes reflectance in the blue and red 

bands, enhancing detection of salt crusts that 

strongly reflect in these wavelengths. S4 

integrates green, red, and NIR reflectance into a 

composite brightness index. However, its 

(a) 

NDVI 

(b) 

SA

VI 
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reliance on the NIR band can reduce its 

effectiveness in areas with minimal vegetation, 

especially where salinity obscures spectral 

vegetation signals (Figure 6).

 

Figure 6 (a) S1 index map capturing soil brightness variations linked to salt crust formation, with lighter areas 

indicating higher salinity.(b) S2 index map showing enhanced spectral sensitivity to saline soils, useful in detecting 

sabkha and salt flats.(c) S3 index map highlighting subtle salt-induced brightness changes in coastal soils, aiding 

in delineation of salinized zones. (d) Salinity Index (S4) map reflecting soil salinity levels based on visible and 

near-infrared reflectance, with brighter regions suggesting salt accumulation. 

Vegetation–Soil Salinity Index (VSSI). 

Proposed by  (Dehni & Lounis, 2012), the VSSI 

integrates spectral responses from both 

vegetation and bare‐soil bands to discriminate 

between vegetation stress and pure soil 

brightness Table (1). High negative VSSI 

values correspond to stressed vegetation over 

saline soils, whereas less negative values mark 

healthy vegetation or non‐saline soils. In 

practice, VSSI enhances separation of sabkha 

from vegetated areas under mixed‐cover 

conditions, improving mapping accuracy along 

ecotonal transitions Figure (7). 

All spectral indices—namely NDVI, NDSI, SI, 

S1, S2, S3, VSSI, and SAVI—were computed 

from a single Landsat 8 Operational Land 

Imager (OLI) scene acquired in September 

2022. Each index was calculated according to 

its specific spectral formula and saved as a 

separate raster layer for subsequent analysis. To 

analyze the spatial trends of salinity indicators, 

zonal statistics were extracted based on land 

use/land cover (LULC) classifications derived 

via unsupervised K-means clustering. This step 

enabled the computation of mean, minimum, 

maximum, and standard deviation values for 

each index within each classified LULC zone. 

These zonal summaries provided the basis for 

understanding how salinity-related reflectance 

patterns varied across different surface types 

and their spatial relationship to coastal 

proximity. 

The statistical component of the analysis was 
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conducted in Python (version 3.10), leveraging 

the libraries pandas, numpy, and rasterio and 

linregress linear regression from SciPy library 

for data manipulation and linear regression 

modeling.  For each spectral index, a simple 

linear regression model was constructed to 

examine the trend of reflectance values as a 

function of distance from the coast. This 

approach was applied independently to each 

LULC class to account for land cover 

variability. 

 

Figure 7 Vegetation–Soil Salinity Index (VSSI) map 

integrating vegetation and soil responses to 

effectively distinguish salinity-affected ecotones. 

The coefficient of determination (ℛ2) was used 

for model performance and o determine the 

significance of the regression slope (p-value). A 

statistically significant negative or positive 

slope was interpreted as a potential indicator of 

increasing or decreasing salinity gradients, 

respectively, which may be linked to seawater 

intrusion. The use of linear regression in this 

context provides a quantifiable measure of 

spatial salinity trends, building upon its 

established application in environmental remote 

sensing (Montgomery, 2013). By integrating 

QGIS-based spatial processing with Python’s 

robust statistical framework, the methodology 

ensured a reproducible, transparent, and 

scalable workflow for coastal salinity 

assessment. 

Results 

This study evaluated the performance of 

multiple spectral indices in detecting coastal 

salinization and differentiating saline-affected 

surfaces, particularly sabkhas, from vegetated 

areas. Emphasis was placed on the ability of 

brightness- and salinity-related indices to 

capture both absolute salinity and spatial 

gradients from the shoreline inland. 

Land-Use/Land-Cover Distribution 

The unsupervised K-means clustering produced 

a clear delineation of five land-use/land-cover 

(LULC) classes across the 50 km profile (Table 

2). Vegetation dominates the study area, 

covering 66.05 % (1,618 km²), followed by 

barren land at 23.70 % (575 km²). Water bodies, 

urban areas, and sabkha account for the 

remaining 4 % (98 km²), 5 % (129 km²), and 1 

% (30 km²), respectively. This distribution 

reflects the intensive agricultural use of the Nile 

Delta’s fluvial plains, interspersed with salt-flat 

(sabkha) patches near the coast and expanding 

urban development in the study area.  

Table 2: LULC class area statistics along the study 

area. 

Class 
Pixel 

Count 

Area 

(km²) 

Percentage 

(%) 

Water 109 309 98.38 4.00 

Vegetation 1 798 179 1 618.36 66.05 

Barren 

land 
639 383 575.44 23.70 

Urban 142 816 128.53 5.32 

Sabkha 33 794 30.41 1.19 

Vegetation-Based Indices: NDVI and SAVI 

The Normalized Difference Vegetation Index 

(NDVI) and Soil-Adjusted Vegetation Index 

(SAVI) both decline markedly in areas affected 

by salinity stress, yet their sensitivity differs by 

land cover. In the vegetation class, NDVI values 

range from –0.105 to 0.530 (mean = 0.200, SD 

= 0.087), whereas barren land exhibits slightly 

lower vegetation signals (mean = 0.185, SD = 

0.098). Sabkha areas show near-zero NDVI 

(mean = 0.067, SD = 0.066), reflecting minimal 

healthy vegetation (Table 3). SAVI amplifies 

these differences by compensating for low 

canopy cover: vegetation areas yield a mean 

SAVI of 0.330 (SD = 0.143), barren land 0.306 

(SD = 0.161), and sabkha only 0.111 (SD = 

0.109). 

Linear regression of NDVI against distance 

from the shoreline produced a slight negative 

slope (β₁ = –1.83×10⁻⁶ m⁻¹; p < 0.001), though 

R² was effectively zero, indicating that coastal 

proximity exerts only a weak influence on 

canopy greenness across the transect. SAVI 

regression mirrored this trend (β₁ = –1.83×10⁻⁶ 
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m⁻¹; p < 0.001), confirming that soil-adjustment 

does not substantially alter the spatial gradient 

in vegetation stress under these conditions. 

These results suggest that while NDVI and 

SAVI effectively distinguish salinity-impacted 

vegetation in mixed‐cover zones, their spatial 

trends are muted by irrigation and crop 

management practices that mitigate coastal 

salinity effects. 

Table 3: NDVI and SAVI statistics by LULC class. 

Index Class Mean SD Min Max 

NDVI 

Vegetation 0.2000 0.0869 –0.1051 0.5299 

Barren 0.1852 0.0976 –0.1268 0.5541 

Sabkha 0.0673 0.0662 –0.1168 0.4331 

SAVI 

Vegetation 0.3300 0.1434 –0.1733 0.8743 

Barren 0.3056 0.1610 –0.2092 0.9142 

Sabkha 0.1110 0.1093 –0.1928 0.7147 

Salinity-Specific Indices: NDSI and Brightness 

Metrics 

The Normalized Difference Salinity Index 

(NDSI) and brightness-based indices (S1, S2, 

S3, S4, and SI) exhibited stronger sensitivity to 

soil salinity than vegetation-based indices. 

Mean NDSI values were consistently negative, 

reflecting higher SWIR reflectance relative to 

NIR—a pattern indicative of salinity presence. 

Among the land cover classes, sabkha areas 

recorded the highest (least negative) NDSI 

values (mean = –0.067), followed by water (–

0.042) and vegetation (–0.200), consistent with 

surface salt accumulation. However, linear 

regression of NDSI against distance from the 

shoreline produced negligible slopes (β₁ ≈ 0; R² 

< 0.01) (Table 4), suggesting limited capability 

to capture subtle salinity gradients across mixed 

land cover and moisture conditions. 

Brightness-based indices displayed clearer 

differentiation among land cover classes. The 

S1 index showed the strongest contrast, with 

mean values increasing from 13,222 in 

vegetated areas to 19,122 in sabkha, 

accompanied by a moderate standard deviation. 

This suggests good class separation with limited 

internal variation, making S1 the most effective 

indicator of surface salinity under the study area 

conditions. S2 and S3 indices exhibited similar 

spatial trends, although S2 may be more 

sensitive to mixed land covers or transition 

zones. All three indices showed positive but 

low-magnitude regression slopes (e.g., S1: β₁ = 

0.1255 m⁻¹, p < 0.001; R² < 0.003) (Table 4), 

suggesting slightly increased soil brightness 

near the coast. 

In contrast, the S4 index displayed high 

standard deviation across all classes, indicating 

substantial internal variability and potential 

class overlap. Its reliance on the near-infrared 

(NIR) band may reduce its reliability in highly 

reflective or mixed-cover environments, 

consistent with (Douaoui et al., 2006) findings. 

These results collectively highlight the 

superiority of the S1 index in detecting surface 

salinity and differentiating between stressed 

sabkha and vegetated lands. While indices like 

NDSI and S2 remain informative, their 

performance is more susceptible to land cover 

complexity and soil moisture variability. 

Table 4 NDSI and brightness-based index statistics 

by LULC class. 

Index Class Mean SD Min Max 

NDSI 
Vegetation –0.2000 0.0869 –0.5299 0.1051 

Sabkha –0.0673 0.0662 –0.4331 0.1168 

S1 
Sabkha 19 122.40 4 131.03 11 351.48 34 287.72 

Vegetation 13 222.02 2 549.09 9 528.08 30 010.39 

S2 
Sabkha 13 488.49 2 904.09 8 013.29 24 152.97 

Vegetation 9 334.83 1 799.21 6 737.05 21 188.67 

S3 
Sabkha 12 509.92 2 503.71 7 666.96 22 256.57 

Vegetation 8 841.66 1 596.32 3 103.01 19 020.99 

S4 
Sabkha 25 157.34 5 633.83 13 596.55 45 909.51 

Vegetation 16 929.69 4 266.71 13 115.99 37 970.43 

Vegetation–Soil Salinity Index (VSSI) 

The Vegetation–Soil Salinity Index (VSSI) 

exhibits strong class discrimination, with mean 

values ranging from –79 163 in vegetation to –

125 610 in sabkha. More negative VSSI 

indicates greater vegetation stress over saline 

soils (Table 5). Despite this clear separation, 

VSSI’s regression slope is effectively zero 

across all classes, reflecting uniform salinity 

stress within each LULC category rather than a 

linear coastal gradient. Nevertheless, VSSI’s 

ability to integrate vegetation and soil 

reflectance makes it a powerful tool for 

mapping mixed-cover salinity impacts, 

especially in ecotonal zones where pure soil or 

vegetation indices may fail. 

Table 5: VSSI statistics by LULC class 

Correlation matrix  

The correlation matrix of the spectral indices 

revealed distinct interrelationships that 

underscore their utility in monitoring soil 

Class Mean SD Min Max 

Water -79163.38 26226.418 -195647 0.5299 

Vegetation -115531.06 14321.255 -215576.25 0.5541 

Barren land -116886.53 14902.781 -242398.83 0.4331 

Urban -122518.195 18939.1 -228510.69  

Sabkha -125609.83 31828.773 -235678.62  
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salinity and vegetation status (Figure 8). Strong 

positive correlations were observed between 

vegetation-based indices, particularly the 

Normalized Difference Vegetation Index 

(NDVI) and Soil-Adjusted Vegetation Index 

(SAVI), which showed a perfect correlation (r 

= 1.00). This reflects their similar mathematical 

structure and consistent response to green 

biomass, further confirming that soil brightness 

is not a major issue in the study area and that 

both indices can be used interchangeably. 

 

Figure 8 Correlation matrix showing relationships 

between vegetation, brightness, and composite 

salinity indices used to assess coastal salinization. 

Strong contrasts highlight complementary index 

behavior. 

Salinity indices (S1, S2, S3) were also strongly 

intercorrelated (r = 1.00), demonstrating their 

coherence in capturing salt-affected bare soil 

across the landscape. S1 in particular exhibited 

the best class separation with moderate internal 

variation, supporting its utility as the most 

effective salinity index under local conditions. 

The composite salinity index S4, while 

positively correlated with S1 and S2 (r ≈ 0.72), 

showed a high internal standard deviation 

across land cover classes, indicating substantial 

within-class variability and reduced 

discriminatory power—likely due to its 

dependency on the NIR band, which introduces 

noise in low-vegetation areas. 

The Vegetation-Soil Salinity Index (VSSI) 

exhibited a strong negative correlation with S4 

(r = –0.99), further reinforcing its ability to 

distinguish between vegetated zones and salt-

encrusted surfaces. Moderate to strong negative 

correlations between VSSI and the brightness-

based indices (S1–S3, r ≈ –0.60) further 

highlight its effectiveness in detecting stressed 

vegetation under salinity pressure. Overall, the 

matrix emphasizes the complementary nature of 

vegetation and salinity indices and identifies S1 

and VSSI as particularly effective for 

characterizing salinity impacts within the 

coastal Nile Delta setting. 

Discussion 

This study demonstrates that soil salinity from 

seawater intrusion measurably affects 

vegetation health and surface reflectance 

patterns across the Mansoura transect. While 

vegetation indices (NDVI, SAVI) successfully 

indicated areas of plant stress, their spatial 

coherence was limited, likely due to the 

confounding effects of irrigation and land 

management. In contrast, brightness-based 

indices (S1–S3) captured more consistent 

patterns of increasing soil salinity toward the 

coastal sabkha. Among these, S1 emerged as the 

most reliable indicator, offering strong mean 

separation between sabkha and vegetated zones 

and moderate internal variability, making it 

particularly effective under the local soil and 

moisture conditions. This is due to the 

dependence on the red and green bands which 

concentrate on soil brightness and identify the 

salt patches. Although the area has high 

moisture content, which was expected to hinder 

measurement using brightness-based indices, 

this index performed well due to the dark nature 

of the soil which allowed for more visibility and 

contrast of salt. S4, however, showed high 

standard deviation within each land cover class 

and poor class discrimination, in line with its 

known sensitivity to NIR noise. 

The Vegetation–Soil Salinity Index (VSSI), by 

integrating both vegetation and brightness cues, 

revealed a strong inverse relationship with 

salinity indices, reinforcing its value in 

highlighting areas of vegetation loss due to 

salinity. While VSSI is not a direct salinity 

proxy, its high negative correlation with salinity 

indices makes it a powerful complementary tool 

in mixed-cover landscapes. Although these 

findings were based on a single Landsat image, 

they underscore that no single index suffices for 

brightness indices, especially S1, map salt 

accumulation in bare areas, while VSSI helps 

detect vegetative responses to salinity stress. 

This model is based solely on remotely sensed 

data without field validation due to lack of 

funding and equipment at the time of the study. 

We used previous work and previously 
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validated indices, some of which were used in 

the study area to validate our findings. 

Conclusion and Recommendations 

Soil salinity induced by seawater intrusion in 

the northeastern Nile Delta significantly 

reduces vegetation vigor and alters surface 

reflectance. Among the tested indicators, S1 

provided the clearest separation between 

sabkha and vegetated zones, demonstrating its 

effectiveness in identifying salt-encrusted soils. 

The VSSI proved especially useful in mixed-

cover areas, where it helped delineate zones of 

vegetation stress in response to underlying 

salinity. While NDVI and SAVI remain valid 

for vegetation monitoring, they are less reliable 

in areas affected by variable irrigation or sparse 

crop cover. 

We recommend adopting a complementary 

index approach: using S1 for soil salinity 

detection and VSSI for early warning of salinity 

stress in crops. Routine monitoring with these 

indices, supported by targeted field surveys and 

conductivity data, can inform improved 

drainage, adaptive irrigation, and salt-tolerant 

crop strategies to sustain productivity in the face 

of rising salinization. for future work we 

suggest analyzing the salinity mapping in the 

area using different satellites imagery (e.g., 

Sentinel-2) to define the most efficient satellite 

and indices these results should be compared to 

field samples or geophysical studies to increase 

model certainty. 
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 الملخص العربي

 في شمال شرق دلتا النيل، مصرتحليل مقارن للمؤشرات الطيفية لتقييم تملّح السواحل عنوان البحث: 

 1، حاتم أبو الخير3، إيمان نوفل2، هاني شعبان2أيمن طه ،1*ريم علي النجار

 ، دمياط، مصر34517، دمياطالعلوم، جامعة  كلية1
 ، حلوان، القاهرة، مصر11722المعهد القومي للبحوث الفلكية والجيوفيزيقية، 2
 ، القناطر الخيرية، مصر13621لبحوث المياه، معهد بحوث المياه الجوفية، المركز القومي 3

 يشكّل تملّح التربة الناتج عن تغلغل مياه البحر تهديداً متزايداً للزراعة في شمال شرق دلتا النيل، حيث تسهم المياه الجوفية الضحلة

زيع الملوحة السطحية وتأثيرها ونظُُم الريّ المكثفة في تراكم الأملاح على سطح التربة. تهدف هذه الدراسة إلى رسم خرائط لتو

كيلومترًا من مدينة المنصورة الجديدة حتى مدينة المنصورة، باستخدام بيانات القمر الصناعي  50على الغطاء النباتي على امتداد 

Landsat 8 OLI تم تطبيق تصنيف غير موجّه باستخدام خوارزمية .K-means  لتحديد خمسة أنواع من استخدامات/أغطية

، NDVI ،SAVI ،NDSI)مياه، نباتات، أراضٍ جرداء، عمران، سبخة(، ما أتاح حساب ثمانية مؤشرات طيفية لكل فئة:  الأرض

S1–S3 ،S4  ،VSSI استخُدمت الإحصاءات النطاقية لتحليل توزيعات المؤشرات، بينما استخدم الانحدار الخطي لتقييم الاتجاهات .

قدرة على تمييز الإجهاد  NDVI ،SAVIخط الساحلي. أظهرت مؤشرات الغطاء النباتي المكانية للمؤشرات وفقاً للمسافة من ال

(، مما يعكس فعالية الري المحلي في التخفيف R² ≈ 0؛ ¹⁻م β₁ ≈ –1.8 × 10⁻⁶النباتي، لكنها لم تظُهر تدرجات ساحلية واضحة )

صدت تراكُم القشور الملحية بوضوح، حيث ازدادت ، فقد رNDSIمن آثار الملوحة. أما المؤشرات المعتمدة على السطوع ومؤشر 

( مع 20,080–19,122( إلى مناطق السبخة )14,972–13,222من الأراضي الزراعية ) S1–S3القيم المتوسطة لمؤشرات 

 VSSI(. وقد أظهر المؤشر الهجين R² < 0.003؛ )¹⁻م S1 = 0.1255لمؤشر  β₁وجود ميل إيجابي طفيف نحو الساحل مثلًا: 

)تظُهر هذه  125,61–(( مقابل 79,163–)قدرة على التمييز بين المناطق النباتية والمناطق المتضررة من التملّح )متوسط  أعلى

النتائج تفاوت حساسية المؤشرات الطيفية تجاه الملوحة والإجهاد النباتي، مما يتيح مراقبة ملوحة التربة بكفاءة وتكلفة منخفضة، 

 لتفصيلية فقط عند الضرورة.وتوجيه التحاليل والمسوح ا


