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Abstract: Knowledge graphs (KGs) help in resolving data inconsistencies and redundancies by 

organizing information in a unified structure, paving the way for building scalable, interpretable AI 

systems, as they provide a transparent way to trace reasoning paths and conclusions. The continuous 

evolving nature of information imposes for continuous knowledge graph completion (KGC). Thus, many 

research efforts are directed into building efficient KGC models. KGC models varied in the utilized 

knowledge features into the knowledge textual semantics, the graph relational structure, and temporal 

features, proving the crucial role of each. However, prior models neglect utilizing one or more types of 

features in the embedding and completion learning, missing the potential advantage of the neglected 

features for efficient completion learning. Thus, we propose an innovative sequential hybridization-

based completion model, named Joint Features-based Knowledge Graph Completion (JF-KGC). The 

model encodes the latent semantics of knowledge, the structural topology, and the evolution of 

knowledge over time. This is a novel completion model that utilizes hybrid embedding of deep textual-

based semantics, graph structure and temporal features for completion learning. The experiment 

conducted over YAGO11k and Wikidata12k benchmark datasets proved significant improvement over 

baselines in predicting missing knowledge with Mean Reciprocal Rank (MRR) equals 39.2% and 51.3% 

on YAGO11k and Wikidata12k, respectively. Besides, we provide an ablation study to prove and 

quantify the contribution of each feature type to the performance.      

 

Keywords: Knowledge Graph Completion (KGC), Temporal Knowledge Graph (TKG) , Knowledge 

Semantics, Graph Topology, Language Model (LM). 
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Recently, Knowledge Graphs (KGs) have become fundamental for various knowledge-based AI 

systems such as chatbots [1], recommendation systems [2], and search engines [3]. This role is granted 

due to KGs’ resolvability of inconsistencies and the unstructured nature of information in several 

domains [4]. Knowledge Graph (KG) consists of interconnected knowledge triplets, each of which 

consists of a relation connecting two entities [5]. The uniform integrity of real-world facts from several 

data sources is not the only capability of KGs, a KG is capable of holding much knowledge such as 

entities’ attributes, entities’ semantic definitions [6], and timestamps that can indicate the time validity of 

relations in a KG [7]. Recently, Temporal Knowledge Graphs (TKGs) [8] and Dynamic Knowledge 

Graphs (DKGs) [9] appeared and gained huge attention in the research community. A Temporal 

knowledge graph (TKG) is a KG in which eventual facts have timestamps and the topological structure 

of the KG dynamically changes over time [10]. The aforementioned capabilities paved the way for KG to 

be adopted for many knowledge-based applications in different domains such as medical [11, 12], 

educational [13, 14], commercial [15, 16], and enterprise domain [17, 18]. Despite the huge capabilities 

of KGs and their prevalence, the research community believed in the incompleteness of constructed KGs 

and how it holds back the capabilities of the relying application. Therefore, various efforts are directed to 

develop methods for exploring and discovering missing facts in a KG [19]. Knowledge Graph 

Completion (KGC) is the process of reasoning missing paths in a KG to achieve KG completeness by 

utilizing graph information for completion learning [20]. The prior KGC models varied with respect to 

the utilized graph information which can be classified into graph-structural features, textual description 

features, and temporal features [21]. 

Textual description features can be defined as the derived context from entities and relations co-

occurrences or the hidden semantics in the natural language sentences of the definitions, and descriptions 

of entities and relations [22]. Textual-based completion methods, (e.g., KG-BERT [23]) transform the 

completion task into a Natural Language Processing (NLP) task in which a pre-trained Language Model 

(LM), or NLP techniques are applied for completion. Graph-structural features related to the topology 

and connectivity structure of knowledge triplets and the relations between entity pairs in the graph [24]. 

Structural-based completion methods (e.g., RotatE [25]) leverage the structural features to learn 

determine the structural trustworthiness of a candidate knowledge triplet, in order to complete the graph. 

Temporal features refer to the timestamps of relations in knowledge triplets, indicating the specific time 

in which an eventual fact occurred [26]. Temporal-based completion methods, (e.g., TELS [27]) employ 

the timestamps of knowledge triplets to learn the graph evolution over time and hence, detect missing 

knowledge. Although the results in the literature proved the crucial role of each of the aforementioned 

knowledge features for KGC, prior conventional models have a major drawback which is ignoring one or 

more types of features in the learning process, missing the neglected features’ potential capability of 

discovering missing knowledge. Therefore, the incorporation of the three types of features to train one 

completion model is vital to reach the completeness of the KG efficiently. The combination of textual, 

structural, and temporal features to jointly train a completion model is challenging due to the different 

modalities of the features, and direct concatenation might not effectively capture interactions between 

features, which requires an adaptive fusion approach. 

In this work, we propose Joint Features-based Knowledge Graph Completion (JF-KGC), which 

follows a proposed sequential hybridization approach to learn KGC with semantic, structural and 

temporal features of TKG. The model splits KG into sequential snapshots of sub-KGs based on the 

timestamps, then obtains a semantic-aware representation of knowledge triplets in each snapshot using 

Bidirectional Encoder Representations from Transformers (BERT). Subsequently, the encoded semantics 

of entities and relations are refined with neighboring structural features on each temporal snapshot using 

a Relational Graph Convolutional Network (R-GCN). Finally, a Gated Recurrent Unit (GRU) captures 

the evolution of knowledge and the sequential patterns through the consecutive snapshots’ 
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representations, to attain final representations of knowledge that hold semantic, structural and temporal 

features, to learn completing the KG.  

The incorporation of features in the proposed model provides an enhanced representation of real-

world data, and a generalization in completion learning across different graph types with the ability to fill 

the gap of insufficiency of a specific knowledge feature with other features in the graph. 

In this work, we intend to prove the necessity of the incorporation of features. Our contribution can be 

summarized as follows: 

• A review of the related baseline KGC models, focusing on novel perspective, which is 

employed and missed knowledge features in the training process of the models one by one. 

• As far as we know, our model achieves novelty in KGC by hybridizing the completion 

learning with the three types of knowledge features. 

• The novelty of the methodological pipeline which leverage KG's semantics guided by 

contextual pre-trained LM, jointly with the topologies in the graph and the temporal evolution 

of knowledge for KG completion. 

• Model evaluation on YAGO11k and Wikidata12k datasets and results analysis against 

baseline KGC models proved a significant improvement achieved in KGC. 

• Ablation studies are conducted to prove the necessity and quantify the contribution of each 

type of knowledge feature to the completion of TKG. 

The paper is organized into: Section 2 exhibits the KGC process and investigates the recent KGC 

models related to our work along with their drawbacks with respect to the utilized knowledge features, 

emphasizing the difference and clarifying the position of our work. In Section 3, we elaborate JF-KGC 

model phase by phase. In Section 4, we pose our experimental details and the evaluation results of the 

JF-KGC model on benchmark datasets along with an extensive analysis of JF-KGC. In Section 5, 

remarks and insights are concluded and followed by suggested future work. 

 

2. KGC Background and Related Models Review 

 

2.1. KGC Background 

 

KGs popularized lately [28] and many efforts directed for KG construction and completion [29] in 

various domains [30]. The incompleteness in KGs happens due to inaccurate or incomplete data sources, 

or inefficiency of the KG construction model. To predict missing knowledge, candidate facts need to be 

generated from ℰ, and ℛ; the entities and relations existing in the graph, to be scored further by the KGC 

model, whether they are correct missing facts or not. For KGC model construction, a preprocessing step 

over the original KG needs to be done. Negative samples ℱ′ generated out from the existing set of facts 

ℱ, in the KG, by corrupting a number of facts randomly. Then, both ℱ and ℱ′ combined to be used in 

the construction of the KGC model. Subsequently, the KG is embedded to obtain representation vectors 

that take into consideration the knowledge features. The features-aware embedded vectors are employed 

to train a factual scoring function capable of discriminating against the true facts from the false ones out 

of the candidate facts. In the literature, KGC models varied in the considered knowledge features in KG 

embedding. Following, we are going to exhibit the related KGC models according to the levered feature 

variations, along with the benchmark datasets employed for model evaluation. 

 

2.2. Related KGC Models 
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In this sub-section, KGC models’ variations in feature types, utilization strategy, and evaluation 

benchmarks are discussed. For semantics leveraging, authors of [23] employed pre-trained LM to learn 

the textual semantics of knowledge triplet by processing the definitions of the triplet’s components as a 

textual sequence. The textual sequences of each knowledge triplet fed into the pre-trained LM to train the 

loss function to learn triplet plausibility. Similarly, LASS model [31] employed pre-trained LM to 

capture the latent semantics in each knowledge triplet, for each component in isolation, to obtain a single 

embedding vector for each entity in the triplet and for the relation. The authors proposed a scoring 

function based on translation property to model triplet components.  However, the topological features 

and temporal dynamicity of facts were neglected in [23] and [31]. 

Meanwhile, the authors of RotatE [25] capture only the triplet structural features by projecting KG 

entities into a vector space and KG relations as a rotation in the same space. In [32], the authors maintain 

the triplets' structure pattern while embedding the KG's entities and relations into a complex space to 

consider the relations hierarchy in training the completion model. Nevertheless, the last two 

aforementioned models utilized only graph structural topology. 

For temporals leveraging, Hyte model [33] projects the entities and relations embeddings into a 

temporal hyperplane to capture the evolution through the temporal hyperplane. However, only the 

temporal feature is utilized. The same limitation exists in TTransE [34], where the translation property is 

considered in representation with respect to the time, to model the changes of facts representations at 

different time stamps. In [35], the TA-DistMult model advances DistMult by augmenting time-dependent 

representations for entities and relations. Temporal features were also utilized in ATiSE [36], by 

capturing the uncertainty and temporal variations using Gaussian distributions and time-aware attention. 

LGRe [37] employed a Convolutional Neural Network (CNN) to utilize temporals to learn the changing 

patterns of entities and relations through different time periods, considering time at periodical levels, not 

as a static stamp. The models [33] through [37] missed leveraging structural and textual semantic 

features. 

In [38], both the structural and temporal features are utilized for learning KGC. The structural patterns 

were captured using R-GCN and the temporal features were utilized using time gate and GRU. The same 

features are utilized for KGC in ATGIE [39]. The model integrates Euclidean, hyperbolic, and 

hyperspherical geometric spaces to model the time-varying structures inherent in TKGs. R-GCN was 

also utilized in THOR [40] with three modifications to capture the topological patterns of relations, 

entities’ temporal dependencies, and entities’ non-temporal dependencies to train the completion model. 

In [27], TELS model captured the changing topology representation of entities over time, by employing 

dual quaternion algebra. This mathematical framework allows for the simultaneous modelling of 

rotational and translational transformations, capturing intricate temporal evolutions and latent relations 

between entities. However, the advantage of latent semantics in textual descriptions is unexploited in 

[38] through [27], losing its capability in the completion learning.  

The textual-based and graph structural-based completion models employed for evaluation benchmark 

dataset(s) derived from WordNet (i.e. WN18, and WN18RR), Freebase (i.e. FB15k, and FB15k-237), 

Unified Medical Language System (UMLS), and YAGO (i.e. YAGO3-10, and YAGO11k). The 

temporal-based completion models employed for evaluation benchmark dataset(s) derived from YAGO 

(i.e. YAGO3-10, and YAGO11k), Wikidata, Integrated Crisis Early Warning System (ICEWS), and 

Global Database of Events, Language, and Tone (GDLET). The employed knowledge features in the 

reviewed KGC models and the origin of the employed datasets are encapsulated in Table 1. 

 

2.3. Research Gap 
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The reviewed KGC models and the considered perspective reveal a research gap which is exploring 

the impact of cooperating the three types of features to train a completion model with hybridized 

embeddings, as the baseline models neglect utilizing one or more types of knowledge features which can 

be noticed clearly in Table 1, missing the potential advantage of the neglected feature over efficient 

KGC. This sets our proposed model apart from the existing KGC models and highlights our contribution. 

 

3. JF-KGC Model 

 

In general, TKG can be remodeled into a sequence of temporal consecutive KG snapshots, that is 

TKG= {KG1, KG2, …, KGt}. Each temporal snapshot mainly consists of a set of interrelated facts 

occurred at time t, which denoted as ℱ𝑡. 𝑓𝑡 ∈ ℱ𝑡, is a fact occurred at time t, which consists of a 

knowledge triplet that can be denoted as (𝑒𝑠, 𝑟, 𝑒𝑜), where 𝑒𝑠 is the subject node, 𝑒𝑜  is the object node, 

and 𝑟 is the relation edge that connects the two entity nodes. 𝑒𝑠, 𝑒𝑜 ∈ ℰ, and 𝑟 ∈ ℛ, where ℰ and ℛ are 

the set of all entity nodes and relation edges in TKG, respectively. 

The completion of a KG is concerned with predicting missing links in the graph. We propose JF-KGC 

model which aims to solve this problem by training the model with embedding vectors that capture the 

textual semantics, structural graph topology, and historical evolution in TKG. All symbols mentioned in 

the proposed model are summarized in Table 2, along with their definitions. JF-KGC model is composed 

of four main phases which are the semantic phase, the graph structure phase, the temporal phase, and the 

scoring phase, as illustrated in Figure. 1. Each phase is explained in a separate sub-section. 

 
Table 1 The Employed Features in Related KGC Models and The Origin of The Employed Benchmarks for Evaluation 

 

Model 

Ref. 

Employed Feature Employed Benchmark 

Textual 

description 

features 

Graph 

structural 

features 

Graph temporal 

features 
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[23] •   • • •     

[31] •   • • •     

[25]  •  • •      

[32]  •  • •  •    

[33]   •    • •   

[34]   •    • • •  

[35]   •    • • •  

[36]   •    • • •  

[37]   •    • • •  

[38]  • •    • • • • 

[39]  • •    •  • • 

[40]  • •    •  •  

[27]  • •    • • •  

 

 

 

 

 



JOINT FEATURES-BASED KNOWLEDGE GRAPH COMPLETION     93 

 

 

 

 

 
Table 2 Definitions of Symbols 

 

Symbol Definition 

KGt Snapshot of KG at time t 

ℱ𝑡 Set of all facts occurred at time t 

𝑓𝑡 A temporal fact where 𝑓𝑡 𝜖 ℱ𝑡 

𝑒𝑠, 𝑒𝑜, 𝑟 Subject entity, object entity and a relation in a knowledge triplet, respectively 

ℰ The set of all entities in TKG 

ℛ The set of all relations in TKG 

𝑣𝑠, 𝑣𝑜 The subject and object semantic representation, respectively 

𝑣𝑟  The relation semantic representation 

ℰ′𝑡  A matrix of the structural-refined semantic representation of all entities occurred at time t  

ℛ′𝑡  A matrix of the structural-refined semantic representation of all relations occurred at time t  

𝐄𝐢, 𝐑𝐢 Evolved representation of ith entity and ith relation in TKG  

 

 

 

Figure. 1: An overview of JF-KGC, a. The semantic and structure-refined representations; b. The representation evolution 

 

3.1. The Semantic Phase 

 

The hidden semantics in textual descriptions of entities and relations proved to be significant for KGC 

process due to the semantic similarity among the components of a knowledge triplet [31]. Recently, pre-

trained LMs played a vital role in many NLP tasks and employed in the context of KG [41]. The 

powerful capability of the pre-trained LMs in capturing language semantics from natural language text 

motivated us to exploit a pre-trained LM to capture the hidden semantics in textual descriptions of the 
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components of knowledge triplets. In this phase, we employed for encoding the pre-trained LM, BERT. 

For each temporal knowledge triplet 𝑓𝑡 in the TKG, the textual definition of its 𝑒𝑠, 𝑟, and 𝑒𝑜, acquired. 

For each of the definitions, the word sequence is tokenized into a sequence of tokens, to be fed into 

BERT model, following the format in Figure. 2, where [CLS] is placed to mark the beginning of 𝑓𝑡 

sequence of tokens, and [SEP] is placed to separate the definition tokens of 𝑒𝑠, 𝑟, and 𝑒𝑜. Subsequently, 

for each token, the sum of three embeddings is obtained (i.e., token, segment, and position), and the final 

embedding produced through the pre-trained BERT. To obtain an aggregated embedding vector for each 

element in a knowledge triplet, mean pooling applied to its tokens embeddings which produced out from 

BERT. The semantic features of 𝑒𝑠, 𝑟, and 𝑒𝑜 are finally captured in 𝑣𝑠, 𝑣𝑟, and 𝑣𝑜 as defined in Eqs. (1-

3), respectively: 

𝑣𝑠 = 𝑀𝑒𝑎𝑛 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑇1
𝑠, 𝑇2

𝑠, … , 𝑇𝑛𝑠
𝑠 )  (1) 

𝑣𝑟 = 𝑀𝑒𝑎𝑛 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑇1
𝑟 , 𝑇2

𝑟 , … , 𝑇𝑛𝑟
𝑟 ) (2) 

𝑣𝑜 = 𝑀𝑒𝑎𝑛 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑇1
𝑜 , 𝑇2

𝑜 , … , 𝑇𝑛𝑜
𝑜 ) (3) 

where 𝑇 is the final token embedding produced by BERT. 𝑣𝑠, 𝑣𝑟, and 𝑣𝑜 ∈  ℝ𝑑 , where 𝑑 is the 

dimension of the produced vector. However, the semantic vectors hold the semantic features of each fact 

in isolation, without considering the structure topology of entities in the graph. Thus, a succeeding 

structural phase is needed in order to refine the encoded semantic embeddings with structural features. 

 

 
 

Figure. 2: Triplet formatting to be fed into BERT 

 

3.2. The Graph Structure Phase 

 

Relational structure features are crucial for TKG completion since the topologies of the graph evolves 

over time and the potential information in neighboring nodes [42]. Thus, we refine the semantic 

embeddings with structural features by utilizing R-GCN [43] with multi-layers, to aggregate information 

from neighboring nodes. At layer 𝑙 + 1, an object embedding is refined with the object embedding at 

layer 𝑙, and information from neighboring subjects’ embeddings and relations’ embeddings at layer 𝑙, 
through message passing formula, w.r.t. the translation property between subject and object, as defined in 

Eq. (4): 

𝑣𝑜
𝑙+1 = 𝜎(∑

1

𝑐
𝑊1

𝑙  (𝑣𝑠
𝑙 + 𝑣𝑟) + 𝑊2

𝑙𝑣𝑜
𝑙)(𝑒𝑠,𝑟),∃ (𝑒𝑠,𝑟,𝑒𝑜)∈ℱ𝑡  (4) 

where 𝜎(·) is ReLU activation function; c is a constant equals to the number of the connected relations 

to 𝑒𝑜; 𝑣𝑜
𝑙, 𝑣𝑠

𝑙, and 𝑣𝑟 are the embeddings at layer 𝑙 of object, subject and relation, respectively; 𝑊1
𝑙, 𝑊2

𝑙 

are the aggregated neighboring information and self-loop weight matrices, respectively. Note that the R-

GCN’s initial input embeddings are the pre-computed BERT embeddings; 𝑣𝑠, 𝑣𝑟, and 𝑣𝑜. The output of 

R-GCN at the last layer holds the semantic features of the entities refined with the topological structure 

of the entities’ neighbors in the graph at time t. For all entities occurred at time t, the refined 

representation vectors grouped into a matrix, ℰ′𝑡, and the relation representation vectors into ℛ′𝑡. 

 However, the semantics and dependency patterns among each graph snapshot are encoded 

independently. Thus, a temporal phase needed to learn the evolved representations over the sequence of 

the snapshots. 
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3.3. The Temporal Phase 

 

According to the real-world evolving nature, knowledge evolves over time where the relationships 

between entities may change over time [44]. This dynamic topology calls for learning the evolved 

characteristics of knowledge over time and aggregate information of the nodes and relations from their 

past states for KGC. 

To obtain the evolved representation along the temporal sequence of snapshots, GRU [45] utilized. 

For each entity 𝑒𝑖 ∈ ℰ, the evolved temporal representation 𝐄𝐢 obtained as described in Eq. (5): 

𝐄𝐢 = 𝐺𝑅𝑈(𝐄𝐢
𝑡, 𝐄𝐢

𝑡−1) (5) 

where 𝐄𝐢
t ∈ ℰ′𝑡, is the semantic-structural representation of 𝑒𝑖 at t. The evolved representations of 

relations (i.e., R) are also obtained using GRU. 

 

3.4. The Scoring Phase 

 

The concern was predicting missing links in TKG. In this sub-section, we define the score function 

employed in our model to score candidate entities, which supervises the training of the loss function. The 

score function for candidate entities to be an object in a knowledge triplet is Se, defined in Eq. (6): 

𝑆𝑒 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐄 𝑑𝑒𝑐(𝑣′𝑠, 𝑣′𝑟)) (6) 

where 𝑣′𝑠, 𝑣′𝑟 are 𝑒𝑠 and r representation in E and R, respectively; dec(·) is ConvTransE [46] decoder 

which inspired by [38]; Se ∈ ℝℰ×𝑑; and Se𝑖 ∈ [0,1]. We computed the cross-entropy loss, supervised by 

Se for entity prediction in Eq. (7): 

ℒ𝑒 = ∑ ∑ 𝑦(𝑒𝑠,𝑟,𝑒𝑜),𝑖𝑙𝑜𝑔(𝑆𝑒𝑖)
|ℰ|
𝑖=1 + ((1 − 𝑦(𝑒𝑠,𝑟,𝑒𝑜),𝑖)𝑙𝑜𝑔(1 − 𝑆𝑒𝑖))(𝑒𝑠,𝑟,𝑒𝑜)∈ℱ𝑡

 (7) 

where 𝑦(𝑒𝑠,𝑟,𝑒𝑜),𝑖 in Eq. (7) is the ith entity label; having 𝑦(𝑒𝑠,𝑟,𝑒𝑜),𝑖 equals 1 if the entity belongs to the 

triplet and equals 0 if not. 

 

4. Experimental Details and Results Analysis 

 

The evaluation of JF-KGC for KGC is conducted through deducing incomplete facts with missing 

entities. Subsequently, the missing part in the fact substituted with every entity in ℰ to compute their 

scores using Eq. (6).  In the following subsections, we pose the evaluation setup including employed 

datasets description, the metrics of evaluation, and the parameters setting details, the evaluation results 

along with a detailed analysis for the results compared to the baseline completion models, analysis of the 

model performance, and ablation studies for quantifying the contribution of each feature type. 

 

4.1. Evaluation Setup 

 

4.1.1. Dataset 

 

The necessity of the encapsulation of semantic definitions, rich structures, and timestamps forces our 

experiment to be conducted upon YAGO11k and Wikidata12k datasets. Both datasets are commonly 

employed for evaluating graph structural-based and temporal-based completion models in literature, as 

can be clarified from Table 1. For the semantics of entities and relations, the definitions are acquired 
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from Wikipedia summaries. YAGO11k is derived from the benchmark YAGO3 [47], with 10,623 entity, 

10 relations, and 20,507 facts. Wikidata12k is derived from Wikidata [48] with 12,544 entity, 24 relation, 

and 40,621 facts. Both entities’ names and definitions are considered. Only the year value is considered 

in the time stamps. For the facts with interval time stamps, only the start dates were considered. The 

datasets are divided into temporal snapshots of one year time interval.  

Through the experiments, the datasets divided into 80%, 20% and 20% as shown in Table 3. The 

statistical description of the two datasets is also summarized in Table 3. The distributions of facts over 

time of YAGO11k and Wikidata12k shown in Figure. 3 reveal a long-tail problem in which most facts 

are distributed in fewer timestamps and most stamps contain fewer facts. 

 

4.1.2. Evaluation Metrics 

 

JF-KGC evaluated using the two popular evaluation metrics in KGC scope: 

• Mean Reciprocal Rank (MRR): It is the average of the reciprocal rank of correct predicted fact 

among the set of corrupted candidates in the test set. 

• Hits@k: It is the proportion of times in which the correct predicted fact appears within the k-

top ranked predictions. 

Table 3 A Summary of Datasets Description 
 

Dataset Triplets  Entities  Relations  Training  Validation  Testing  

YAGO11k 20,507 10,623 10 16,406 2050 2051 

Wikidata12k 40,621 12,554 24 32,497 4062 4062 

 

 
 

Figure. 3: Facts distribution over time in (a) YAGO11k , and (b) Wikidata12k based on facts begin 

 

4.1.3. Parameters Setting 

 

For semantic embedding using BERT; BERTBASE adopted; Sequence length=512; batch size=32; and 

d=768. For R-GCN, layers count=2; dropout rate=0.2. For ConvTransE, number of filters=50; and 

dropout rate=0.2. Adaptive Moment Estimation (Adam) optimizer employed. The learning rate is set to 

0.001. The parameters were selected experimentally. 

 

4.2. Evaluation Results and Comparative Discussion 

 

We ran our model on YAGO11k and Wikidata12k for evaluation and assessment. The evaluation 

results presented in Table 4 in terms of MRR and Hits@k are the average results of predicting missing 



JOINT FEATURES-BASED KNOWLEDGE GRAPH COMPLETION     97 

head entity and missing tail entity. The dashes indicate that the results are not reported and cannot be 

obtained.  The bold values represent the best overall, and the underlined represent the runner up. We 

compare our model against the completion baselines that are oriented with link prediction task, with 

similar experimental setup: 

(i) One feature-based KGC models, which are: RotatE [25], HyTE [33], TTransE [34], TA-

DistMult [35], ATiSE [36], and LGRe [37], presented in Table 4. 

(ii) Two feature-based KGC models, which are: ATGIE [39], THOR [40], and TELS [27], 

presented in Table 4. 

All models are reviewed in Section 2. As shown in Table 4, JF-KGC accomplishes improvements 

over the baseline completion models for both datasets. In terms of MRR, JF-KGC outperforms the best 

model in (i) family by 13.4% on YAGO11k and 7.3% on Wikidata12k outperforms the best model in (ii) 

family by 2.8% and 2.7% on YAGO11k and Wikidata12k, respectively. Our model surpasses the average 

MRR of (i) family by 22.35%, and the average MRR of (ii) family by 11.43% on YAGO11k. It can be 

observed from Figure. 4 that (ii) family models, which utilize a combination of two types of features 

(i.e., either textual semantics and temporal features or graph topology and temporal features) in the 

embedding and completion learning outperforms with a margin (i) family models, in which only one 

feature type considered in the embedding and completion learning, in terms of MRR and Hits@1. 

However, JF-KGC which utilizes the three types of features, outperforms both families, on both datasets. 

Also, it can be clearly noticed in Figure. 4 the existence of positive correlation between the count of 

utilized knowledge features in completion process and the evaluation results, proving the crucial role of 

the utilization of the textual semantics, graph structural, and temporal features. Moreover, the results 

achieved on YAGO11k and Wikidata12k despite the long-tail effect shown in Figure. 3, prove the 

efficiency of hybrid representation by JF-KGC. 

 
Table 4 Evaluation on YAGO11k and Wikidata12k in Terms of The Percentage of Hits@1, Hits@3, Hits@10, and MRR 

 

Dataset YAGO11k Wikidata12k 

Metric Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR 

RotatE [25] 0.103 0.167 0.305 0.167 - - - - 

HyTE [33] 0.033 - 0.298 0.136 0.147 - 0.483 0.253 

TTransE [34] 0.020 0.150 0.251 0.108 0.096 0.184 0.329 0.172 

TA-DistMult [35] 0.098 - 0.267 0.155 0.130 - 0.461 0.230 

ATiSE [36] 0.121 0.197 0.319 0.187 0.198 0.329 0.507 0.299 

LGRe [37] 0.188 0.274 0.402 0.258 0.341 0.491 0.642 0.440 

ATGIE [39] 0.155 0.232 0.357 0.223 - - - - 

THOR [40] 0.186 0.263 0.359 0.246 - - - - 

TELS [27] 0.280 0.404 0.525 0.364 0.370 0.543 0.674 0.486 

JF-KGC 0.346 0.417 0.564 0.392 0.462 0.588 0.693 0.513 
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Figure. 4: The average MRR and Hits@1 (percentage) of (i) one feature-based KGC models, (ii) two feature-based KGC 

models, and JF-KGC on YAGO11k 

 

4.3. Analysis 

 

In this subsection, we provide deep analysis to evaluate JF-KGC performance. A comparative analysis 

of JF-KGC complexity is conducted and the generalization and robustness of JF-KGC is evaluated. 

Moreover, the sequential fusion strategy employed in JF-KGC is empirically analyzed. 

 

4.3.1. Complexity Analysis 

 

To further assess JF-KGC, a comparative analysis is conducted of the space complexity required to 

train JF-KGC against competitors. Table 5 shows the obtainable space computational complexity of 

KGC baselines and JF-KGC, where 𝑑 is the embedding dimension, 𝑛ℰ, 𝑛ℛ, and 𝑛𝑡 are the number of 

entities, relations and timestamps in the KG. Comparative analysis shows that while our model 

incorporates multiple feature types (i.e., semantic, structural, and temporal), space complexity remains 

competitive due to the sequential refinement strategy.  

 

4.3.2. Generalization and Robustness Analysis 

 

The evaluation of KGC model performance to unseen data is necessary to judge the generalizability of 

the proposed model to other graph types, while the evaluation of model performance against noise and 

sparsity is necessary to judge the model robustness. To evaluate the generalization and robustness of JF-

KGC, YAGO11k is employed. For generalization evaluation, facts are transferred into two equal parts 

from the training set into testing and validation sets following [49]; to be unseen during the model 

training. The percentages of the randomly removed facts during the experiments are 10%, 20%, and 

30%. 

 
Table 5 Comparative Summary of JF-KGC Space Complexity Against Baseline Models 

 

Model Complexity 

RotatE [25] 𝑂(𝑑(𝑛ℰ + 𝑛ℛ)) 

HyTE [33] 𝑂(𝑑(𝑛ℰ + 𝑛ℛ + 𝑛𝑡)) 

TTransE [34] 𝑂(𝑑(𝑛ℰ + 𝑛ℛ + 𝑛𝑡)) 

TA-DistMult [35] 𝑂(𝑑(𝑛ℰ + 𝑛ℛ + 𝑛𝑡)) 

ATiSE [36] 𝑂(𝑑(𝑛ℰ + 𝑛ℛ)) 

LGRe [37] 𝑂(𝑑(𝑛ℰ + 𝑛ℛ + 𝑛𝑡)) 
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THOR [40] 𝑂(𝑑(𝑛ℰ𝑛𝑡 + 𝑛ℛ)) 

JF-KGC 𝑂(𝑑(𝑛ℰ + 𝑛ℛ + 𝑛𝑡)) 

 

For evaluation of robustness against sparsity, 25%, 50, and 75% of the facts are removed through the 

experiments to create sparsity, while the same proportion of facts are inserted to create noise for 

robustness against noise evaluations. The evaluation results of generalization and robustness are shown 

in Figure. 5 and Figure. 6, respectively. The model’s performance gradually decreases, showing slight 

sensitivity to unseen facts, noise, and sparsity. However, JF-KGC maintains its superiority over KGC 

models in (i) family and most of the models in (ii) family even under extreme noise, sparsity and unseen 

facts. We attribute this to the ability of multi-feature fusion to compensate for the lack of information. 

 

4.3.3. Fusion Analysis 

In JF-KGC, we followed a sequential refinement-based strategy to fuse semantic, structure, and 

temporal features. To verify the efficiency of the applied fusion strategy, an experiment is conducted on 

YAGO11k and Wikidata12k to explore JF-KGC with simple concatenation fusion.  The results are 

illustrated in Table 6, where JF-KGCSC stands for JF-KGC with simple concatenation for features fusion 

and JF-KGCSR stands for JF-KGC with sequential refinement for features fusion. As shown in Table 6, 

the JF-KGCSR surpasses JF-KGCSC with margin. 

 

 
 

Figure. 5: The achieved MRR and Hits@1 across the evaluation of generalization on YAGO11k 

 

 

 
 

Figure. 6: The achieved MRR across the evaluation of robustness against noise and sparsity on YAGO11k 
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Table 6 Evaluation of Fusion Strategy on YAGO11k and Wikidata12k 
 

Dataset YAGO11k Wikidata12k 

Metric Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR 

JF-KGCSC 0.198 0.235 0.269 0.203 0.244 0.333 0.462 0.324 

JF-KGCSR 0.346 0.417 0.564 0.392 0.462 0.588 0.693 0.513 

 
Table 7 Ablation Studies on YAGO11k Benchmark 

 

Variation Hits@1 Hits@3 Hits@10 MRR 

w/o-Descriptions 0.237 0.296 0.364 0.289 

w/o- Structures 0.187 0.227 0.293 0.244 

w/o- Temporals 0.213 0.248 0.322 0.263 

JF-KGC 0.346 0.417 0.564 0.392 

 

4.4. Ablation Study 

 

In order to demonstrate and quantify the impact of each feature type to the model's performance, we 

conducted ablation studies on YAGO11k dataset. The ablation studies involve eliminating each of the 

features discussed in Section 1, at once. We demonstrate the elimination results in Table 7 and discuss 

the contribution of each. 

 

4.4.1. Elimination of Textual Description Features 

 

The textual semantics were captured from the description sentences of entities and relations using pre-

trained BERT to be fed further for structural refinement. Understanding the language semantics and 

contextual meaning were beneficial to predict missing knowledge, achieving improvements over the 

results by 10.3% in terms of MRR, 10.9% Hits@1, 12.1% Hits@3, and 20.0% Hits@10. 

 

4.4.2. Elimination of Graph Structural Features  

 

The graph topology of the occurring facts at each time stamp captured using R-GCN, which was 

initialized with the semantic embedding of entities and relations to be refined with neighboring 

information. Understanding the connectivity patterns of facts at each time stamp improved the results by 

14.8%, 15.9%, 19.0%, and 27.1% in terms of MRR, Hits@1, Hits@3, and Hits@10, respectively.  

 

4.4.3. Elimination of Temporal Features 

 

The evolution of knowledge representation over time captured using GRU by feeding GRU with the 

sequential historical representation of knowledge through the historical occurrences over time. 

Considering the temporal variation in knowledge representation improved the results by 12.9% in terms 

of MRR, 13.3% Hits@1, 16.9% Hits@3, and 24.2% Hits@10. 

 

5. Conclusion 

 

Joint Features-based Knowledge Graph Completion (JF-KGC) model is novel proposed. The model 

acquires the definitions of entities and relations to encode their semantics, on each temporal snapshot in a 

TKG, using a pre-trained LM (i.e. BERT). For each snapshot, the semantic embeddings fed into 
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multilayer R-GCN to refine the semantic embeddings with potential structural embeddings. Finally, the 

refined embeddings on each snapshot fed into GRU to obtain the evolved representations over the 

snapshots. ConvTransE decoder employed to compute the score of candidates and the computed score 

supervises a cross-entropy loss for link prediction. Experiments were conducted over two temporal 

benchmark KGs, YAGO11k and Wikidata12k. The acquired semantic definitions gathered from 

Wikipedia. The model achieved MRR equals to 39.2%, Hits@1 equals to 34.6%, Hits@3 equals to 

41.7%, and Hits@10 equals to 56.4% on YAGO11k dataset. The model achieved MRR equals to 51.3%, 

Hits@1 equals to 46.2%, Hits@3 equals to 58.8%, and Hits@10 equals to 69.3% on Wikidata12k 

dataset. The experiments show that JF-KGC outperforms the baseline models, proving the crucial rule of 

leveraging textual semantics, topological, and temporal features of KGs. In future, the outcome of other 

techniques and methods in the followed sequential hybridization approach over the performance of the 

model are yet to be investigated, as well as other features’ hybridization approaches such as weighted 

embeddings’ combination, and parallel training-based approaches. We plan to investigate the possibility 

and scenarios of domination or redundancy of specific features. We aspire to handle non-eventual facts 

and to advance the handling of facts with temporal intervals. Moreover, further investigation of the 

model performance under long-tail and sparse relations are yet to be carried out. 
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