
 

 

 

 

 

Fig. 2. The heart sound classification process. 
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Abstract— Heart diseases often cause changes in heart sounds 

and murmurs before other symptoms appear, making 

auscultation a crucial first step in diagnosing cardiovascular 

conditions. However, heart sound analysis has not been widely 

adopted due to uncertainties about the origins of these sounds 

and the lack of reliable quantitative methods for analyzing them. 

Since heart sound signals contain much more information than 

the human ear or traditional visual inspection methods can 

detect, automated classification is essential for early detection, 

especially in primary healthcare settings. This paper explores the 

use of deep Convolutional Neural Networks (CNNs) for 

classifying heart sounds as normal or abnormal. It provides a 

detailed analysis of CNN-based approaches, highlighting their 

strengths in feature extraction and classification accuracy 

compared to conventional methods. The paper also discusses key 

challenges, including model generalization, data quality, and 

integration with other diagnostic tools. By reviewing recent 

advancements, this study emphasizes the potential of CNNs to 

improve early diagnosis and enhance patient outcomes in 

cardiovascular health. 

       Keywords---component; Convolutional neural networks(CNN); 

phonocardiograms (PCGs);  and heart sound classification. 

I. INTRODUCTION 

Cardiovascular diseases (CVDs) are among the leading 
causes of mortality worldwide, making early detection crucial 
for effective treatment. Traditionally, physicians use a 
stethoscope placed at specific cardiac auscultation points to 
assess heart sounds. While advanced imaging techniques such 
as echocardiography and computed tomography (CT) offer 
more precise diagnoses, they are costly and time-consuming, 
limiting their suitability for large-scale screenings, particularly 

in resource-limited settings. Heart sounds, generated by 
myocardial contractions, provide valuable clinical insights into 
cardiovascular hemodynamics, aiding in both the prevention 
and early diagnosis of cardiovascular diseases (CVDs) [1]. 

Structural abnormalities in heart valves often go unnoticed 
in the early stages, as symptoms may not be immediately 
apparent. These abnormalities can lead to vessel narrowing, 
altered blood flow, and abnormal arterial-venous connections, 
generating murmurs. Consequently, the automated 
classification of heart sounds is essential for the early detection 
of CVDs. Recent advances in artificial intelligence (AI) have 
facilitated the development of automated heart sound analysis 
techniques, improving diagnostic accuracy and efficiency [2,3]. 

Phonocardiography (PCG) is a well-established method for 
recording heart sounds, capturing signals generated during both 
the systolic and diastolic phases of the cardiac cycle. These 
sounds contain critical physiological information about the 
atria, ventricles, and major blood vessels, reflecting their 
functional state [4]. The two primary fundamental heart sounds 
(FHSs), the first heart sound (S1) and the second heart sound 
(S2), correspond to key cardiac events. S1 occurs during 
isovolumetric ventricular contraction when the mitral and 
tricuspid valves close, while S2 marks the onset of diastole 
with the closure of the aortic and pulmonary valves. Accurate 
segmentation of FHSs is vital for identifying the sequential 
cardiac states: S1, systole, S2, and diastole. Figure 1 illustrates 
a PCG process synchronized with an electrocardiogram (ECG), 
where the QRS complex helps determine the locations of S1 
and S2. Extracting features from these heart sounds provides 
essential diagnostic information for evaluating cardiac health. 
Given their clinical importance, automated heart sound 
classification has gained significant attention in recent years. 
Research in this field has primarily focused on two approaches: 
traditional methods and deep learning-based methods. With the 
rise of big medical data and AI advancements, deep learning 
techniques, particularly Convolutional Neural Networks 
(CNNs), have shown great promise in heart sound 

 
 
 
 
 

 

 

 

 

   

Fig. 1. The process of phonocardiography with a 

simultaneous electrocardiogram recording [5]. 
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classification. However, challenges remain in ensuring model 
robustness, generalizability, and integration with clinical 
workflows. Addressing these challenges is critical to enhancing 
early diagnosis and improving patient outcomes. The 
remainder of this paper is organized as follows: Section 2 
details the heart sound classification process. Section 3 
discusses traditional and deep learning-based classification 
methods. Section 4 focuses on CNN-based approaches for 
heart sound analysis. Finally, Section 5 presents the 
conclusion. 

II. HEART SOUND CLASSIFICATION PROCESS 

The automatic classification of heart sounds typically 
involves four key stages: denoising, segmentation, feature 
extraction, and classification, as illustrated in Figure 2. Each 
step plays a crucial role in ensuring accurate identification of 
normal and abnormal heart sounds. 

A. Denoising 

Heart sound recordings are often affected by various types 
of noise, including friction between the stethoscope and skin, 
electromagnetic interference, and physiological sounds such as 
breathing and lung noises [6]. These unwanted signals can 
overlap with heart sounds, making effective noise reduction 
essential for improving segmentation, feature extraction, and 
classification accuracy. Several denoising techniques have 
been developed to filter out these interferences, including 
wavelet denoising, empirical mode decomposition, and digital 
filtering [7]. A promising research direction involves designing 
a wavelet basis function specifically tailored for heart sound 
signals, leveraging prior knowledge about their characteristics 
[8]. 

B. Segmentation 

Segmentation divides heart sound signals into four primary 
components: the first heart sound (S1), systole, the second 
heart sound (S2), and diastole. These segments contain 
valuable diagnostic information, but variations in heart cycle 
duration, the number of heart sounds, and the presence of 
murmurs can make accurate segmentation challenging. To 
address these issues, various segmentation techniques have 
been proposed, including envelope-based methods [9,10], 
electrocardiogram (ECG)-assisted approaches [11], 
probabilistic models [12–15], feature-based methods [16], and 
time-frequency analysis techniques [17]. Most segmentation 
algorithms assume that the diastolic phase is longer than 
systole; however, this assumption is not always valid, 
particularly for abnormal heart conditions such as those in 
infants or patients with cardiac disorders [18]. Among 
available methods, ECG-assisted segmentation, which 
leverages the relationship between the QRS complex and heart 
sounds, has demonstrated superior performance. However, 
these approaches require advanced hardware and software 
resources. Additionally, many publicly available heart sound 
databases do not include synchronized ECG signals, limiting 
their practical application. 

C. Feature Extraction 

 Feature extraction transforms raw heart sound signals into 
meaningful, low-dimensional representations for analysis. 
Various techniques have been explored, ranging from 
handcrafted features to machine learning-based approaches. 

Commonly used features include Mel-frequency cepstral 
coefficients (MFCCs) [19,20] and heart sound spectra 
(spectrograms) derived from short-time Fourier transform 
(STFT) and discrete wavelet transform (DWT) coefficients 
[21]. Additionally, time-domain, frequency- domain, and time-
frequency features extracted from the S1 and S2 components 
provide critical diagnostic insights [22]. A key challenge in 
STFT-based feature extraction is balancing time and frequency 
resolution, as window size directly affects both. Wavelet 
transformation, on the other hand, offers superior time- 
frequency resolution and has proven to be more effective in 
capturing essential features of heart sound signals [21]. 

D. Classification 

Classification is the final step in the heart sound analysis 
process, categorizing phonocardiogram signals as either normal 
or abnormal. Traditional classification techniques include 
Gaussian mixture models, support vector machines, random 
forests, and hidden Markov models, which rely on extracted 
features to detect patterns associated with heart conditions. 
Recently, deep learning approaches, particularly deep 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), have gained popularity in heart sound 
classification. These models automatically learn hierarchical 
features from raw data, improving classification accuracy and 
enabling early detection of cardiovascular abnormalities. 

III. ANALYSIS METHODS OF HEART SOUND SIGNALS 

Heart sound classification methods can be broadly 
categorized into two main types: traditional methods and deep 
learning-based techniques. The following sections provide a 
detailed discussion of each. 

A. Traditional Methods 

• Stethoscope 

For over two centuries, cardiac auscultation has been a 
cornerstone of clinical assessment, offering valuable insights 
into heart health. It remains a widely used, low-cost diagnostic 
tool for detecting abnormalities and guiding further medical 
evaluation. However, the diagnostic accuracy of auscultation 
has declined due to reduced exposure to rheumatic valvular 
diseases and the growing reliance on advanced imaging 
techniques like Doppler echocardiography. Consequently, 
improper teaching and inconsistent application have led to 
subjective and often inaccurate assessments [23,24]. Despite its 
limitations, auscultation remains a practical method for 
detecting heart abnormalities. However, it is highly dependent 
on the examiner’s experience and auditory acuity [25]. 
Moreover, acoustic stethoscopes may alter heart sounds within 
the clinically relevant frequency range, making detection more 

 

 

 

 

 

 

 

Fig. 3. Diagram depicting the structure of a 

Convolutional Neural Network (CNN) architecture. 
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challenging [26]. Additionally, significant variability exists 
between practitioners in interpreting heart sounds, further 
limiting its diagnostic reliability [27]. 

• Intelligent Phonocardiography – Acoustic Cardiography 

Intelligent phonocardiography was introduced to enhance 
the quantitative and qualitative analysis of heart sounds. The 
earliest phonocardiograms, developed by Einthoven and Geluc 
in 1894 [28,29], evolved into more advanced optical-amplified 
recordings by Otto Frank in 1904 [30]. These techniques have 
historically been valuable for identifying abnormal heart 
sounds, including split sounds, opening snaps, gallop rhythms, 
and murmurs. With the advent of modern digital signal 
processing, heart sound analysis has significantly improved, 
enabling more precise diagnostic capabilities [31]. Studies have 
successfully applied discrete wavelet transformation to assess 
the severity of aortic and mitral valve diseases [32]. 
Additionally, computer- aided diagnostic systems now assist in 
detecting conditions such as atrial fibrillation, aortic and mitral 
regurgitation, pulmonary stenosis, ventricular septal defects, 
and congenital heart diseases [33,34]. These technologies also 
facilitate the diagnosis of sleep apnea, constrictive pericarditis, 
and left ventricular hypertrophy, offering cost-effective and 
efficient monitoring solutions for heart failure patients in both 
clinical and home settings [35]. 

• Digital Stethoscope 

The introduction of digital stethoscopes has transformed 
computer-aided auscultation. These devices consist of three 
key components: data acquisition, preprocessing, and signal 
processing. By converting acoustic signals into electronic data, 
digital stethoscopes enhance auscultation through amplification 
and digital processing. The ability to store, analyze, and 
visualize heart sounds on computers further expands their 
diagnostic applications [36]. Many digital stethoscopes now 
include Bluetooth capabilities, allowing heart sounds to be 
transmitted wirelessly for remote diagnosis, facilitating 
advancements in telemedicine [37]. By reducing ambient noise 
and minimizing friction, digital stethoscopes provide clearer 
heart and lung sound recordings, enabling more precise 
diagnoses. Additionally, automated acoustic interpretation has 
the potential to revolutionize cardiovascular diagnostics and 
enhance bedside clinical education [38]. 

B. Deep Learning for Heart Analysis: Advantages and Model 

Types 

Cardiac auscultation is a simple, non-invasive diagnostic 
technique widely used by healthcare professionals. However, 
its effectiveness heavily depends on the examiner’s expertise, 
leading to significant variability in detecting pathological heart 
sounds [39]. Traditional auscultation methods struggle to 
manage the vast amount of heart sound data generated through 
long-term monitoring, highlighting the need for more advanced 
analytical techniques. Deep learning has emerged as a powerful 
tool for phonocardiogram analysis, particularly in handling 
large datasets with complex temporal and spectral patterns. 
Given the high sampling frequency and rich information 
content of heart sound signals, deep learning models can 
uncover subtle abnormalities that may be challenging to detect 
through conventional methods. These models have already 
demonstrated success in applications such as image 
classification, speech recognition, and medical diagnostics [40– 

44]. Compared to traditional imaging techniques, deep 
learning-based heart sound analysis offers a cost-effective, 
scalable, and accessible diagnostic alternative, particularly 
benefiting underserved regions with limited access to 
specialized healthcare. Among deep learning architectures, 
CNNs and recurrent neural networks (RNNs) are widely used 
for heart sound classification. CNNs excel in processing grid-
like data, such as spectrograms, by applying convolutional 
filters to extract spatial patterns. RNNs, on the other hand, are 
well-suited for sequential data, capturing temporal 
dependencies in heart sound signals. Despite the challenges 
posed by the high sampling rates and large data volumes of 
phonocardiogram signals, modern deep learning models— 
including CNNs, RNNs, and transformers—have significantly 
improved heart sound analysis, enabling accurate classification, 
long-term monitoring, and early detection of cardiac 
abnormalities. Here’s a refined version of your section with 
improved readability, conciseness, and a more natural 
academic tone while preserving all key details, citations, and 
subsection divisions. 

IV. CONVOLUTIONAL NEURAL NETWORK-BASED METHODS FOR 

HEART SOUND SIGNAL ANALYSIS 

Deep convolutional neural networks (CNNs) have 
demonstrated exceptional performance in various classification 
tasks [45,46]. These networks process input signals through 
multiple layers, including convolutional transformations, non-
linear activation functions, and pooling operations. This 
layered approach enables CNNs to extract essential features 
while filtering out irrelevant variations, such as temporal shifts 
in signal characteristics [47–49]. In heart sound analysis, CNNs 
are commonly used both as direct classifiers and as feature 
extractors for traditional classifiers like support vector 
machines [50]. Phonocardiogram (PCG) signals can be 
transformed into spectrograms using different scales and 
transformations, converting temporal data into spatial 
representations. These spectrograms highlight distinctive 
features of murmurs, facilitating more accurate classification. 
Given their effectiveness in processing spatial data, CNNs have 
become the architecture of choice for heart sound classification 
tasks [51]. CNNs consist of multiple layers, including 
convolution, batch normalization, pooling, and fully connected 
layers. Convolutional layers extract features using filters, 
offering advantages such as parameter sharing and sparse 
connections. Pooling layers help reduce overfitting by 
downsampling intermediate outputs, with common methods 
including max-pooling and global average pooling. Batch 
normalization stabilizes training by normalizing activations, 
while fully connected layers handle the final classification task. 
The output from the last convolution or pooling layer is 
flattened into a vector before passing through fully connected 
layers. Activation functions like ReLU are used to prevent 
vanishing gradient issues and improve sparsity. The choice of 
activation function in the final layer depends on the 
classification task. A typical CNN architecture for heart sound 
classification is shown in Figure 3. 

A. CNN-Based Classification Using MelSpectrum and Log-

MelSpectrum Features 

A 2023 study by Luca Mesin et al. evaluated the 
effectiveness of two Short-Time Fourier Transform (STFT)-
based features—MelSpectrum and Log-MelSpectrum—in 
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CNN-based heart sound classification. This was the first 
theoretical comparison of these features in CNN models, 
including their robustness to additive and multiplicative noise. 
Results showed that Log-MelSpectrum was more effective at  

suppressing additive noise, making it better suited for 
datasets with domain differences. Using the PhysioNet/CinC 
Heart Sound Classification Challenge datasets, the study 
demonstrated that Log-MelSpectrum features yielded higher 
accuracy and more consistent results when applied to a 
modified VGG16 CNN model. 

• Research Gap 

While this study provides valuable insights, a direct 
comparison between MelSpectrum and Log- MelSpectrum in 
CNN-based heart sound classification remains limited. Further 
research is needed to analyze their impact on key performance 
metrics such as accuracy and precision, particularly in noisy 
environments. Additionally, the relationship between spectral 
features and CNN model complexity has not been thoroughly 
explored. Many existing studies rely on small datasets, which 
may introduce biases. A broader investigation using diverse 
datasets is necessary to assess these features' generalizability 
across various heart conditions. Moreover, the potential of 
transfer learning for CNNs trained on heart sound data with 
these features remains underexplored, which could help 
address the limitations of small datasets. 

B. Heart Sound Classification Using MFCC Features and 

Convolutional Recurrent Neural Networks 

M. Deng et al. proposed an innovative approach at (2020) 
for extracting Mel-Frequency Cepstral Coefficients (MFCC) 
without segmenting heart sound signals. Their method 
enhances standard MFCC features by incorporating first- and 
second-order differential parameters, capturing the dynamic 
characteristics of consecutive heartbeats. The classification 
model combines a 2D CNN for feature extraction with a Long 
Short-Term Memory (LSTM) network to model long-term 
dependencies. This hybrid Convolutional Recurrent Neural 
Network (CRNN) approach enables more accurate 
classification, leveraging CNNs for spatial feature extraction 
and LSTMs for temporal pattern recognition. The method was 
extensively tested on the PhysioNet 2016 Challenge Database, 
achieving a classification accuracy of 98% for distinguishing 
pathological from non-pathological heart sounds, surpassing 
many existing approaches. 

• Research Gap 

Although the proposed method shows high accuracy, its 
evaluation was limited to the PhysioNet 2016 dataset, which 
has specific characteristics and quality constraints. The study 
does not explore the model’s generalizability across real-world 
datasets with varying recording conditions, background noise, 
and acoustic environments. Additionally, the impact of 
environmental noise and artifacts on heart sound quality 
remains unexamined. CRNN models are computationally 
intensive, posing challenges for real- time implementation in 
low-resource clinical settings. Their "black box" nature also 
raises concerns regarding interpretability, making it difficult 
for medical professionals to trust the decision-making process. 
While the method performs well in controlled settings, its 
practical adoption in real-world clinical environments requires 
further validation. 

C. CNN-Based Heart Sound Classification Using Time-

Frequency Features for Pathology Detection 

A study at (2018) by Baris Bozkurt et al. focused on 
improving automatic pediatric heart disease detection using 
digital PCG signals. The authors aimed to enhance CNN-based 
classification systems by refining segmentation techniques and 
time-frequency feature extraction. The study compared various 
feature types, including MFCC, Mel-Spectrograms, and sub-
band envelopes, finding that sub-band envelopes provided 
superior classification performance. Different segmentation 
strategies and CNN architecture were also evaluated, with 
period-synchronous windowing yielding the best results. The 
research highlights sub-band envelopes as a promising feature 
set for improving heart sound classification accuracy. The 
study further contributes by making its code available for 
replication and validation. 

• Research Gap 

Most heart sound classification systems rely on standard 
features like MFCC and Mel-Spectrograms, which may not 
fully capture the complexities of pathological heart sounds, 
particularly in pediatric congenital heart disease (CHD). This 
study highlights the potential of sub-band envelopes as a more 
effective feature but calls for further research into optimized 
CNN architectures and alternative feature extraction methods. 
Additionally, current data augmentation techniques for heart 
sound analysis remain limited, affecting model robustness. The 
study identifies a need for improved segmentation strategies, 
enhanced feature extraction, and optimized CNN models to 
enhance early detection of CHD. Further exploration is also 
required to determine the effectiveness of different feature 
representations in real- world clinical applications. 

V. CONCLUSION 

This review explored the application of convolutional 
neural networks (CNNs) for the automatic diagnosis of 
cardiovascular diseases through heart sound analysis. Given 
their ability to extract meaningful features directly from raw 
phonocardiogram (PCG) signals, CNN-based methods have 
demonstrated high accuracy in detecting conditions such as 
heart murmurs, valve diseases, and congenital defects. 
Compared to traditional approaches, CNNs offer superior 
performance, particularly when combined with appropriate 
preprocessing techniques and diverse datasets. Despite these 
advancements, several challenges remain. Model 
generalization across different datasets, data quality issues, and 
integration with other diagnostic tools require further attention. 
The need for larger, more diverse datasets, effective strategies 
for addressing class imbalance, and improved model 
interpretability are critical areas for future research. 
Additionally, integrating multimodal data sources, developing 
real- time implementations, and optimizing CNNs for resource-
constrained environments will be essential for broader clinical 
adoption. 

Future studies should also explore personalized healthcare 
applications, cross-disease models, and adaptive CNN 
architectures that can accommodate variations in heart sound 
characteristics. Addressing these challenges will enhance the 
reliability and applicability of CNN-based heart sound analysis, 
ultimately improving early detection and diagnosis of 
cardiovascular diseases and leading to better patient outcomes. 
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