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INTRODUCTION  

 

Mitochondrial (mt) genomes in vertebrates are tiny, typically ranging from 16 to 

17 kilobases in size, and the array of encoded genes is highly conserved. The mt genome 

is vital for the survival of nearly all eukaryotic organisms. The vertebrate mt genome 

generally encodes 13 proteins, two ribosomal RNAs (rRNAs), and 22 transfer RNAs 

(tRNAs), along with two noncoding regions: the control region (CR) and the origin of L-

strand replication (OL). The mt genome tends to be conserved among vertebrates for 37 

genes and two noncoding sections, ordered similarly from hagfish to eutherian mammals 

(Anderson et al., 1981; Roe et al., 1985; Tzeng et al., 1992; Chang et al., 1994). 

The evolutionary rates among genes within the mt genome exhibit significant 

variability, nonetheless, the noncoding segment of the mt genome, specifically the control 

region (CR), changes at a rate 2–5 times greater (Meyer, 1993). Due to its unusually high 

mutation rate, the CR was rapidly deemed highly useful for exploring intraspecific 

evolutionary inquiries (Brown et al., 1986; Palumbi, 1996). The control region (CR) is a 

vital noncoding element of the mt genome, responsible for the commencement of mtDNA 
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The present study aimed to assess the genetic diversity and genetics 

makeups of D-loop in some catfish species. The mitochondrial (mt) D-loop 

sequences varied in length, from 853 to 893bp. The mt D-loop region 

sequences' nucleotide were uploaded to GenBank with accession numbers 

(PQ589247-PQ589250). The A+T ratio of the mt D-loop is more 

concentrated than the C+G. The P-distances among the under studied 

catfishes, expanded from 0.0188 to 0.0823. The highest value (0.0823) was 

found between Bagrus bajad and Chrysichthys auratus. However, the lowest 

P-distance (0.0188) was found between Clarias gariepinus and Bagrus 

bajad. The results showed that the mt D-loop appear to be helpful in 

revealing the phylogenetic relationship of catfishes. 
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transcription and replication (Clayton, 1991; Carrodeguas & Vallejo, 1997; Shadel & 

Clayton, 1997).  

In numerous globally distributed taxonomic groups, accurately identifying fish 

and inferring evolutionary connections among species based on morphology is 

challenging. This is attributable to the morphological similarities among species resulting 

from convergent evolution, and the pattern of speciation is somewhat complex (Rice & 

Westneat 2005; Duftner et al., 2007). 

The mtDNA control region, referred to as the displacement-loop (D-loop) region, 

is located between tRNAPro and tRNAPhe in mtDNA. The control region is considered to 

be a non-coding portion of mtDNA and has proven to be an ideal marker for assessing the 

genetic structure of recently divergent or close-related species or populations (Avise, 

1994; Bremer et al., 1996; Iguchi et al., 1999; Rand, 2000; Tabata & Taniguchi, 

2000; Ishikawa et al., 2001). The nucleotide sequence of the D-loop region is regarded 

as variable and does not influence transcription or replication. The D-loop is the most 

variable section of mtDNA. Significant genetic heterogeneity exists in the D-loop area, 

even among members of the same species (Najjar Lashgari et al., 2017). 

According to Diogo (2004) and Nelson (2006), catfishes (Order Siluriformes) are 

a diverse group of ray-finned fishes that are distributed throughout the world and on all 

continents. Catfishes are predominantly freshwater species, except the two marine 

families: Ariidae and Plotosidae (Kailola, 2004). More than 3,088 genuine species from 

477 genera and 36 families are included in them (Ferraris, 2007).  

Because of their widespread, primarily freshwater distribution and diversity, 

catfishes are of significant interest to ecologists and evolutionary biologists. Siluriformes 

are the main component of biogeography on all scales, from local to global. In temperate 

regions, catfish are easy to raise, resulting in affordable and safe food at neighborhood 

supermarkets. Ordinarily, phylogenetic relationship between families, genera and species 

of Siluriformes are uncertain (Lundberg et al., 2000; Meyer & Van de Peer, 2003; 

Punhal et al., 2018). The primary goal of this study was to examine the genetic diversity 

and genetics makeups of D-loop in some catfish species. 

MATERIALS AND METHODS  

 

Sample preparation and DNA extraction  

Four catfish species (Clarias gariepinus, Bagrus bajad, Schilbe mystus and 

Chrysichthys auratus) were caught from the River Nile in Egypt and classified according 

to Bishai and Khalil (1997). The caudal peduncle's muscular tissues were removed and 

kept at –20°C. The Biospin genomic DNA extraction kit was utilized to extract DNA from 

15–25 mg of muscle tissue. 
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Polymerase chain reaction (PCR) amplification  

The primers were utilized in accordance with Cheng et al. (2012) to amplify the 

mt D-loop region in the four catfish species. The PCR reactions comprise of a final 

reaction volume of 50μL, 1.0μL of genomic DNA, 1.0μL of each forward and reverse 

primers, and 25μL of PCR master mix. The PCR cycling parameters were: an initial 

denaturation of five minutes at 94°C; thirty cycles consisting of denaturation for one 

minute at 94°C, annealing for one minute at 54°C, and extension for one minute at 72°C, 

followed by a post-cycling extension of five minutes at 72°C. The PCR products were 

resolved on a 1.5% agarose gel stained with ethidium bromide. 

The sequencing of PCR products and phylogenetic tree construction 

Macrogen (South Korea) performed the DNA sequencing. The mt D-loop sequences 

were uploaded to GenBank/NCBI in order to receive accession numbers. The MUSCLE 

method (Edgar, 2004) was used for sequence alignment with default settings. To conduct 

phylogenetic tree analyses utilizing two approaches—maximum likelihood and neighbor 

joining—MEGA version 11 was employed (Tamura et al., 2021). Bootstrap analysis 

was conducted using 1000 replicates (Felsenstein, 1985). A graphical representation of 

the divergence was generated by computing the sequence divergences. By computing the 

sequence divergences, a graphical representation of the divergence amongst catfish 

species was created utilizing Kimura 2-parameter distances (Kimura, 1980). 

RESULTS AND DISCUSSION 

  

The mt D-loop region sequences' nucleotide were uploaded to GenBank with 

accession numbers (PQ589247-PQ589250). The mt D-loop sequences varied in length, 

with Schilbe mystus having 893bp and Bagrus bajad having 853bp. The A+T ratio of the 

mt D-loop is more concentrated than the C+G. Additional information regarding the 

averages of the mt D-loop sequences in catfishes, as well as the nucleotide frequencies, 

A+T contents, and pyrimidine contents found in Table (1). 

Table 1. Nucleotide frequencies, A+T contents, pyrimidines contents and their averages of mt D-loop 
sequence in catfish 

No. Species Length A T C G A+T Pyrimidines C+T 

1 Clarias gariepinus 864 32.29 30.44 22.57 14.70 62.73 53.01 

2 Bagrus bajad 853  32.59 30.01 22.98 14.42 62.60 52.99 

3 Schilbe mystus 893 33.26 29.68 23.29 13.77 62.94 52.97 

4 Chrysichthys auratus 881 29.51 30.99 25.43 14.07 60.50 56.42 

Avg. - - 31.91 30.28 23.57 14.24 62.19 53.85 
 

The total length of the MT D-Loop varies greatly among species with Schilbe 

mystus having 893bp and Bagrus bajad having 853bp.  Lee et al. (1995) reported that, 
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the length of control region segment is highly variable among even closely related species 

due to the presence of tandemly repeated sequences and large insertions. Jamandre et al. 

(2014) observed that the lengths of Mugil cephalus control region varied among sampling 

locations. In all understudied species, our analysis of the mt D-loop gene indicated a 

higher A+T composition than the C+G. The fish species Leporinus elongatus also 

presented a higher proportion of AT nucleotides in the D-loop mtDNA (Martins et al., 

2003). The control region of Setipinna taty was rich in A+T (71.7%) (Li et al., 2012). 

Jamandre et al. (2014) reported that Mugil cephalus CR is AT rich. Satoh et al. (2016) 

reported the CR was found to be AT rich, as reported in other vertebrates (Brown et al., 

1986; Saccone et al., 1987). Nwafili and Gao (2016) reported that the nucleotide 

composition of the control region fragment was A+T-rich (A, 28.5%; T, 34.3%). 

Additionally, a lower GC content was observed for the D-loop sequences in worldwide 

species of genus Siganus with an average of 30.6% (Ali et al., 2021). The A+T content 

was rich (62.85%) in the nucleotide composition of the D-loop sequences in naked carp 

Gymnocypris przewalskii (Fang et al., 2022). 

The P-distances among the under studied catfishes, expanded from 0.0188 to 

0.0823. The highest value (0.0823) was found between Bagrus bajad and Chrysichthys 

auratus. However, the lowest P-distance (0.0188) was found between Clarias gariepinus 

and Bagrus bajad (Table 2). The results revealed that Bagrus bajad found closely to 

species of family Clariidae as well as low P-distance between Bagrus bajad and Clarias 

gariepinus indicated a close relation between them. This is in line with the findings of 

Kaleshkumar et al. (2015), who found that closely related species had low genetic 

distance values, but situations with significant genetic divergence are caused by the 

maximum genetic distance. 

 Catfishes sequencing was submitted for study together with 13 similar catfishes 

in addition, three outgroup species (order, Cypriniforms) from GenBank/NCBI to 

perform phylogenetic analysis utilizing the mt D-loop gene. The phylogenetic tree 

analysis showed that, the outgroup species formed a distinct cluster. Species within the 

family Clariidae constituted a distinct cluster. The species of rest families formed a 

separate cluster, except the understudied Bagrus bajad, which was found close to species 

of family Clariidae (Fig. 1a and b). 

Several studies using many genetic markers occurred to illustrate the genetic 

variation and phylogenetic analysis in catfishes. Uyoh et al. (2020) studied the molecular 

characterization of two catfish species (Chrysichthys nigrodigitatus and Chrysichthys 

auratus) using rRNA and internal transcribed spacers. Widayanti et al. (2021) used the 

12S rRNA gene to investigate genetic variance and phylogeny of the baung fish. 

Mahrous and Allam (2022) studied the phylogenetic relationships among certain catfish 

species using the 12S rRNA and 16S rRNA genes. 
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 Fig. 1a. Maximum likelihood tree amongst catfishes 

with their linked species, in addition to the 

outgroup utilizing mt D-loop 

    Fig. 1b. Neighbor joining tree amongst catfishes 

with their linked species, in addition to the 

outgroup utilizing mt D-loop 
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CONCLUSION 

 

The purpose of this investigation was to evaluate the effectiveness of the 

mitochondrial D-loop region in studying the genetic makeup and genetic diversity of 

several catfish species. The results showed that the mt D-loop is useful in revealing the 

phylogenetic relationships among catfishes. 
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