استخدامات تقنية الرؤية الحاسوبية Computer vision في دعم السلامة المهنية للصحفيين الميدانيين في الصحافة المصرية "دراسة مستقبلية | ||||
مجلة البحوث الإعلامية | ||||
Volume 75, Issue 3, July 2025, Page 1875-1988 PDF (17.93 MB) | ||||
Document Type: المقالة الأصلية | ||||
DOI: 10.21608/jsb.2025.389474.1936 | ||||
![]() | ||||
Author | ||||
هند يحيى عبد المهدى ![]() | ||||
المعهد الدولى العالى للإعلام بأکاديمية الشروق | ||||
Abstract | ||||
تهدف هذه الدراسة إلى الكشف عن إمكانيات استخدام الرؤية الحاسوبية في مجال الصحافة، ومحاولة الحفاظ على حياة الصحفي الميداني أو المراسل الصحفي، وتحقيق السلامة المهنية له أثناء أداء عمله، سواء في الميادين أو تغطية الحروب أو تغطية الثورات والمظاهرات، أو تغطية الندوات والمؤتمرات، وتتنمي الدراسة إلى الدراسات الوصفية، والدراسات المستقبلية، وتمثل مجتمع الدراسة الراهنة في المختصين بمجال البرمجة والحوسبة والذكاء الاصطناعي والرؤية الحاسوبية، واعتمدت الدراسة على منهج المسح الإعلامي، واستخدمت الباحثة أداة المقابلة المتعمقة أداة لجمع بيانات الدراسة، واستعانت الدراسة بنظرية الابتكار التقني أو انتشار الابتكارات، ونظرية الحتمية التكنولوجية ونموذج تقبل التكنولوجيا. ومن أهم نتائج الدراسة: أن الرؤية الحاسوبية تستطيع أن تُحسن من جمع الأخبار وتُحسن من جودتها، كما يمكن لتقنية الرؤية الحاسوبية حماية الصحفي أثناء تأدية عمله، فالتقنية من الممكن لها أن تتنبأ بسلوك الأشخاص فيما بعد إذا كان هذا السلوك شاذًا. | ||||
Keywords | ||||
الرؤية الحاسوبية; الصحافة; الذكاء الاصطناعى | ||||
References | ||||
Amrutha C.V, C. Jyotsna, Amudha J, Deep Learning Approach for Suspicious Activity Detection from Surveillance Video, Proceedings of the Second International Conference on Innovative Mechanisms for Industry Applications (ICIMIA 2020) Computer Science & Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India,pp.335-339, Available at: https://2u.pw/TOvOD [1] - Guoqing Cai, Quan Zhang, Beichang Liu, Zhengyu Jin and Jili Qian, Deep Learning‐Based Recognition and Visualization of Human Motion Behavior, Academic Journal of Science and Technology, Information Studies, Trine University, Phoenix AZ, USA ,Vol. 10, No. 1, 2024, pp.50-55. [1] - Nitin Liladhar Rane, Ömer Kaya and Jayesh Ran, Artificial intelligence, machine learning, and deep learning technologies as catalysts for industry 4.0, 5.0, and society 5, Deep Science Publishing,pp. 1-27, Available at: https://2u.pw/bfsls [1] - Matthew Philp, Jenna Jacobson and Ethan Pancer , Predicting social media engagement with computer vision: An examination of food marketing on Instagram, Journal of Business Research, Canada, Volume 149, October 2022,pp. 736-747, Available at: https://www.sciencedirect.com/science/article/pii/S0148296322005239 [1] - Mathias Felipe de-Lima-Santos, Ramón Salaverría, From Data Journalism to Artificial Intelligence: Challenges Faced by La Nación in Implementing Computer Vision in News Reporting, Data Journalism to Artificial Intelligence: Challenges Faced by La Nación in Implementing Computer Vision in News Reporting , Palabra Clave, Universidad de La Sabana, Spain, vol. 24, no. 3, e2437, 2021. Available at: https://www.redalyc.org/journal/649/64970667007/html/ [1] - Veerpal Kaur, Reetu Malhotra and others, Neuroscience-inspired facial mask recognition using MobileNet and computer vision in real-time video streaming, Primer to Neuromorphic Computing, 2025, Pp. 199-213, Available at: https://2u.pw/ellTj [1] - Leonard Matheus Wastupranata, Seong G. Kong and Lipo Wang, Deep Learning for Abnormal Human Behavior Detection in Surveillance Videos—A Survey, Electronics 2024, 13 , available at: file:///C:/Users/hp/Downloads/electronics-13-02579%20(2).pdf [1] - Fangming Qu, Nolan Dang, Borko Furht and Mehrdad Nojoumian, Comprehensive study of driver behavior monitoring systems using computer vision and machine learning techniques, Journal of Big Data, Electrical Engineering and Computer Science, Florida Atlantic University , (2024), pp 1-44. Available at: https://2u.pw/wOxvC [1] -D Marichamy, M Sankar, P Sivaprakash and others, Machine Learning Based Abnormal Human Behaviour Detection, 2nd International Conference on Intelligent Cyber Physical Systems and Internet of Things, ICoICI 2024Coimbatore28 August 2024through 30 August 2024, pp. 1155 – 1159 . Available at: https://n9.cl/4teqf[1] - Guoqing Cai, Quan Zhang, Beichang Liu, Zhengyu Jin and Jili Qian, Deep Learning‐Based Recognition and Visualization of Human Motion Behavior,op.cit. [1] - Nikoleta Manakitsa, George S. Maraslidis, Lazaros Moysis, and George F. Fragulis, A Review of Machine Learning and Deep Learning for Object Detection, Semantic Segmentation, and Human Action Recognition in Machine and Robotic Vision, Technologies , Greece,2024, 12(2), 15, Available at: https://www.mdpi.com/2227-7080/12/2/15 [1] -Abirami N, Radhika G, Radhika N,Automated Teller Machine Security and Robbery Prevention Based on Human Behaviour Analysis, 2023 Innovations in Power and Advanced Computing Technologies (i-PACT) , Available at: https://08104qi8u-1104-y-https-ieeexplore-ieee-org.mplbci.ekb.eg/document/10434470/metrics#metrics [1] - Chuan-Wang Chang, Chuan-Yu Chang and You-Ying Lin, A hybrid CNN and LSTM-based deep learning model for abnormal behavior detection, Multimedia Tools and Applications (2022) 81:11825–11843 , Available at: https://2h.ae/hixu [1] - Zhu, Jinnuo and others, Machine Learning Human Behavior Detection Mechanism Based on Python Architecture, Mathematics, Volume 10, Issue 17September 2022 Article number 3159, pp.2-31, Available at: https://2h.ae/TENV [1] - Dohare, Anand Kumar, Sharma, Megha and Pathak, Ravi Shanker, Human behaviour analysis and face detection using machine learning, 4th International Conference on Advances in Computing, Communication Control and Networking, ICAC3N 2022, pp . 1239 – 1244. Available at: https://2h.ae/niWB [1] - Cui, Chenxin and Xu, Ruofeng, Multiple Machine Learning Algorithms for Human Smoking Behavior Detection, 2nd International Conference on Machine Learning and Intelligent Systems Engineering, MLISE 2022 , Pp. 240 – 244, Available at: https://2h.ae/cneI [1] - Neil Shah, Nandish Bhagat and Manan Shah, Crime forecasting: a machine learning and computer vision approach to crime prediction and prevention, Visual Computing for Industry Biomedicine, and Art, (2021) 4:9, Available at: https://2h.ae/rpDw [1] -Tao Yang, Jin Yang and Jicheng Meng, Driver’s Illegal Driving Behavior Detection with SSD Approach, 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)26-08-2021, Available at: https://2u.pw/M9239 [1] - Amrutha C.V, C. Jyotsna, Amudha J, Deep Learning Approach for Suspicious Activity Detection from Surveillance Video, opcit. [1] -Ahlam Al-Dhamari, Rubita Sudirman and Nasrul Humaimi, Transfer Deep Learning Along With Binary Support Vector Machine for Abnormal Behavior Detection, IEEE, vol .8, 2020, pp, 61085 – 61095, Available at: https://ieeexplore.ieee.org/document/9045956?denied=[1] -Weihu Zhang, Chang Liu, Research on Human Abnormal Behavior Detection Based on Deep Learning, International Conference on Virtual Reality and Intelligent Systems (ICVRIS), 18-19 July 2020, Zhangjiajie, China, Available at: https://ieeexplore.ieee.org/abstract/document/9539352 [1] - MONAGI H. ALKINANI, WAZIR ZADA KHAN and QURATULAIN ARSHAD, Detecting Human Driver Inattentive and Aggressive Driving Behavior Using Deep Learning: Recent Advances, Requirements and Open Challenges, SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE (AI)-EMPOWERED INTELLIGENT TRANSPORTATION SYSTEMS, IEEE ACCESS,v 8, Saudi Arabia, 2020, Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107077 [1] - Jia Lu, Wei Qi Yan, Comparative Evaluations of Human Behavior Recognition Using Deep Learning, Handbook of Research on Multimedia Cyber Security, University of Technology, New Zealand, 2020, Available at: https://2u.pw/0YnVV [1] - Jia Lu ,Deep Learning Methods for Human Behavior Recognition, phd thesis, the Auckland University of Technology, Computer and Information Sciences, School of Engineering, Computer & Mathematical Science, New Zealand, 2020. [1] - ASHISH SHARMA, NEERAJ VARSHNEY, Identification and Detection of Abnormal Human Activities using Deep Learning Techniques, European Journal of Molecular & Clinical Medicine, Volume 7, Issue 4, 2020 [1] -Jia Lu, Wei Qi Yan, Minh Nguyen, Human Behaviour Recognition Using Deep Learning, 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2018, Available at: https://ieeexplore.ieee.org/abstract/document/8639413 [1] - Brady D. Lund, Diffusion of Innovations: Still a Relevant Theory for Studying Library Technology in the Age of AI?, Library Hi Tech News, 2025, Available at: https://2u.pw/5wU54 [1] -Jose A. García-Avilés, Diffusion of Innovation, The International Encyclopedia of Media Psychology, 2020, (pp.1-8) Publisher: John Wiley & Sons, Available at: https://2u.pw/cxED0 [1] -Clay Halton, Diffusion of Innovations Theory: Definition and Examples, 2023, Available at: https://2u.pw/RW6Xf [1] -Sean Michael Kerner, Diffusion of innovations theory: Definition and examples, Published: 06 Dec 2024, Available at: https://2u.pw/0kA8s [1] - Diffusion of innovations, Wikipedia, Available at: https://2u.pw/MxbN0F5H[1] -Clay Halton, Diffusion of Innovations Theory: Definition and Examples, 2023, Available at: https://www.investopedia.com/terms/d/diffusion-of-innovations-theory.asp - Aldanani, A. (2023), 'uwajih aistikhdamat tatbiq shat ji bi ti fi almajal al'iielamii: dirasat astikshafiati, majalat alealaqat aleamati, 47(2). 45- 77.- Al-Abd, A. (2011), nazariaat al'iielam watatbiqatuh alearabia (Alqahira: dar Aalfikr alearabiati).- Tawati, N. (2013). makluhan marshal: qira'at fi nazariaatih bayn al'ams walyawma, majalat aleulum al'iinsaniat waliajtimaeiati, jamieat Aljazayir, 10(2).[1] - Haider Falah Zaeid, Theory Technological Determinism, 2020, available at: https://www.researchgate.net/publication/340661709_Theory_Technological_Determinism- Amal, K. (2021). dawr wasayit al'iielam aljadid fi nashr alshaayieat wast altalabat aljamieiiyn, dirasatan maydaniatan ealaa eayinat min talabat jamieat muhamad alsidiyq bin yahii, risalat majistir, ghayr manshura (aljazayar: jamieat Mohamed Seddik Ben Yahia, Jijel, kuliyat aleulum al'iinsaniat walaijtimaeiati, qism al'iielam walaitisali,). [1] - Paul S. Adle, Technological Determinism, draft entry for The International Encyclopedia of Organization Studies, edited by Stewart Clegg and James R. Bailey (Sage), 2006, Available at: http://faculty.marshall.usc.edu/Paul-Adler/research/revisingTechnological%20Determinism.pdf [1] - Hallström Jonas , Embodying the past, designing the future: Technological determinism Reconsidered in technology education, International Journal of Technology and Design Education, 2022, 32, pp: 17-31 - Ali, A. (2017), aistikhdam namudhaj qabul altiknulujya (TAM) litaqasiy faeaaliat altiknulujia almusanidat alqayimat ealaa tatbiqat altaealum altakayufiat alnaqaalat litamkin dhawi al'iieaqat albasariat min altaealumi, majalat kuliyat altarbiati, jamieat Al'azhar, 716(2). - Abdel Hamid, A. (2020), taqabbul tulaab al'iielam fi misr wal'iimarat litatbiqat aldhaka' alaistinaeii watathiriha ealaa mustaqbalihim alwazifi" dirasatan fi 'iitar namudhaj qabul altiknulujia, almajalat almisriat libuhuth alraay aleami, kuliyat al'iielami, jamieat Alqahira, markaz buhuth alraay aleama, 2(1). 341-409. [1] - What is computer vision?, Available at: https://www.ibm.com/think/topics/computer-vision [1] -Jye Sawtell-Rickson, What Is Computer Vision?, BUILT IN ,Available at: https://builtin.com/machine-learning/computer-vision[1] - Computer vision, Wikipedia, AVilable at: https://en.wikipedia.org/wiki/Computer_vision [1] - Ben Nancholas, Computer vision and the algorithms that help computers understand visual information, University of Wolverhampton, November 25, 2024, Available at: https://2u.pw/AKFIq [1] - What is computer vision?, op.cit. [1] - Computer vision, Wikipedia, op.cit. [1] -Jye Sawtell-Rickson, What Is Computer Vision?, BUILT IN ,Available at: https://builtin.com/machine-learning/computer-vision[1] - https://fihm.ai/what-are-computer-vision-and-best-applications/ [1] - Nikoleta Manakitsa, George S. Maraslidis, Lazaros Moysis, and George F. Fragulis, A Review of Machine Learning and Deep Learning for Object Detection, Semantic Segmentation, and Human Action Recognition in Machine and Robotic Vision, Technologies 2024, 12(2), 15, available at: https://www.mdpi.com/2227-7080/12/2/15 [1] -Jye Sawtell-Rickson, What Is Computer Vision?, BUILT IN ,Available at: https://builtin.com/machine-learning/computer-vision[1] - Ben Nancholas, Computer vision and the algorithms that help computers understand visual information , University of Wolverhampton, November 25, 2024, Available at: https://goo.su/REtNGH [1] - Amrutha C.V, C. Jyotsna, Amudha J, Deep Learning Approach for Suspicious Activity Detection from Surveillance Video, Proceedings of the Second International Conference on Innovative Mechanisms for Industry Applications (ICIMIA 2020), Available at: https://goo.su/5JdIU2 [1] - a) Nikoleta Manakitsa, George S. Maraslidis, Lazaros Moysis, and George F. Fragulis, A Review of Machine Learning and Deep Learning for Object Detection, Semantic Segmentation, and Human Action Recognition in Machine and Robotic Vision, Technologies 2024, 12(2), 15, available at: https://www.mdpi.com/2227-7080/12/2/15 [1] - Guoqing Cai, Quan Zhang, Beichang Liu, Zhengyu Jin and Jili Qian, Deep Learning‐Based Recognition and Visualization of Human Motion Behavior, Academic Journal of Science and Technology, Vol. 10, No. 1, 2024 [1] - Leonard MatheusWastupranata, Seong G. Kong and Lipo Wang, Deep Learning for Abnormal Human Behavior Detection in Surveillance Videos—A Survey, Electronics 2024, 13 , available at: file:///C:/Users/hp/Downloads/electronics-13-02579%20(2).pdf [1] -Jye Sawtell-Rickson, What Is Computer Vision?, BUILT IN ,Available at: https://builtin.com/machine-learning/computer-vision[1] -Jye Sawtell-Rickson, What Is Computer Vision?, BUILT IN ,Available at: https://builtin.com/machine-learning/computer-vision | ||||
Statistics Article View: 100 PDF Download: 34 |
||||