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GALERKIN METHOD FOR THE NUMERICAL SOLUTION OF

SINGULAR BOUNDARY VALUE PROBLEMS USING

BERNOULLI WAVELETS

L. M. ANGADI

Abstract. Singular two-point boundary value problems for ordinary dier-

ential equations are commonly encountered in various elds of science and en-

gineering. The numerical solution of these singular boundary value problems

(SBVPs) is often challenging due to the presence of singularities in the equa-

tions. Wavelets are wave-like oscillations with amplitude that begins at zero

and it two basic properties: scale and location. Scale denes how stretched

or squished a wavelet is. This property is related to frequency as dened for

waves. Location denes where the wavelet is positioned in time. Wavelets en-

able the decomposition of complex information, such as music, speech, images,

and patterns, into simpler components at various positions and scales, which

can then be accurately reconstructed. This paper presents a Galerkin method

for solving SBVPs numerically using Bernoulli wavelets. It includes numerical

examples that illustrate the method’s accuracy, applicability, and usefulness.

The ndings indicate that the method is highly eective, straightforward, and

easy to implement.

1. Introduction

Many problems in the physical and engineering sciences are often modeled using
singular boundary value problems (SBVPs), which are a signicant class of bound-
ary value problems. The majority of the times, analytical methods are not always
able to provide solutions for SBVPs. In reality, this technique is nearly impossible
to solve for many real-world physical phenomena; instead, a variety of approximate
and numerical methods must be used [13]. An extensive number of authors have
contributed to the solution of this class of problems. A Numerical method [9], Le-
gendre wavelet method [10], Hermite wavelet method [14], Laguerre Wavelet based
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Galerkin Method [2], Hermite Wavelet Based Galerkin Method [3], and other novel
approaches and methods have enhanced the scientic literature.
Spectral methods, particularly Chebyshev spectral methods, are often used to solve
singular boundary value problems, which are dierential equations with singular-
ities in the boundary conditions or coecients. These methods approximate the
solution and its derivatives using spectral basis functions, such as Chebyshev poly-
nomials, which are well-suited for handling such singularities [8].
Wavelet-based methods oer a powerful approach to solving singular boundary
value problems (SBVPs) by leveraging the properties of wavelets to handle the sin-
gularities and discontinuities often present in such problems. These methods, like
the Wavelet Galerkin method transform the dierential equations into a system of
algebraic equations, making them easier to solve numerically [15].
Wavelets have attracted a lot of attention because of their broad mathematical ca-
pabilities and strong application in a variety of numerical problems. Furthermore,
it can observe that spectral bases have global support but innite dierentiability,
while the basis function used in the nite element method (FEM) has a less compact
support and an extremely weak continuity property. Similarly, FEM performs well
in terms of spatial localization while spectral methods perform poorly in terms of
spectral localization. Additionally, the unique benets of both spectral and FEM
bases are fullled by wavelet basis. An alternative to conventional piecewise poly-
nomial trial functions in the analysis of dierential equations using nite element
methods is the investigation of wavelet function bases. Due to its practicality and
ease of use, the Galerkin method is well known in the eld of applied mathematics
[1, 12].
In wavelet frameworks, the Galerkin method is often favoured over collocation or
least-squares methods because it excels in managing complex problems and preserv-
ing accuracy, particularly with high-order equations or irregular shapes. Although
collocation methods are easier to compute, they can face challenges with accuracy
and stability in complicated situations. Least-squares methods are exible but may
demand more computational resources and can be less ecient than Galerkin in
certain cases. The Galerkin method works by discretizing the dierential equation
through the projection of the residual onto a test function space, usually employing
wavelets as the basis functions. This technique results in a system of equations
that can be solved numerically to approximate the solution of the dierential equa-
tion. Galerkin method are to introduce a trial solution as a linear combination of
basis functions, choose weight functions, take the inner product of the residual and
weight functions to generate a system of equations for the unknown coecients,
and solve this system to obtain the approximate solution.
The wavelet-Galerkin method is a popular technique in many scientic and engi-
neering domains due to its notable advantages over the nite dierence and nite
element methods. In certain situations, the wavelet technique oers a convincing
substitute for the nite element method, providing a practical way to solve SBVPs.
Bernoulli wavelets are well-suited for analyzing functions with discontinuities and
sharp edges. These wavelets often possess compact support and orthogonality, mak-
ing them suitable for various applications.
The study presents the BWGM approach to numerically solving SBVPs. This ap-
proach uses Bernoulli wavelets with unknown coecients to represent the solution.
Then, the Galerkin method and the properties of Bernoulli wavelets are used to
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compute these coecients and produce a numerical solution for the SBVPs.
The paper’s outline is as follows: Section 2 presents Bernoulli wavelets and their
function approximation. Section 3 discusses the Galerkin method for solving SB-
VPs, which is based on Bernoulli wavelets. The numerical illustration has showed
in Section 4. Lastly, a discussion of the ndings from the suggested research is
provided in Section 5.

2. Bernoulli wavelets and Function approximation

Wavelets: Wavelets constitute a family of functions constructed from dialation
and translation of a single function ψ(x) called mother wavelet [5, 11]. When the
dialation parameter a and translation parameter b varies continuously, we have the
following family of continuous wavelets:

ψa,b(x) = |a|−1
2 ψ(

x− b

a
) ∀a, b ∈ R, a ̸= 0.

If we restrict the parameters a and b to discrete values as a = a−k
0 ,b = nb0a

−k
0 ,a0 >

1,b0 > 1.We have the following family of discrete wavelets

ψk,n(x) = |a|−1
2 ψ(ak0x− nb0) ∀a, b ∈ R, a ̸= 0.

ψk,n form a wavelet basis for L2(R). In particular, when a0 = 2 and b0 = 1, then
ψk,n(x) forms an orthonormal basis.
Bernoulli wavelets: The Bernoulli wavelets ψn,m(x) = ψn,m(k, n̂,m, x) have four
arguments n̂ = n − 1, n = 1, 2, 3, ...2k−1, k can be any positive integer, m is the
degree of the Bernoulli polynomials and x is the normalized time. They are dened
on the interval by [6]

ψn,m(x) =


2k−1B̃m(2k−1x− n̂), n̂

2k−1 ≤ x ≤ n̂+1
2k−1

0, otherwise.
(1)

where

B̃m(x) ==





1
(−1)m−1(m!)2α2m

(2m!)

Bm(x), m > 0

1, m = 0

also, m = 0, 1, 2, 3, ...,M − 1 and the coecient 1
(−1)m−1(m!)2B2m

2m!

is used for or-

thonormal condition. Here Bm(x) are the Bernoulli polynomials of order m, which
are dened on the interval as

Bm(x) =

m

j=0


m
i


αm−jx

j (2)

where Bj = Bj(0), j = 0, 1, 2, ...,m are Bernoulli numbers.
The rst few Bernoulli polynomials are: B0(x) = 1, B1(x) = x − 1

2 , B2(x) = x2 −
x+ 1

2 , ...
Bernoulli polynomials form a complete basis over the interval with the following
condition:  1

0

Bm(x)Bn(x)dx = (−1)n−1 (m!)(n!)

(m+ n)!
Bm+n,m, n ≥ 1 (3)
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For instance, k = 1 and M = 3, we get the Bernoulli wavelet bases as follows:

ψ1,0(x) = 1,

ψ1,1(x) =
√
3(2x− 1),

ψ1,2(x) =
√
5(6x2 − 6x+ 1) and so on.

Function approximation:
Suppose y(x) ∈ L2[0, 1) is expanded in terms of Bernoulli wavelets as:

y(x) =

∞

n=1

∞

m=0

cn,mψn,m(x) (4)

Truncating the above innite series, we get

y(x) =

2k−1

n=1

M−1

m=0

cn,mψn,m(x) (5)

3. Method of solution

Consider the SBVP in the following form,

y” + P (x)y′ +Q(x)y = f(x) (6)

with boundary conditions

y(a) = α, y(b) = β (7)

where the functions P (x), Q(x) and f(x) are analytic in x ∈ (0, 1] and the functions
P (x) and Q(x) are not analytic for x = 0 i.e. Singularity at x = 0. Rewrite
the Eq. 6 when R(x) = 0, for the exact solution, y(x) only which satised the
given boundary conditions. The trial series solution of Eq. 6, within the range of
(0,1], meets the specied boundary conditions and can be expanded to a modied
Bernoulli wavelet by introducing unknown parameters in the process as follows:

y(x) =

2k−1

n=1

M−1

m=0

cn,mψn,m(x) (8)

The unknown coecients cn,m’s, which are to be determined, The precision of
the solution is improved by choosing higher degree Bernoulli wavelet polynomials.
Compute the second derivative, w.r.t. x from Eq. 8 to determine the values y, y′, y”,
then enter these values into Eq. 7. Use weight functions as the assumed basis
elements to solve for the unknown coecients, then integrate the residual and
boundary values to get zero [7]

i.e.

 1

0

ψ1,m(x)R(x)dx = 0, m = 0, 1, 2, ...

From the above equation, a system of linear algebraic equations can be derived
involving unknown coecients and can be found by solving them. After nding
these unknowns and substitute these in Eq. 8, to determine the numerical solution
for Eq. 6. To evaluate the BWGM’s accuracy on the test cases, we use the max-
imum absolute error as an error metric. Here are the formulas for calculating the
(i) maximum absolute error, (ii) L2-norm, (iii) L∞-norm.
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(1) Maximum absolute error = Emax = max|y(x)e − y(x)n|, where y(x)e and
y(x)n are exact and numerical solution.

(2) L2 − norm = ||n
m=1 E

2
m|| 12 .

(3) L∞-norm = ||Max(Em)||,m = 1, 2, ..., 9

4. Numerical Illustration

Problem 4.1 First, consider the SBVP [4],

y” +
1

x
y′ + y = x2 − x3 − 9x+ 4, 0 ≤ x ≤ 1 (9)

and boundary conditions:

y(0) = 0, y(1) = 0 (10)

Here, P (x) = 1
x , Q(x) = 1, and f(x) = x2 − x3 − 9x + 4. At x = 0, P (x) is

not analytic. Therefore, the given equation is SBVP. The Eq. 9 is implemented
according to the procedure outlined in section 3 in the following manner: The
residual of Eq. 9 can be written as:

R(x) = xy” + y′ + xy − (x3 − x4 − 9x2 + 4x) (11)

Subsequently, the appropriate weight function w(x) = x(x− 1) must be chosen for
Bernoulli wavelet bases to satisfy the prescribed boundary conditions Eq. 10.

ψ1,0(x) = ψ1,0(x)× x(1− x) = x(1− x)

ψ1,1(x) = ψ1,1(x)× x(1− x) =
√
3(2x− 1)x(1− x)

ψ1,2(x) = ψ1,2(x)× x(1− x) =
√
5(6x2 − 6x+ 1)x(1− x)

Assuming the trial solution of Eq. 9 for k = 1 and m = 2 is given by

y(x) = c1,0ψ1,0(x) + c1,1ψ1,1(x) + c1,2ψ1,2(x) (12)

Then the Eq. 12 becomes

y(x) = c1,0x(1− x)+c1,1
√
3(2x− 1)x(1− x)+c1,2

√
5(6x2 − 6x+ 1)x(1− x) (13)

By dierentiating Eq. 13 twice with respect to the variable and substituting the
corresponding values into Eq. 11 then obtain the residual of Eq.9. The ”weight
functions” are the same to the basis functions.
Subsequently, employing the weighted Galerkin method, we examine the following

 1

0

ψ1,j(x)R(x)dx = 0, j = 0, 1, 2 (14)

For j = 0, 1, 2 in Eq.14,
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 1

0

ψ1,0(x)R(x)dx = 0 (15)

 1

0

ψ1,1(x)R(x)dx = 0 (16)

 1

0

ψ1,2(x)R(x)dx = 0 (17)

Using Eq. 14, it is possible to derive a system of algebraic equations with un-
known coecients, specically c1,0, c1,1, and c1,2. The values of c1,0 = 0.4995,
c1,1 = 0.2889, and c1,2 = −0.0002 can be obtained by solving this using Gaussian
elimination or any other technique. These values are entered into Eq. 13 then the
numerical solution for Eq. 9 is obtained. Table 1 compares the BWGM and the
absolute errors and Table 2 compare for error norms L2, L∞ to compare with exact
solutions, while the BWGM and the exact solution of Eq. 9 y(x) = x2 − x3 are
shown in Figure 1.

Table 1. Comparison BWGM and absolute error with the exact
solution for problem 4.1

x FDM Sol. Ref. [2] Sol. BWGM Sol. Exact Sol. FDM error Ref. [2] error BWGM error

0.1 -0.014709 0.009677 0.008908 0.009000 2.37e-02 6.77e-04 9.20e-05

0.2 -0.013726 0.032675 0.031880 0.032000 4.57e-02 6.75e-04 1.20e-04

0.3 -0.002584 0.063354 0.062887 0.063000 6.56e-02 3.54e-04 1.10e-04

0.4 0.015387 0.095981 0.095987 0.096000 8.06e-02 1.90e-05 1.13e-05

0.5 0.036564 0.124731 0.124931 0.125000 8.84e-02 2.69e-04 6.90e-05

0.6 0.056572 0.143688 0.143946 0.144000 8.74e-02 3.12e-04 5.40e-05

0.7 0.070066 0.146841 0.146952 0.147000 7.69e-02 1.59e-04 4.80e-05

0.8 0.070568 0.128089 0.127955 0.128000 5.74e-02 8.90e-05 4.50e-05

0.9 0.050294 0.080862 0.080965 0.081000 3.07e-02 1.38e-04 3.50e-05

Problem 4.2 Next, consider another SBVP [4],

y” +
8

x
y′ + xy = x5 − x4 + 44x− 30x, 0 ≤ x ≤ 1 (18)

and boundary conditions:

y(0) = 0, y(1) = 0. (19)

Here, P (x) = 8
x , Q(x) = x, and f(x) = x5 − x4 + 44x2 − 30x. At x = 0, P (x) is

not analytic. Therefore, the given equation is SBVP. Both in the previous problem
and in section 3, the values of c1,0 = −0.3334, c1,1 = −0.2886, and c1,2 = −0.0746
are determined. By putting these numbers in Eq. 12 then reach the numerical
solution for Eq. 18. Table 3 presents the comparison between BWGM and the
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Table 2. Comparison for error norms L2, L∞ to compare with
exact solutions for problem 4.1

Method L2norm L∞norm

FDM 1.98e-01 8.84e-02

Ref. [2] 1.10e-03 6.77e-04

BWGM 1.98e-04 1.20e-04

Figure 1. Comparison of BWGM with exact solution of the prob-
lem 4.1.

absolute errors and Table 4 compare for error norms L2, L∞ to compare with exact
solutions, Figure 2 shows the contrast between BWGM with the exact solution of
Eq. 18 y(x) = x4 − x3.

5. Conclusions

In this work, the Galerkin method based on Bernoulli wavelets is presented for
the numerical solution of SBVPs. As can be seen from the tables and gures above,

• The suggested approach produces numerical solutions that are closer to
the exact solution than those produced by the nite dierence method
(FDM) and other current methods (Ref [2]: Laguerre wavelets and Ref [4]-
Fibonacci wavelets).
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Table 3. Comparison of BWGM and absolute with the exact so-
lution for problem 4.2.

x Ref. [2] Sol. Ref. [4] Sol. BWGM Exact Sol. Ref. [2] error Ref.[4] error BWGM error

0.1 -0.000823 -0.000937 -0.000921 -0.000900 7.70e-05 3.70e-05 2.10e-05

0.2 -0.004844 -0.006426 -0.006424 -0.006400 1.56e-03 2.60e-05 2.40e-05

0.3 -0.016861 -0.018899 -0.018901 -0.018900 2.04e-03 1.00e-06 1.00e-06

0.4 -0.037304 -0.038381 -0.038407 -0.038400 1.10e-03 1.90e-05 7.00e-06

0.5 -0.062986 -0.062482 -0.062499 -0.062500 4.86e-04 1.80e-05 1.00e-06

0.6 -0.087854 -0.086406 -0.086395 -0.086400 1.45e-03 6.00e-06 5.00e-06

0.7 -0.103744 -0.102944 -0.102895 -0.102900 8.44e-04 4.40e-05 5.00e-06

0.8 -0.101131 -0.102477 -0.102399 -0.102400 1.27e-03 7.70e-05 1.00e-06

0.9 -0.069880 -0.072976 -0.072903 -0.072900 3.02e-03 7.60e-05 3.00e-06

Table 4. Comparison for error norms L2, L∞ to compare with
exact solutions for problem 4.2

Method L2norm L∞norm

Ref [2] 4.60e-03 3.00e-03

Ref [4] 1.28e-04 7.70e-05

BWGM 3.36e-05 2.40e-05

• In contrast to FDM and the existing methods (Ref [2]: Laguerre wavelets
and Ref. [4]- Fibonacci wavelets), the margin of error that results from this
approach is signicantly smaller.

• Also, error norms L∞, L2 of the proposed method is smaller as compared
to FDM and the existing methods (Ref. [2]: Laguerre wavelets and Ref.
[4]- Fibonacci wavelets).

Thus, the Galerkin method has shown great success in solving singular boundary
value problems (SBVPs) through the use of Bernoulli wavelets.
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