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Abstract: Perturbation AutoVC is a model that is derived from the AutoVC model. AutoVC is an 

autoencoder model that performs Voice Conversion (VC) using non-parallel data and self-reconstruction 

loss only to train the model. Although AutoVC is a simple and easy model, it has a problem of the 

bottleneck layer which is used to separate the linguistic content from the speaker information. To tackle 

this bottleneck problem, Perturbation AutoVC appeared to remove the need of the bottleneck layer to 

achieve the VC task. In this paper, we use the Perturbation AutoVC as it achieves promising results while 

changing the way the speaker information is conditioned through using a normalization technique called 

Adaptive Instance Normalization (AdaIN) instead of the channel-wise concatenation. We setup two 

experiments seen-to-seen (many-to-many) VC and zero-shot (any-to-any) VC to compare our proposed 

model with Perturbation AutoVC. We use VCTK corpus (training and testing) and LibriTTS dataset 

(testing). In seen-to-seen, our proposed model and Perturbation AutoVC achieve d-vector cosine 

similarity of 0.65 and 0.64 respectively, Mean-Opinion-Score (MOSNet) of 3.48 and 3.32 respectively, 

Character Error Rate (CER) of 0.09 and 0.13 respectively and Word Error Rate (WER) of 0.15 and 0.22 

respectively. In Zero-shot (any-to-any), our proposed model and Perturbation AutoVC achieve MOSNet 

of 3.40 and 3.16 respectively, d-vector cosine similarity of 0.60 and 0.59 respectively, CER of 0.065 and 

0.073 respectively and WER of 0.11 and 0.12 respectively. 

 

Keywords: Voice conversion, Any-to-any voice conversion, AutoVC, Adaptive instance normalization, 

Perturbation AutoVC, Zero-shot voice conversion    

 

 

1. Introduction 

 

https://ijicis.journals.ekb.eg/ 

 



VOICE CONVERSION USING PERTURBATION AUTOVC AND ADAPTIVE INSTANCE NORMALIZATION 

43 

 

Voice Conversion (VC) refers to the process of modifying the speaker identity in a speech signal from a 

source speaker to a target speaker while maintaining the original linguistic content. This involves altering 

speaker-dependent features while preserving speaker-independent information [1]. VC has a wide range 

of applications, including privacy protection, personalized text-to-speech systems, customized synthetic 

voices for individuals with vocal impairments, and movie dubbing [1, 2]. 

 

There are various versions of the voice conversion (VC) task, which are primarily distinguished based on 

two fundamental aspects: the type of training data used and how many source and target speakers involved 

in the conversion process. Regarding the training data, it can be broadly categorized into two main types: 

parallel data and non-parallel data. Parallel speech data comprises recordings where different speakers 

articulate the same or substantially equivalent textual content. This type of data facilitates more 

straightforward alignment between the two voices but requires meticulous data preparation and is often 

expensive and labor-intensive to collect. Unlike parallel data, non-parallel data doesn't need identical 

sentences or phrases spoken by the source and target speakers. As a result, non-parallel data is more 

flexible, easier to obtain, and significantly more practical for large-scale or real-world applications. Due 

to these advantages, a significant portion of ongoing research in VC field have focused on developing 

models that are capable of functioning effectively with non-parallel data. Besides the training data, voice 

conversion systems can also be classified by how many source and target speakers they support. These 

categories include one-to-one VC, many-to-many VC, and zero-shot VC, which is also referred to as any-

to-any VC. In one-to-one voice conversion, the goal is to change the voice of a particular source speaker 

to sound like a particular target speaker. Although this setup is simple to implement, its applicability is 

quite restricted. On the other hand, many-to-many VC involves training models to perform conversions 

among a group of multiple speakers, allowing for a more dynamic and versatile system capable of dealing 

with a wide variety of speaker combinations encountered during training. The most advanced and flexible 

setup is zero-shot or any-to-any VC, in which the system is capable of converting voices between speakers 

that it has never encountered during training. This form of VC is particularly attractive for real-world 

deployment, as it allows the system to generalize to entirely new voices without requiring additional 

retraining or speaker-specific data. Overall, the current trend in VC research places a strong emphasis on 

non-parallel data as well as many-to-many and zero-shot (any-to-any) conversion tasks. This focus stems 

from their greater scalability, practicality, and relevance to real-world applications, where data collection 

resources are often limited and user-specific customization is highly desirable. 

 

To achieve non-parallel many-to-many and non-parallel zero-shot (any-to-any) VC, various VC models 

that use different technologies have appeared. These technologies include Generative Adversarial Nets 

(GANs) [3], encoder-decoder [4,5], Automatic Speech Recognition (ASR) [6], Vector Quantization (VQ) 

[7] and others. StarGAN-VC [8] and StarGAN-VC2 [9] are two of the models that are based on GAN and 

are considered as extensions to CycleGAN-VC model [10]. CycleGAN-VC model succussed to use the 

non-parallel data instead of the parallel one by introducing a new loss called cycle consistency loss but it 

couldn’t achieve the many-to-many task. StarGAN-VC could solve the many-to-many VC task by adding 

another loss to the CycleGAN-VC model which is called domain classification loss.  Although the 

successful usage of GAN in VC, the models based on GAN suffer from the known training difficulties of 

GAN. Encoder-decoder architecture achieves VC through removing speaker information from the input 

speech while preserving the linguistic information using a bottleneck (encoder). Then, this linguistic 

information along with the target speaker information is processed by the decoder to produce a speech 

contains the source linguistic content along with the target speaker identity. Some of the models that use 

this architecture are AutoVC [4] and model in [5]. Encoder-decoder based models often have the over-
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smoothing problem and the VC quality relies heavily on choosing the right dimension for the bottleneck 

layer. ASR can be used in VC task in two directions, one of them is using ASR as feature extractor for 

the linguistic data presented in the input speech and the other direction is using ASR to encourage the VC 

model to learn removing the speaker-dependent features from the input speech. Some of the models that 

use ASR to achieve VC task are presented in [11,12,13]. ASR-based models are dependent on an ASR 

module which needs to be pretrained using a large dataset of the used language. Also, VQ can be used 

the same way as ASR to help the model learn preserving the linguistic data while removing the speaker 

characteristics. One of the models that use VQ is VQMIVC [14]. VQ-based models are dependent on the 

VQ technique which needs a trainable code book dependent on the used language. Using such pretrained 

external modules (ASR module and VQ code book) seems to limit the ability of the VC models as they 

are mainly dependent on the accuracy of these external modules and their availability for the language 

used in the conversion.  

 

Although AutoVC achieves a better voice conversion than the other VC models using a simple training 

schema without the need for any external modules and can achieve zero-shot (any-to-any) voice 

conversion, it has the bottleneck problem.  To tackle the bottleneck problem in AutoVC, Perturbation 

AUTOVC [15] has appeared. Perturbation AutoVC is inspired by neural analysis and synthesis (NANSY) 

[16] in using perturbation to remove speaker characteristics in the input speech instead of using a 

bottleneck. In this work, we adapted the same architecture of Perturbation AutoVC by changing the 

conditional method of the speaker identity to achieve higher similarity and consequently higher speech 

quality. We used Adaptive Instance Normalization (AdaIN) [17] to condition the speaker identity instead 

of channel-wise concatenation. Using normalization to condition the speaker identity is inspired by 

Activation Guidance and Adaptive Instance Normalization VC (AGAIN-VC) [18], model in [19] and 

StarGAN-VC2 models. This conditional method significantly contributed to the success of AGAIN-VC 

model and model in [19] in achieving one-shot VC and the success of StarGAN-VC2 model in achieving 

better speech similarity and quality than the StarGAN-VC model. Concatenation, while simple, can lead 

to complex interactions between the concatenated features that are hard for the network to untangle. This 

can result in audible artifacts or a less natural quality in the converted speech. Normalization, by providing 

a structured way to combine content and style, often yields smoother, more natural-sounding outputs. 

 

The rest of the paper is organized as follows: Section 2 reviews related work, Section 3 presents the 

architecture of the proposed model, Section 4 describes the experimental setup, Section 5 discusses the 

results and provides analysis, and finally, Section 6 concludes the paper with a summary of our 

contributions. 

 

2. Related Works 

 

2.1 AutoVC 

 

AutoVC achieves zero-shot (any-to-any) VC through autoencoder architecture which is trained only using 

the reconstruction loss. AutoVC’s main goal is to remove speaker information from the input speck while 

keeping linguistic content through a well-designed bottleneck layer. Fig. 1 shows the AutoVC’s 

architecture. 
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Fig. 1. AutoVC model’s architecture. 

 

AutoVC consists of 4 main modules: 1) encoder to disentangle linguistic content from the input speech, 

2) decoder to generate the target speech which contains source linguistic content along with the target 

speaker identity, 3) speaker-encoder to generate speaker embedding, and 4) vocoder to generate the 

waveform. The encoder’s input is the 80-mel-spectrogram of the source speech along with the source 

identity to help the encoder disentangle linguistic content from speaker identity. The speaker-encoder is 

a pre-trained network [20], its input is the 80-mel-spectrogram to produce speaker identity representation 

(d-vector). The decoder’s input is the latent codes produced by the encoder (representation for content 

information) and the target speaker characteristics (d-vector). Vocoder is a pre-trained network by the 

authors using the method in [21] responsible for turning the converted 80-mel-spectrograms into the 

waveform. Although AutoVC achieves zero-shot (any-to-any) VC using a simple training schema, its 

quality is heavily dependent on the dimension of the content-encoder’s bottleneck layer. This bottleneck 

dimension needs to be carefully determined (it can’t be neither narrow nor wide) which is hard, needs 

many trails and creates a trade-off between speech quality (preserving source linguistic content) and target 

speaker similarity.  

   

2.2 Perturbation AutoVC 

 

Perturbation AutoVC comes to solve the above-mentioned bottleneck problem in AutoVC by depending 

on a perturbation process instead of the bottleneck architecture to remove speaker information and 

preserve the linguistic information inspired by NANSY. Perturbation [22, 23] means to distort unneeded 

information in the input speech while preserving the needed ones which is linguistic information in our 

case. Following NANSY perturbation AutoVC achieves the perturbation process by applying three 

functions random frequency shaping using a parametric equalizer (peq), pitch randomization (pr) and 

formant shifting (fs). Fig. 2 shows Perturbation AutoVC’s architecture. 

 

Perturbation AutoVC consists of 4 main components: Perturbation, Speaker Encoder, Content Encoder 

and Decoder. Perturbation component is responsible for applying the above mentioned three functions to 

the input waveform as follows fs(pr(peq(X))) where X is the input waveform. The perturbation process 

output after it is converted to 80-dimensional mel-spectrogram goes through the content encoder. Content 

Encoder produces linguistic content embedding while ignoring the distorted components of the input mel-

spectrograms. In the Perturbation AutoVC, there is no bottleneck in the content-encoder as the bottleneck 

dimension (down-sampling factor) of the original model (AutoVC) is set to 1. Speaker-encoder, a pre-
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trained network by the authors, extracts x-vector from the input mel-spectrograms which represents the 

speaker identity. Decoder is responsible for taking the content embedding, x-vector (speaker 

characteristics) and energy (extracted from the original input mel-spectrograms) to generate the converted 

mel-spectrograms. Energy is determined by taking the average of the log mel-spectrograms across the 

frequency axis. Using Energy as an additional input to the decoder is inspired by NANSY. To generate 

converted waveform HiFi-GAN [24] is used.  

 

 
Fig. 2. The architecture of the Perturbation AutoVC model. 

 

2.3 Adaptive Instance Normalization (AdaIN) 

 

AdaIN is a normalization technique designed to align the channel-wise mean and variance of content 

features with those of style features. AdaIN is calculated as in Eq. 1. 

 

𝐴𝑑𝑎𝐼𝑁(𝑥, 𝑦)  =  𝜎(𝑦) (  
𝑥 − µ(𝑥)

𝜎(𝑥)
 ) +  µ(𝑦)              (1) 

Where 𝑦 is the style and 𝑥 is the content. 

 

AdaIN can be used in conditioning any content with a desired style. We inspired by the Star-GanVC2 to 

use normalization as a conditional method for the speaker identity which was one of the main reasons that 

made Star-GanVC2 achieves higher quality and similarity. Inspired by AGAIN-VC model and model in 

[19], we used AdaIN to have the ability of achieving zero-shot (any-to-any) conversion while using 

normalization as our conditional method. 

 

3. Proposed Model 

 

Our proposed model as shown in Fig.3 contains of 5 main modules: 1) content-encoder 2) decoder 3) 

speaker-encoder 4) perturbation module 5) AdaIN.  
 



VOICE CONVERSION USING PERTURBATION AUTOVC AND ADAPTIVE INSTANCE NORMALIZATION 

47 

 

 

Fig. 3. Our proposed model architecture. 

 

Following the Perturbation AutoVC, we apply perturbation to the input waveform through a sequence of 

the above mentioned three functions. Perturbated waveform equals fs(pr(peq(X))) where X is the input 

wav, then from this perturbated waveform 80-mel-spectrograms are extracted then go through the content-

encoder.  

 

Content-encoder has the same architecture as the Perturbation AutoVC, it takes the 80-perturbated-mel-

spectrogrmas through a 3 5x1 convolutional layers then the output goes through a bi-directional LSTM 

to produce 512-content-embeddings.  

 

For speaker-encoder, we use the pretrained model by the Perturbation AutoVC ‘s authors that takes 80-

mel-spectrograms to produce 192-speaker-embeddings (x-vectors).  

 

Decoder is a model that takes the content-embedding, speaker-embedding and energy (extracted from the 

80-mel-spectrograms) to produce the converted 80-mel-spectrograms. Our decoder differs from the 

Perturbation AutoVC’s decoder in the conditional method. Instead of the channel-wise concatenation to 

the content and speaker embeddings and the energy, the content-embedding goes through a LSTM then 

this LSTM’s output and the speaker-embedding go through AdaIN layer then this AdaIN’s result is 

concatenated with the energy. Since the LSTM output dimension (512) is not the same as the speaker-

embedding dimension (192), before AdaIN the speaker-embedding is linearly transformed first to match 

the LSTM output dimension (512) then Eq. 1 is applied. The output from the AdaIN goes through 3 5x1 

convolution layers then the convolutional output goes through an LSTM. Then the LSTM output is fed 

into a fully connected layer to produce the initial converted 80-mel-spectrograms �̂�1.  �̂�1 goes through 5 

5x1 convolutional layers (as a Res-Net) to produce the residual 80-mel-spectrograms �̂�2. So, the final 

output of the decoder is the addition of �̂�1 and  �̂�2  as shown in Eq.2.  

 

�̂�1→1 = �̂�1 +  �̂�2                                                                            (2) 

Where �̂�1→1 is the final converted 80-mel-spectrograms produced by the decoder. 

 

Hifi-GAN, as employed in Perturbation AutoVC, is utilized to generate the converted waveform from the 

80-mel-spectrograms produced by the decoder. 
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Our model is dependent only on self-reconstruction loss as AutoVC and Perturbation AutoVC. 80-mel-

spectrograms reconstruction loss is computed between the original and initial converted mel-

spectrograms as in Eq. 3. Also, 80-mel-spectrogram reconstruction loss is computed between the original 

and the final converted mel-spectrograms as in Eq. 4. Content-embedding reconstruction is also calculated 

using Eq. 5. The final training loss is calculated as in Eq. 6. 

  

𝐿𝑟𝑒𝑐𝑜𝑛0 =  𝐸[∥ �̂�1 −  𝑋1 ∥2
2]                                                          (3) 

Where X1is the original 8-mel-spectrograms. 

 

𝐿𝑟𝑒𝑐𝑜𝑛 = 𝐸[∥ �̂�1→1 −  𝑋1 ∥2
2]                                                        (4) 

 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝐸[∥ 𝐸𝑐(�̂�1→1) −  𝐸𝑐(𝑋1) ∥1]                                       (5) 

Where 𝐸𝑐  is the content-encoder. 

 

𝑚𝑖𝑛𝐸𝐶(.),𝐷(.,.)𝐿 =  𝜇(𝐿𝑟𝑒𝑐𝑜𝑛 + 𝐿𝑟𝑒𝑐𝑜𝑛0)  + 𝜆𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡                    (6)   

Where 𝐷 is the decoder, 𝜇 is a weight for the 80-mel-spectrograms reconstruction loss and 𝜆 is a weight 

for the content-embedding reconstruction loss. 

 

4. Experiments 

 

4.1 Dataset 

 

Our proposed model and the Perturbation AutoVC model are trained on VCTK [25] corpus. VCTK corpus 

contains records from 109 English speakers, each one has around 400 recorded sentences and all records 

are down-sampled to 48kHz. For the training part, we used 80% of the speakers and we used all their 

records except 10 utterances from each speaker are kept for the testing part. Also, LibriTTS [26] (train-

clean-100 set) which is derived from LibriSpeech [27] is used in zero-shot (any-to-any) voice conversion 

testing. We made the same training setup as Perturbation AutoVC. Mel-spectrogram (dimension of 80) is 

extracted from the training records which are down-sampled to 22.05 kHz. A Fast Fourier Transform 

(FFT), with a size of 1024, a window size of 1024, and a hop length of 256, is used for the extraction of 

mel-spectrograms.128 frames from each record are used through truncating or padding the extracted mel-

spectrograms. The model is trained using a batch size of 2, a learning rate of 0.0001, and the ADAM 

optimizer. A value of 1 for λ and a value of 2 for µ are used. We trained the two models for about 80k 

iterations (reaching reconstruction error of about 0.2). 

 

4.2 Evaluation Methods 

 

Four evaluation methods are used which are d-vector cosine similarity [28], Mean Opinion Score using a 

pretrained Network (MOSNet) [29,30], Word Error Rate (WER) [31,32] and Character Error Rate (CER) 

[31,32].  

 

Following [28], we assess the similarity between generated and real speech using d-vector cosine 

similarity. This metric compares the d-vector extracted from a real recording to that from a generated 

recording for the same speaker. A higher d-vector cosine similarity value indicates greater resemblance 

between the generated and real speech. D-vector cosine similarity is calculated as shown in Eq. 7. 
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𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑦, �̂�) =
𝑦.�̂�

∥𝑦∥ ∥�̂�∥
                                               (7) 

Where y and y ̂ are d-vectors of the target speaker from any one of his/her original speeches and from 

his/her generated speech respectively and n is the d-vector length.  

 

The dot product between the two d-vectors is calculated as in Eq. 8. 

 

𝑦. �̂� =  ∑ 𝑦𝑖�̂�𝑖
𝑛=256
𝑖=0                         (8) 

 

The magnitude of the d-vector is calculated as in Eq. 9. 

 

∥ 𝑦 ∥ =  √𝑦. 𝑦                      (9) 

 

Inspired by [30], we used MOSNet [29] which is a pre-trained network that simulates the human opinion 

on the quality of the generated records. A higher MOSNet value indicates a higher quality of the generated 

records. 

 

Inspired by [31], we employed CER and WER [32] to quantify the linguistic preservation of the generated 

recordings. These metrics measure the error rate by calculating the ratio of the sum of deletions, 

substitutions, and insertions required to transform the candidate sequence into the reference sequence, to 

the total number of words or characters in the reference. Consequently, a lower value for CER or WER 

indicates a higher quality of linguistic preservation in the generated recording. WER/CER is calculated 

as shown in Eq. 10. 

 

WER/CER= (S+D+I)/N                                         (10) 

Where S, D, and I denote the counts of substitutions, deletions, and insertions, respectively, while N refers 

to the total number of actual words or characters. 
 

4.3 Experimental Setup 

 

We made two experiments in which our Proposed model and Perturbation AutoVC are evaluated using 

the four mentioned evaluation methods. First experiment is seen-to-seen in which we selected 10 males 

and 10 females from the seen speakers and used for each one 10 records that are kept for the testing (not 

showing in the training phase). We made all the possible conversions resulting on 4000 records generated 

from each model. Second experiment is zero-shot (any-to-any) in which we selected 5 males and 5 

females from the train-clean-100 set of LibriTTS dataset and used for each one 5 records. We made all 

the possible conversions resulting on 500 records generated from each model. 

 

5 Results 

 

5.1 Seen-to-seen Voice Conversion Test 

 

The average of the WER, CER, MOSNet and d-vector similarity values that are calculated from  the 

4000 generated records are showed in Table. 1. 

 

 



50 Yasmin Alaa et al. 

 

 
Table. 1 WER, CER, MOSNet and d-vector cosine similarity for the Proposed and Perturbation AutoVC models. 

 

 

In this experiment, our proposed model achieves lower CER and WER, also our proposed model achieves 

higher MOSNet. For the d-vector cosine similarity, our proposed model and Perturbation  AutoVC 

achieves comparable results. 
 

5.2 Zero-shot (any-to-any) Voice Conversion Test 

 

The average of the WER, CER, MOSNet and d-vector similarity values that are calculated from  the 

500 generated records are showed in Table. 2. 

 
Table. 2 WER, CER, MOSNet and d-vector cosine similarity for the Proposed and Perturbation AutoVC models. 

 

 

In this experiment, our proposed model achieves lower CER, also our proposed model achieves higher 

MOSNet. For the WER and d-vector cosine similarity, our proposed model and Perturbation AutoVC 

achieves comparable results. 

 

Based on these comparisons, as well as the findings from our previous work [33] comparing AdaIN-based 

VC model with other VC models. AdaIN shows its efficiency while being used in Perturbation AutoVC. 

This claims that using AdaIN as a conditional method instead of channel-wise concatenation in VC 

models is a good practice to achieve better VC quality. 

 

Generated samples can be found in [34]. 

 

6 Conclusion 

 

This work proposes a model which performs zero-shot (any-to-any) non-parallel Voice Conversion (VC). 

The proposed model leverages the Perturbation AutoVC model with changing the conditional method of 

the speaker information to be done using a normalization technique called Adaptive Instance 

Normalization (AdaIN) instead of the channel-wise concatenation. As concatenation, while simple, can 

lead to complex interactions between the concatenated features that are hard for the network to untangle. 

This can result in audible artifacts or a less natural quality in the converted speech. Normalization, by 

providing a structured way to combine content and style, often yields smoother, more natural-sounding 

outputs. Despite the AdaIN’s ability to enable flexible, real-time, and high-quality VC, the quality and 

duration of the reference utterance for the target speaker significantly impact the effectiveness of AdaIN 

as noisy or very short reference audios can lead to suboptimal style transfer. Our proposed model depends 

on the reconstruction loss only. The VCTK Corpus was used for both training and testing, with additional 

testing conducted on the LibriTTS dataset. We performed two experiments zero-shot (any-to-any) VC 

and seen-to-seen VC to compare between our proposed model and Perturbation AutoVC. For the 

 WER CER MOSNet d-vector cosine similarity 

Our proposed model 0.15 0.09 3.48 0.65 

Perturbation AutoVC 0.22 0.13 3.32 0.64 

 WER CER MOSNet d-vector cosine similarity 

Our proposed model 0.11 0.065 3.40 0.60 

Perturbation AutoVC 0.12 0.073 3.16 0.59 
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evaluation, we used four metrices: d-vector cosine similarity, Mean-Opinion-Score using pretrained 

Network (MOSNet), Character Error Rate (CER) and Word Error Rate (WER). Experiments showed that 

our proposed model achieves better results which indicates that using AdaIN as the conditional method, 

which is a little modification, can have a good effect in VC models.  
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