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Abstract: Forecasting Intermittent demand for spare parts is essential 

for enhancing inventory management, particularly in industries where 

unplanned equipment downtime and inventory holding costs are 

significant. Conventional forecasting methods often underperform in 

handling the sporadic and nonlinear nature of intermittent demand. This 

paper presents a focused literature review on the use of Artificial Neural 

Networks (ANNs) and Deep Learning (DL) techniques for forecasting 

intermittent demand. Unlike general reviews that survey all forecasting 

approaches, this study concentrates specifically on neural and learning 

approaches to capture nonlinear patterns. The findings demonstrate that 

ANN and DL-based models generally outperform classical methods in 

forecasting accuracy, especially under highly irregular demand. Despite 

the advances, the availability and quality of datasets remain a significant 

limitation in developing robust models. Future research directions are 

identified, including the need for improved feature engineering, 

architecture optimization, and model interpretability. This review aims 

to support researchers understanding the potential and challenges of 

neural approaches for forecasting of intermittent demand for spare parts. 
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1. Introduction   

 

Effective management of spare parts is highly crucial in the industrial sectors. A spare part 

should be readily available at the correct quantity at the appropriate time. The primary 

objective of management of spare parts is to strike an optimal balance between the inventory 

holding costs of excess, unused spare parts and the downtime costs incurred when critical 

spare parts are unavailable [1]. It can be inefficient to store spare parts in large quantities due 

to their high inventory-holding costs [2] and their high monetary value. Demand Forecasting 

of spare parts helps maintain an adequate inventory level at the appropriate time [3].   

The authors [4] introduced a demand pattern classification based on how frequently demand 

occurs and how much the demand volume varies. They categorized the demand based on two 
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key metrics: ADI (Average Demand Interval) and CV2 (Squared Coefficient of Variation). 

They introduced four distinct demand patterns as shown in Fig. 1. Smooth demand occurs 

frequently with relatively consistent quantities, making it the easiest to 

forecast. Erratic demand also occurs regularly but exhibits significant variability in demand, 

posing greater forecasting challenges. Intermittent demand occurs infrequently, while the 

variations in demand sizes tend to be low. In contrast, lumpy demand is both infrequent and 

highly variable in size, making it the most complex pattern to predict. The horizontal axis 

represents the ADI, distinguishing between frequent (ADI<1.32) and infrequent (ADI>1.32) 

demand occurrences, while the vertical axis represents the CV2, distinguishing between 

consistent (CV2<0.49) and inconsistent (CV2>0.49) demand quantities. 

 
Fig. 1: Categorization of Demand 

 

Spare parts exhibit a nature of intermittency, having long periods of zero demand [5, 6]. 

Intermittent demand pattern in spare parts presents a significant complexity in generating 

reliable forecasting [7]. There are several challenges in demand forecasting, including 

variability and low demand frequency. In this study, the focus is mainly on intermittent 

demand, as it is a common characteristic of spare parts. Due to the sporadic and irregular 

nature of spare parts, addressing intermittent demand is essential for developing effective 

forecasting models. Several methods have been employed in demand forecasting throughout 

the literature, including both traditional and non-traditional approaches. Conventional 

forecasting methods often fall short for spare parts and intermittent demand and are incapable 

of capturing the complexity of data patterns [8]. In such contexts, supply chains also face 

challenges like uncertain demand and limited resources. The study [9] provides valuable 

insights into using system dynamics for long-term strategic planning. Similar challenges arise 

in spare part management, especially with intermittent demand. In contrast, system dynamics 

support strategic decisions, while neural networks offer accurate, data-driven forecasting at 

the operational level. 

Several studies provide general literature reviews that cover a broad range of forecasting 

methods in intermittent demand forecasting [5]. On the other hand, this paper concentrates 

explicitly on reviewing the literature related to intermittent demand forecasting using neural 

networks and deep learning. By narrowing the focus, this paper offers a more in-depth and targeted 
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analysis of recent advancements and challenges in applying neural networks to the unique characteristics 

of intermittent demand. It presents a literature review on intermittent demand forecasting using neural 

networks and deep learning.  

The objectives of this paper are investigating and categorizing peer-reviewed publications 

that apply neural networks to the prediction of intermittent or sporadic demand, with a 

particular focus on spare parts forecasting. Second, the paper seeks to analyze trends in 

literature by examining factors such as publication year, country of origin, application 

domain, and the methodologies employed. Third, it highlights the most commonly used neural 

network models—such as Multi-Layer Perceptron (MLP), Long Short-Term Memory 

networks (LSTM), and various hybrid architectures—while illustrating how artificial neural 

networks (ANN) have frequently been benchmarked against, and have typically 

outperformed, traditional forecasting techniques. Lastly, the paper identifies key research 

gaps in the field and proposes potential directions for future studies. 

 

 

2. Neural Networks and Deep Learning  

 

Nowadays, three leading phrases are commonly used in intelligent systems: artificial 

intelligence (AI), machine learning (ML), and deep learning (DL). First, AI is a 

comprehensive term that is used intensively. It describes the capability of machines or systems 

to imitate intelligent human behavior. ML, a subfield of AI, learns from data and develops 

models to make predictions based on training, DL is a subcategory of ML in which multilayer 

ANNs learn from large datasets to make more complex predictions. Fig. 2 illustrates the 

conceptual relationships between AI, ML, and DL. ANNs are considered the backbone of DL. 

The structure of the human brain inspires them. They detect patterns, make predictions, and 

learn from data. ANNs consist of connected nodes, known as neurons, organized into layers 

[10].The initial concept of neural networks was introduced in 1990 [11]. They indicated how 

neurons might work. Neurons serve as the fundamental processing units in a neural network. 

Each neuron accepts one or more inputs, then makes a computation and finally produces an 

output. Neurons are organized into three primary layers: the input layer, hidden layer(s), and 

the output layer. The input layer takes in raw data, while the hidden layers, positioned between 

the input and output layers, are responsible for processing the data. The architecture of an NN 

can vary based on the number of hidden layers included and neurons within each layer. 

Ultimately, the output layer delivers the result produced by the network.  

 

 
Fig. 2: AI vs ML vs DL 
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Through the Feedforward neural network (FNN), as its name implies, input data flows in a 

single forward direction. The authors in the study [12] were the first to introduce the term “Deep 

Neural Network (DNN)” with multiple hidden layers. The term “deep” emphasizes the depth of those 

layers. ANNs typically have only one hidden layer, whereas DNNs have more than one hidden layer, 

which can be utilized to develop more complex data patterns. ANN and DNN differ in the depth of their 

architecture. 

In neural networks, connections between neurons have assigned weights that indicate the 

strength of the influence one neuron has on another. Each neuron may have an associated 

bias. During the training phase, the NN learns by updating these weights and biases to identify 

data patterns. An activation function processes the weighted sum of inputs, and a loss function 

evaluates the error between predicted and actual outcomes. The objective during training is 

to reduce this loss as much as possible. ANNs and DNNs are effective techniques for solving 

nonlinearities in complex problems [13]. One drawback of NN in intermittent demand 

applications is that they are considered 'data-hungry' models, meaning they require large 

datasets to train on [14]. 

 

2.1.  Classification of ANN 

ANNs are classified into two broad types: Feedforward Neural Networks (FNN) and 

Recurrent Neural Networks (RNN). Fig. 3 shows the classification of artificial neural 

networks. 

 
Fig. 3: Classification of ANN 

 

2.1.1. FNN  

An FNN is a kind of network where data moves through the network in a single direction. 

Fig. 4 illustrates the FNN Architecture. FNN can be categorized into two types of perceptrons: 

single-layer perceptron (SLP) and multilayer perceptrons (MLPs). 

◼ SLP 

An SLP is the most straightforward architecture of the FNN. It includes only one input layer 

connected to only one output layer. 

◼ MLP 

An MLP is one of the architectures of the FNN, meaning that information moves in a forward 

direction through the network. MLP is composed of several layers.  Each layer is connected 

to the next layer. MLP is widely used in FFN models [8]. It is one of the most commonly and 
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widely used NNs for forecasting. The authors [15] proposed guidelines on MLP architecture 

design. They suggested starting with a three-layer MLP and using the smallest number of 

neurons in the hidden layer. Mainly, the basic building blocks of an MLP are the input layer, 

the hidden layer, and the output layer. The input layer, the first layer of the network, receives 

the input features. The hidden layers are the intermediate layers located between the input 

layer and the output layer. Each node in a hidden layer is connected to every node in both the 

previous and subsequent layers. They are not directly observable in the input or output. The 

output layer produces the network's output, and the number of nodes in the output layer 

depends on the nature of the problem being addressed. In time series forecasting with an MLP, 

it is often treated as a regression problem. In the regression problem, the output is a continuous 

value, and the primary objective is to minimize the difference between the actual and 

predicted values. MLP models can be described as FNNs because the signal from one neuron 

to other flows only in one direction: from the input layer to the output layer. 

 

 
Fig. 4: FFN 

 

The neural network is trained to learn relationships and patterns within the historical time 

series data, enabling it to make accurate predictions for future time steps. Backpropagation 

(BP), Learning Machines, Regularized loss (RL), and Levenberg–Marquardt (LM) are 

commonly used learning algorithms. Backpropagation (BP) is a widely used algorithm during 

training. It calculates the error between the actual and the predicted output and then 

propagates this error through a backward method.  The authors [16] were the first to adopt a 

multilayer perceptron (MLP) for demand forecasting, utilizing the backpropagation (BP) 

algorithm for training. Subsequently, extreme learning machines (ELMs) were proposed as 

an alternative to traditional learning algorithm. In the study [17], ELMs were applied to 

intermittent demand forecasting, and a comparative evaluation of the BP and ELM training 

methods was conducted. The results [17] showed that ELM had lower computational 

complexity and good generalization ability. It is a fast algorithm; it determines the optimal 

weights in a single computational iteration. The neural networks are data-hungry [14]. To 

overcome this problem, the Bayesian regularization backpropagation algorithm (BRBP) [18] 

is used to eliminate the need for a validation dataset [19]. This algorithm has been used [14, 19] 

in intermittent demand forecasting. RL and LM training algorithms enable network training with small 

samples [14]. 
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2.1.2. RNN 

An RNN is a type of NN structure. The connections between neurons in an RNN form a cycle 

through feedback loops; signals flow in different directions, unlike the FNN, which moves in 

only one direction. The feedback loop uses sequential input values to make predictions. RNNs 

excel at processing sequence data for accurate predictions. An RNN has a feedback loop that 

allows it to pass previous information forward. It enables the hidden state to flow from one 

step to the next. This information is encoded in the hidden state, which acts as a representation 

of previous inputs. RNN is a type of ANN that can handle sequential data. Unlike MLP, each 

RNN receives feedback not only from the preceding layer but also from its output at the 

previous time. This structure enables RNNs to retain short-term memory by storing 

activations across consecutive time steps. Therefore, it is suitable for processing sequential 

data. An RNN can receive a sequence of inputs and produce a corresponding sequence of 

outputs [20]. 

◼ LSTM 

A limitation of RNN is the exploding and vanishing gradient problem, making it challenging 

to train [20]. The best act to address this limitation is to use a gated LSTM network. Because 

of its storage capacity and ability to manage sequential data, it is particularly effective for time series 

forecasting [21]. Its architecture is typically composed of an input gate, a forget gate, a remember gate, 

and an output gate. 

 

 

3. Research Methodology 

 

Given the significance of the topic addressed, there is a clear need to investigate this domain 

further and analyze it in more detail. The review process adopted in this study is outlined in 

Fig. 5 and follows a systematic literature review methodology, which includes the steps 

shown below: 

- A comprehensive online search was conducted across reputable academic databases, 

including Elsevier, ScienceDirect, Springer, Scopus, ResearchGate, and the Egyptian 

Knowledge Bank (EKB). 

- The search was guided by targeted keywords including “intermittent demand, “demand 

forecasting”, “spare parts”, “neural networks”, and “deep learning”. 

- Only articles published in the English language are considered. 

 

 
Fig. 5: Literature Review Methodology 
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4. Analysis of Articles 

 

4.1. Descriptive Analysis 

According to the selection criteria and keywords adopted in this study (e.g., “intermittent 

demand”, “spare parts”, etc.), a total of around 30 peer-reviewed articles published between 

2008 and 2024 were identified and reviewed. The articles were classified based on the 

following key dimensions: 

4.1.1. Year of Publication 

Fig. 6 presents the distribution of publications across four time periods: before 2010, 2010-

2015, 2016-2020, and 2021-2024. The data reveals a clear upward trend in research activity 

devoted to this area. While only four papers were published before 2010 (13%), the volume 

increased significantly in the most recent period, with 15 papers (48%) published between 

2021 and 2024. This trend reflects a growing academic interest in applying neural networks 

to tackle the challenges of intermittent demand. The noticeable rise after 2020 aligns with 

global advancements in DL and forecasting tools. 

 
Fig. 6: Publications over Year 

 

4.1.2. Country of origin 

Error! Reference source not found. illustrates the geographic distribution of the reviewed 

literature based on the first author’s affiliation. The top contributing countries were: 

- The United States, Germany, Turkey, and India. 

- Followed by France, Korea, Indonesia, and Poland, each published fewer articles.  

- Countries such as China, Italy, Brazil, and Canada are represented by a single publication.  

This distribution reflects the broad geographic spread and reinforces the global relevance of 

spare parts management, as well as the need for advanced forecasting methods worldwide. 

 

 

4.1.3. Application Domains 

Error! Reference source not found. illustrates the distribution of the 30 reviewed articles 

across various application domains. The most significant number of studies (20%) focused 

on the automotive sector, where predicting spare parts is crucial for maintenance. Also, 20% 
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of the articles emphasized the retail industry, using Kaggle M5 competition dataset provided 

by Walmart. Aircraft (13%), Electronics (10%), Manufacturing (7%), Military (7%), and Bus 

Fleet (7%) were also represented, reflecting the importance of this topic in critical industries. 

The limited attention given to oil and gas (3%) and petrochemicals (3%) sectors suggests a 

valuable opportunity for further research.  

 

 
Fig. 7: Publications over Country 

 

 
Fig. 8: Application Domains in Literature 
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4.1.4. Forecasting Methods Used 

Various models have been implemented in the literature for forecasting spare parts using 

neural networks. We will cover each of them in the following subsection. This paper examines 

the research papers reviewed here in terms of the methods used and the most effective 

approach. Fig. 7 illustrates the classification of forecasting methods. Table 1 summarizes the 

reviewed papers in the literature, categorized by the technique used. 

 

 
Fig. 7: Classification of forecasting methods through literature 

 

Recent studies have demonstrated the effectiveness of ANNs, particularly MLPs and RNNs, 

in forecasting intermittent demand. In the studies [16, 22], the authors proposed using MLP 

as an alternative to traditional forecasting techniques, including Single Exponential 

Smoothing (SES), Croston’s method (CR), and the Syntetos–Boylan Approximation (SBA). 

Subsequent benchmarking studies confirmed that neural network (NN) models generally 

outperform these conventional methods. In another context, RNNs were applied to forecast spare 

parts demand in a petrochemical company, with results showing superior performance over both 

CR method and the SBA approach [23]. 
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A hybrid forecasting approach integrating regression modeling, information criteria, and 

ANNs was introduced in [24], where eight forecasting techniques—traditional, hybrid, and 

NN-based—were evaluated. The hybrid model demonstrated the highest accuracy. Similarly, 

[25] evaluated ANN-based models, including MLP and RNN, against CR-based methods, , 

with results indicating the superiority of ANN approaches. In the study [14], neural networks 

were assessed against benchmarks, including the Simple Moving Average (SMA), SES, CR, 

and its variants. Findings indicated the efficacy of NN models for intermittent demand 

scenarios. The work [13] examined the application of MLP and RNN models in spare parts 

forecasting and confirmed their advantage over CR method and ARIMA. 

The study [26] used MLP with a backpropagation (BP) algorithm and tested four scenarios 

(M-S1 to M-S4) using various combinations of input features and stock-keeping units 

(SKUs). Results indicated that the MLP model, especially in M-S1 and M-S3 scenarios, 

outperformed all other methods. Also, [17] evaluated a single-hidden-layer NN against CR-

based models and observed improved forecast accuracy. In [27] three novel hybrid models, AI-

based methods (ANN and SVM) were combined with traditional techniques. These were benchmarked 

against nine classical methods, including SES, SMA, and SBA; the hybrid models consistently delivered 

superior results. The hybrid ARIMA–ANN model achieved the best performance, underscoring the 

value of integrating statistical and AI-based methods for capturing nonlinear demand patterns, 

particularly in the presence of incomplete or unreliable data. 

Further advancements were introduced in the study [19], which presented new NN models 

that outperformed SES, CR, SBA, and bootstrap-based methods, as well as the NN model 

from [16]. In the study[28], an LSTM network was proposed to manage highly volatile 

demand data. Its performance surpassed that of ARIMA, SES, and other AI models. In the 

study [8] , hybrid combinations of ARMA, SES, and MLP were investigated, while in the 

study, [29] it was demonstrated that RNN and deep neural networks (DNN) outperformed CR 

and SES. Moreover, in [30], the authors explored forward and bidirectional LSTM networks 

for demand forecasting, concluding that the bidirectional variant provided superior accuracy 

compared to both unidirectional LSTM. In the study [31], deep learning models were 

benchmarked against Random Forest (RF), gradient-boosted trees, and SVM, with results 

indicating that deep learning yielded the highest accuracy and the lowest runtime. Finally, in 

[32], an RNN/LSTM framework was proposed for demand forecasting for spare parts of 

automobiles, demonstrating superior forecasting accuracy compared to existing methods. 

 

Table 1: Reviewed papers based on the method used 

Paper Year 
Method Used 

DL MLP RNN LSTM Hybrid 

[33] 2007  ✓    

[16] 2008  ✓    

[23] 2008   ✓   

[22] 2008  ✓    

[24] 2013  ✓   ✓ 

[25] 2013  ✓ ✓   

[14] 2013  ✓    

[13] 2015  ✓ ✓   
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Paper Year 
Method Used 

DL MLP RNN LSTM Hybrid 

[26] 2017  ✓    

[17] 2017  ✓ ✓   

[27] 2020     ✓ 

[19] 2020  ✓    

[28] 2020    ✓  

[8] 2021     ✓ 

[29] 2021 ✓  ✓   

[30] 2021    ✓  

[31] 2021 ✓     

[32] 2021 ✓   ✓  

[21] 2021 ✓ ✓  ✓  

[34] 2022  ✓    

[35] 2022 ✓   ✓  

[36] 2022 ✓   ✓  

[37] 2023 ✓ ✓ ✓ ✓  

[38] 2023 ✓ ✓ ✓ ✓  

[39] 2023 ✓   ✓  

[40] 2023  ✓    

[41] 2024  ✓ ✓ ✓  

 

4.5. Case Studies and Dataset Handling 

When analyzing the case studies in the literature, it was found that a diverse range of 

industries apply intermittent demand forecasting, including the manufacturing sector, such as 

chocolate, toner cartridges, furniture, and electronics. Most of the addressed papers applied 

their model to aircraft spare parts. The variety of industries shows the adaptability of 

forecasting models to different fields. Most of the papers span a period length of the datasets 

using months (M). It is the most used unit. Addressing monthly demand is common in 

intermittent demand forecasting. Most studies use 80%-20% splits, a widely used data split 

practice in machine learning. Table 2 highlights the evolution of practices in dataset handling 

across different fields and the data splitting strategies employed. 

 

Table 2: Classification of papers according to dataset sources/ industries, the addressed 

data period, and the data split strategies 

Paper Year Dataset source 
No. of 

Periods* 

Data sets split 

(Training/ Testing) 

[16] 2008 An electronics distributor 967 D N/A 

[23] 2008 Petrochemical Company 67 M 55 M – 12 M 

[22] 2008 An electronics distributor 967 D 

80% –20% 

65%–35% 

50%–50% 

[25] 2013 
Aircraft Maintenance, Repair & 

Overhaul (MRO) company 
62 M 

60% - 18% 

(Validation) - 22% 
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Paper Year Dataset source 
No. of 

Periods* 

Data sets split 

(Training/ Testing) 

[14] 2013 Automotive Industry 236 M 

Training: 36 M 

Burn-in period: 100 M 

Testing: 100 M 

[13] 2015 
A real company from the sector of 

electronic equipment 
N/A 70%- 30% 

[26] 2017 Dassault Aviation 48 M N/A 

[17] 2017 Automotive Industry 24 W 65%–35% 

[27] 2020 An underground copper mine N/A N/A 

[19] 2020 An airline company 123 M 
80 M: within sample 

43 M: out of sample 

[28] 2020 A furniture company 132 M 80% - 20% 

[42] 2020 An aircraft manufacturer 944 I N/A 

[8] 2021 Automotive Industry 24 W 65% - 35% 

[31] 2021 Data Co supply chain dataset (Kaggle) N/A N/A 

[37] 2023 Central Aviation Spares Depot (CASD) 24 Q 

80% - 20% 

Validation: 20% of 

Training 

[39] 2023 A complex manufacturing enterprise 

30 M 

Training: (M1 – M30) 

Validation: (M2 – 

M29) 

Test: (M3 – M30) 

34 M 

Training: (M1 – M32) 

Validation: (M2 – 

M33) 

Test: (M3 – M34) 

[40] 2023 Bus fleet N/A 7 years - 1 year 

[43] 2024 Bus fleet N/A 70% - 30% 

*I: Instances,  D: Days,  W: Weeks,  M: Months,  Q: Quarters 

 

4.2. Bibliometric Network Analysis 

To investigate the thematic structure of the reviewed papers, a bibliometric network analysis 

was conducted using VOSviewer [44]. The analysis utilized bibliographic data exported from 

the Web of Science Core Collection, including full records and cited references. Two types 

of network maps were generated: 

• A document-level bibliographic coupling map, which clusters papers based on shared references. 

• A keyword co-occurrence map, which visualizes frequently used terms across the 

literature.  

4.2.1. Bibliographic Coupling 

A bibliographic coupling analysis was performed to examine the relationship between papers 

based on the number of references they share. The resulting map (Fig. 8) identified five 

distinct clusters, each representing a major research direction in the literature. Fig. 8 displays 

the bibliographic coupling map, where nodes represent individual documents and links 

represent the strength of shared references. The size of the nodes reflects the strength of 
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citation links, and the color indicates cluster membership. Table 3 illustrates the five thematic 

clusters, highlighting their corresponding research themes, colors as shown in Fig. 8,  and the 

papers grouped in each cluster. 

 

Table 3: Summary of Clusters Identified in Bibliographic Coupling Analysis 

Cluster Theme 
Color 

(Fig. 8) 

Papers 

included 

1 AI-Based Forecasting for Spare Parts Red 
[26, 27, 29, 32, 

37, 40, 41] 

2 Hybrid and Transfer Learning Approaches Green 
[28, 35, 36, 38, 

39] 

3 
Comparative Forecasting using Statistical and ML 

Methods 
Blue 

[8, 19, 21, 33, 

45] 

4 
Lumpy Demand Forecasting with Neural and 

Heuristic Methods 
Yellow [22, 23, 46] 

5 Inventory-oriented Evaluation of Neural Networks Purple [13] 

 

4.2.2. Keyword Co-occurrence Analysis 

A keyword co-occurrence analysis was performed to discuss frequently discussed concepts in 

the literature. Keywords appearing in five or more papers were grouped into clusters, 

highlighting the core themes and recurring concepts within the literature. Fig. 9 presents a co-

occurrence map based on author keywords, where node size indicates the frequency of 

keywords and link strength reflects co-mentioning across multiple papers. The most used 

keywords were “intermittent demand”, “demand forecasting”, “spare parts”, “forecasting”, 

“neural networks”, and “deep learning”. 

 
Fig. 8: Bibliographic Coupling Map of Documents 
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Fig. 9: Co-occurrence Map based on Author Keywords 

 

5. Feature selection in neural networks 

 

In neural networks, features are the variables or attributes derived from the dataset that serve 

as inputs to the model. Each input node in the network corresponds to a specific feature. In 

the context of demand forecasting, these features are often constructed from historical demand 

data. Table 4 presents the identified features for intermittent demand, as addressed in the 

literature. 

 

Table 4: Addressed features through literature 

Paper Feature1 Feature2 Feature3 Feature4 Feature5 

[16] ✓  ✓   

[22] ✓  ✓  ✓ 

[14] ✓ ✓ ✓   

[17] ✓  ✓  ✓ 

[19] ✓ ✓ ✓ ✓  

 

To improve the forecasting accuracy of intermittent demand, particularly for spare parts, it is 

essential to select features that capture demand patterns and zero-demand occurrences that 

indicate the sporadic nature of spare parts. The following features are based on historical 

demand sequences. Below is a description of the key features used in literature: 

• Feature 1: The demand value observed directly before the target the period (Lag 1). 

• Feature 2: The demand values observed at several time steps before the target period 

(LagN). 

• Feature 3: No. of periods between the two most recent non-zero demand occurrences 

preceding the target period (NZ). 

• Feature 4: No. of periods since the most recent zero demand occurrence prior to the target period 

(FZ). 

• Feature 5: The cumulative no. of consecutive zero demand periods immediately before the target 

period. 
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For example, Babai et el., 2020 [19] proposed a neural network structure composed of only 

one hidden layer. The hidden layer is composed of three neurons. They used four input 

features. Error! Reference source not found. shows their proposed NN structure. They 

proposed five architectures, each varying in the combinations of features, as detailed in Table 

5. To evaluate the model, they used 3,5, and 9 nodes in the hidden layer.  

Their results show that the architecture incorporating lag 1, NZ, and FZ with three neurons in 

the hidden layer achieved the best performance according to the mean absolute scaled error. 

In contrast, the architecture, incorporating lag 2, NZ, and FZ, with five neurons in the hidden 

layer, achieved the best performance in terms of the scale-free mean squared error. 

 

 
Fig. 12: NN structure proposed by [19] 

 

Table 5: Architectures proposed by [19] 

Paper 
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Architecture1:  ✓ ✓      

Architecture2:  ✓ ✓ Lag 2 ✓  ✓  

Architecture3:  ✓ ✓ Lag 3 ✓ ✓ ✓  

Architecture4:  ✓ ✓    ✓ ✓ 

Architecture5:  ✓ ✓ Lag 2 ✓  ✓ ✓ 



Omnia Nabil et. al., Intermittent Demand Forecasting for Spare Parts Using Artificial Neural Networks and DL…. 
 

202 

 

6. Forecast Accuracy Measures 

 

These measures are essential to evaluate the performance of forecasting, particularly in 

assessing how closely the forecasted values align with the actual observations. Error! 

Reference source not found. presents a comprehensive classification of forecast accuracy 

measures, systematically organized into four primary categories. This classification facilitates 

the selection of suitable evaluation criteria according to the nature of the data. First, absolute 

error measures quantify errors in the same units of the actual data. Second, percentage error 

measures express forecast errors as proportions of actual values. Third, relative-error measures 

assess model performance relative to a benchmark. Finally, scale-free metrics enable comparisons across 

time series of different scales, making them particularly useful in forecasting intermittent demand. 

 
Fig. 13: Classification of forecast accuracy measures 

 

In the context of the formulas provided below for different error measures in demand 

forecasting: 

𝒕            No. of instances of the actual and the corresponding forecasted values. 

𝑨𝒄𝒕𝒖𝒂𝒍𝒊   Actual demand (at period i) 

𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕𝒊   Forecasted demand (at period i). 

 

5.1. Scale-dependent measures 

They refer to metrics that are sensitive to the scale or level of demand. They are used in 

comparing between various methods applied on the same datasets [47]. They include: 

ME is a very straightforward measure. Simply, it is the mean or average of the differences between the 

actual values and the forecasted values across a given time period. ME is calculated as follows in Eq. 1: 
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𝑀𝐸𝑡 = 𝑚𝑒𝑎𝑛 (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖) =   
1

𝑡
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 −  𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖)             𝑡

𝑖=1 Eq. 1 

 

While the ME provides simple accuracy, it has a significant drawback; it considers the sign 

of the error. As a result, a model with equal amounts of over or – and underestimation could 

have a Mean Error close to zero, even though it may not be providing accurate predictions 

[48]. Here, MAE takes the ‘absolute’ value of each error before averaging. This prevents 

positive and the negative errors from cancelling one another. MAE is somehow similar to ME 

but it takes an ‘absolute’ value. MAE is calculated as follows in        Eq. 2: 

 

𝑀𝐴𝐸𝑡 = 𝑚𝑒𝑎𝑛 (|𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|) =  
1

𝑡
∑ |𝐴𝑐𝑡𝑢𝑎𝑙𝑖 −  𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|

𝑡
𝑖=1        Eq. 2 

 

MSE calculates the mean of the ‘squared’ differences between the actual values and 

forecasted values. Unlike MAE, MSE amplifies the impact of significant errors. The MSE is 

calculated as follows in      Eq. 3: 

 

𝑀𝑆𝐸𝑡 =  𝑚𝑒𝑎𝑛 (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 −  𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖)
2 =

1

𝑡
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 −  𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖)

2𝑡
𝑖=1      Eq. 3 

 

RMSE is computed by taking the square root of MSE as in                                                                                                              

Eq. 4. The square root’s objective is to convert the error measure back to the original data 

scale, so it has the same unit as the original data. 

𝑅𝑀𝑆𝐸𝑡 =  √𝑀𝑆𝐸𝑡                                                                                                             Eq. 4 

  

5.2. Percentage-error measures 

PE calculates the % difference between the actual values and forecasted values, and expressed 

in                                                                                 Eq. 5 as a percentage multiplied by 100. 

 

𝑃𝐸𝑖 =  
𝐴𝑐𝑡𝑢𝑎𝑙𝑖− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
× 100%                                                                                Eq. 5 

 

MAPE, as expressed in              Eq. 6, is the average percentage error between the actual 

values and forecasted values, providing a percentage-based measure of forecasting accuracy. 

The MAPE is not suitable for intermittent demand because the actual demand often has zero 

values; in other words, the denominator in these cases is zero [29]. 

 

𝑀𝐴𝑃𝐸𝑡 =  𝑚𝑒𝑎𝑛 |
𝐴𝑐𝑡𝑢𝑎𝑙𝑖− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
| =  

1

𝑡
∑ |

𝐴𝑐𝑡𝑢𝑎𝑙𝑖− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
|  × 100%𝑡

𝑖=1              Eq. 6 

 

SMAPE is another percentage-based measure that addresses some of the limitations of 

MAPE, especially when dealing with minor or zero values. In sMAPE, the divisor is 

computed as half the sum of the actual values and the forecasted values [49]. It is expressed 

in                                                             Eq. 7. 
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𝑆𝑀𝐴𝑃𝐸𝑡 =  
1

𝑡
∑ |

𝐴𝑐𝑡𝑢𝑎𝑙𝑖− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖
1

2
(𝐴𝑐𝑡𝑢𝑎𝑙𝑖+𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖)

|  × 100%𝑡
𝑖=1                                                             Eq. 7 

 

RMAPE, as expressed in     Eq. 8, is the mean of the squared percentage differences between 

the absolute actual values and the forecasted values. The square root converts the error 

measure back to the data's original scale.  

𝑅𝑀𝐴𝑃𝐸𝑡 =  √𝑚𝑒𝑎𝑛 (
𝐴𝑐𝑡𝑢𝑎𝑙𝑖− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
)

2

 =  √
1

𝑡
∑ (

𝐴𝑐𝑡𝑢𝑎𝑙𝑖− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
)

2

 𝑡
𝑖=1  × 100%    Eq. 8 

  

5.3. Relative-error measures 

GMRAE provides a multiplicative average of the percentage errors and is less sensitive to 

outliers. 

The symbol ∏ (uppercase pi in Greek) represents the product operator. It is used to denote 

the product of a sequence of terms. In the formula shown for GMRAE (                                         

Eq.9), the product operator ∏ is applied to a sequence of relative absolute errors. 

The product operator (∏) in the GMRAE formula is used to calculate the product of the 

relative absolute errors across all observations, and the geometric mean is then derived by 

taking the tth root. This measures the average relative error, considering the multiplicative 

nature of errors across different observations. 

GMRAE is useful in demand forecasting when the demand is intermittent, or has many zero 

values. Traditional error measures may not perform well in such situations, and GMRAE 

offers an alternative perspective by using a geometric mean. 

 

𝐺𝑀𝑅𝐴𝐸 =  (∏
|𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖|

𝑡
𝑖=1 )

1

𝑡
× 100%                                         Eq.9 

 

5.4. Scale-free Error Metrics 

Scale-free measures in forecasting are evaluation metrics designed to be less sensitive to the 

scale of the data, making them suitable for benchmarking forecast accuracy using different 

datasets. These metrics help address the challenge of comparing models on datasets with 

varying demand levels or variability. Some standard scale-free measures in forecasting 

include sME and sMSE. They are expressed in                                                                            Eq. 

10 and                                                                          Eq. 11 respectively. The key difference 

between sMSE and MSE lies in their normalization by the mean of the actual values. sMSE 

scales the errors using the mean of the actual values. This scaling allows for better 

comparability of forecast accuracy using different datasets with different scales. 

 

𝑠𝑀𝐸 =  
1

𝑡
∑

𝐴𝑐𝑡𝑢𝑎𝑙𝑖− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖

𝐴𝑐𝑡𝑢𝑎𝑙𝑖

𝒕
𝒊=𝟏                                                                            Eq. 10 

𝑠𝑀𝑆𝐸 =  
1

𝑡
∑ |𝐴𝑐𝑡𝑢𝑎𝑙𝑖− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|𝑡

𝑖=1
1

𝑡−1
∑ |𝐴𝑐𝑡𝑢𝑎𝑙𝑖− 𝐴𝑐𝑡𝑢𝑎𝑙𝑖−1|𝑡

𝑖=2

                                                                         Eq. 11 
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Unlike some traditional accuracy metrics, MASE accounts for the seasonality and trend in the 

data. MASE provides a measure of forecast accuracy scaled by MAE (as in        Eq. 2) of a 

simple forecast, typically the naive forecast (using the actual value from the previous period). 

So, the MASE is expressed as follows in                                                                              Eq. 

12: 

 

𝑀𝐴𝑆𝐸 =
1

𝑡
∑ |𝐴𝑐𝑡𝑢𝑎𝑙𝑖− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|𝑡

𝑖=1
1

𝑡−1
∑ |𝐴𝑐𝑡𝑢𝑎𝑙𝑖− 𝐴𝑐𝑡𝑢𝑎𝑙𝑖−1|𝑡

𝑖=2

                                                                             Eq. 12 

 

Hyndman and Koehler, 2006 [47] compared the performance measures of time series 

forecasting. They proposed that MASE should be the standard measure for forecast accuracy. 

Table 6 shows the classification of papers according to their forecasting performance 

measures. 
 

Table 6: Classification of papers according to their forecasting performance measures 

Paper (1) (2) (3) (4) 

[33] MAE  

[16]  MAPE  

[23]  A-MAPE PB MASE 

[22]  MAPE PB RGRMSE 

[24] RMSE  ex post  

[14] 
ME  

MAE  

[13] RMSE MAPE  

[26] MSE  

[17]  MAPE ME/A  

[27] 
 ex post 

 
R2 

[19]  sME & sMSE 

[28] RMSE S-MAPE  

[42] RMSE  

[21]  MASE 

[8]  ME/A  

[29] MAE  

[30] 
MAE  

RMSE  

[31] MAE  

[32] 
ME  

MSE  

[35] 

ME  

MAE  

RMSE  

[36] MAE MAPE R2  

[37] MAE  MASE 

[40]  MAPE  

A-MAPE:  Adjusted MAPE,      PB:  Percentage Better, ME/A: ME divided by Average 

 R²:   Coefficient of Determination,   RGRMSE:  Root Geometric Root MSE 
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7. Research Gaps and Future Work 

  

According to the literature review, various research directions have been identified, 

particularly through an analysis of the latest research papers published since 2020. The 

potential of using hybrid models that combine traditional forecasting techniques with AI-

based approaches was proposed in [27]. The author suggested exploring additional variables 

and enhancing the integration of nonlinear patterns to achieve better forecasting accuracy. 

She also proposed testing hybrid models in different industries for more generalized results.  

Future research could examine the use of hybrid intelligent models, such as ANFIS, which 

combine NNs with fuzzy logic. These models are suitable for handling nonlinear relationships 

and uncertainty. For example, the authors [50] successfully applied a hybrid ANFIS-

regression framework to predict quality outcomes in a manufacturing environment with 

complex variable interactions. 

Applying the method to other domains, such as customer behavior prediction, is also 

recommended [28]. The use of different deep learning methods is also suggested, such as attention-

based neural networks. In the study [19], the authors proposed further investigation into 

incorporating both forecasting and also inventory performance of the NN methods. They also 

proposed categorizing the methods of forecasting according to the demand’s characteristics. 

To derive more generalized and conclusive results, it is recommended that other demand data 

sets be incorporated to broaden the research. They recommended investigating the impact of 

the length of the historical data on the performance of the models. That study could identify 

an empirical minimum demand history length or a threshold where NN methods will 

outperform more straightforward parametric techniques. In the study [37], further research 

was recommended for predicting spare parts demand in the aviation industry. This will 

enhance the availability of aircraft. 

In [40] the authors suggested comparing the forecasting performance against other forecasting 

methods and analyzing new variables that affect demand, thereby increasing forecasting 

accuracy. Developing decision support systems was proposed [43]; this can utilize failure 

patterns deduced from their model to be used dynamically as input for scheduling corrective 

maintenance. Those systems can be developed for demand forecasting for identifying safety 

stock of spare parts and calculating their reorder points. It is recommended that vehicles be 

classified according to several factors, such as age, operating region, and geographical conditions, to 

discover distinct sequential patterns. It can be considered not only to consider past demand but 

also to consider the failure data of spare parts. It is recommended to weigh the failures 

according to their importance. It is a valuable research point to introduce weights to failures 

based on their criticality and integrate this into the analysis. In both studies [40, 43], the 

authors recommended applying their findings to maintenance and repair units in fields other 

than bus fleets. 

 

8. Proposed Solution Framework 

 

In response to the research gaps identified in recent studies, this study recommends the use of 

a hybrid forecasting framework tailored for intermittent demand forecasting. In addition to 
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lag-based features, it is proposed to emphasize richer and informative features. To ensure the 

effectiveness of the proposed hybrid framework, the evaluation strategy incorporate both 

forecasting accuracy and Inventory performance. This dual evaluation is critical for spare 

parts management, where forecasting errors can lead to costly stockouts or er excessive 

holding costs. 

 

 

9. Conclusions 

 

This literature review highlights the advancements in forecasting intermittent demand for 

spare parts using ANN and DL techniques. Traditional forecasting methods often fail to 

capture the nonlinearities in the intermittent demand pattern. ANNs and DL approaches, 

particularly FNNs, RNNs, and LSTM networks, demonstrate significant promise in 

effectively overcoming the addressed problem by utilizing them in nonlinear and sequential 

data relationships. This study reveals the outstanding performance of ANN and DL models 

over the traditional methods, particularly in the case of high variability and irregular, 

nonlinear demand. Hybrid approaches that combine conventional forecasting with ANN-

based methods further enhance model performance, highlighting the importance of 

integrating multiple techniques. 

Challenges include the need for large, reliable datasets to achieve optimal performance. Future research 

should address these limitations by exploring data augmentation feature selection, expanding the 

application of these methods to various industries, and incorporating multiple variables, such as 

maintenance schedules and operational environments, that can further enhance the generalizability of 

forecasts. 
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