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TRANSIENT MOVEMENT OF A HYDROPHOBIC PARTICLE IN

A CAVITY CONTAINING A BRINKMANN MEDIUM

M.S. FALTAS, E.I. SAAD, H.H. SHERIEF, A.S.AAMER

Abstract. This study investigates the transient motion of a hydrophobic col-

loidal spherical particle within a concentric cavity lled with a polymer gel,

under low Reynolds number conditions. The polymer gel is modeled as a

porous medium with a specied permeability, determined through experimen-

tal measurements. Fluid movement within the porous matrix is induced by a

sudden application of a steady body force along the line connecting the par-

ticle and cavity centers. The transient Brinkman equation governs the uid

dynamics within the cavity and is analytically solved using the Laplace trans-

form method. The study highlights the long-range hydrodynamic interactions

between the colloidal particle and the surrounding polymer gel medium, lead-

ing to an analytical expression for the transient velocity of the particle as a

function of key system parameters. This work provides insight into particle

mobility in polymer gels, with implications for applications in controlled drug

delivery and biocompatible material design.

1. Introduction

When an external force eld is suddenly imposed on a suspension of colloidal
particles, the particles initiate motion characterized by a time-dependent transient
velocity. This velocity eventually stabilizes as time progresses towards innity.
The movements of minute particles within a porous medium, particularly at ex-
tremely low Reynolds numbers, remain a subject of widespread interest among
researchers across diverse elds including chemical, biomedical, mechanical, civil,
and environmental engineering. While many of these movements are fundamental
in nature, they contribute signicantly to our comprehension of various practical
systems such as sedimentation, agglomeration, electrophoresis, microuidics, cel-
lular motion within blood vessels [14, 17], suspension rheology, spray drying, and
aerosol technology.
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The complexity of the gel material arises from both the long-range hydrodynamic
interaction and the steric eect resulting from friction between the gel skeleton and
migrating particles: The short-range steric interaction arising from the friction be-
tween the particle and the gel. The signicance of the short-range eect becomes
pronounced when the ratio between the pore size of a gel polymer and the par-
ticle size is small. Conversely, if the ratio is large, the long-range hydrodynamic
eect takes precedence. In dilute gel situations, where the particle’s dimensions
are signicantly smaller than those of the gel pores, the long-range hydrodynamic
interaction prevails. In this study, we focus on a dilute gel medium and analyze
the long-range hydrodynamic interaction between the particle and the polymer gel
medium using the Brinkman–Debye–Bueche model [8, 12]. Brady [5] introduced a
theory to explain hindered diusion through brous media, where the diusivity
ratio is determined by the multiplication of a hydrodynamic factor and a steric
factor. This model has been validated by various researchers, including Johansson
and Lofroth [24], Allison et al.[3], and others. Studies conducted by Allison et al.
[3], Tsai et al. [46], and Hsu et al. [23] have demonstrated that the short-range
steric eect in particle-polymer interactions can be accurately described by Brady’s
model [5].

Extensive research has been conducted on the movement of Newtonian uid
through porous materials, which holds signicant practical implications. The Brinkman
equation [8] often characterizes the viscous ow within such porous mediums, eec-
tively accounting for the interplay between pressure gradients and viscosity-induced
drag forces, alongside the damping eects originating from the porous structure.
Considerable focus has been dedicated over time to examining the dynamics of par-
ticles traversing porous media, as evidenced by studies[26, 35, 11, 43, 21, 6, 10, 16,
31, 19, 18].

While the fundamental equations governing the slow movements of particles
within viscous or porous mediums were primarily developed for steady-state con-
ditions, understanding their transient dynamics is equally signicant [32, 22, 20,
29, 30]. The comprehension of the temporal changes in particle velocity is relevant
to the practical applications of diverse movements in colloidal dynamics, spanning
from milliseconds to seconds in scale. [13, 47, 41, 40, 39, 38, 27, 36, 30, 28, 42, 4].
Conversely, investigations have been conducted on the transient responses of parti-
cle velocity following a sudden alteration in external force, considering both no-slip
and slip cases for solid particles or droplets [34, 25].

In this article, a semi-analytical approach is employed to examine the time-
dependent translational motion of a hydrophobic colloidal spherical particle in a
concentric position within a spherical cavity lled with polymer gel material, ex-
periencing a sudden application of a uniform body force eld along the diameter
connecting their centers. Slip behavior is permitted for the uid at both the particle
and cavity surfaces. The primary goal of this research is to broaden and generalize
the discoveries made by Yu and Keh [9] to include the porous medium case, with
particular attention was given to the impact of the Darcy-Brinkman model during
transient ow. To achieve this, Laplace transform techniques are utilized to solve
the time-dependent Brinkman equations governing uid velocity. In addition, the
study derives the rectilinear acceleration of the particle.
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A practical physical application of the present model could be in the design and
optimization of drug delivery systems, especially those involving hydrophobic col-
loidal particles encapsulated in a polymer gel matrix. In drug delivery, controlled
release of therapeutic agents is often desired, and this model helps simulate how
a drug-loaded colloidal particle would move within a polymer gel after being sub-
jected to external forces, which might represent body forces induced by external
magnetic, electric, or acoustic elds [15]. Since the gel in this model behaves as a
porous medium with specic permeability, it mimics a realistic physiological envi-
ronment where drugs are embedded in hydrogels or other porous materials. Such
simulations are valuable for designing drug carriers because they allow researchers
to predict how rapidly a particle will reach target tissue, how long it remains in
certain regions, and how it interacts with the surrounding medium. The analyt-
ical expression for transient velocity could aid in tuning parameters like particle
size, surface hydrophobicity, and gel permeability to optimize release proles and
targeting eciency [45, 33].

2. Unsteady Brinkman equation with initial and boundary conditions

Figure 1. Geometrical sketch for a slip-Brinkman ow between
hydrophobic spherical particle and cavity
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We examine the transient movement of a spherical colloidal particle with a radius
of a as it migrates concentrically within a spherical cavity of radius b, which is lled
with porous material. This porous medium is saturated with an incompressible
Newtonian uid, and its motion is induced by a sudden application of a body force,
as depicted in Fig.1. At the onset time, t = 0, a constant force FAe⃗z, where e⃗z
represents the unit vector in the z direction, is applied to the initially stationary
particle and persists thereafter. Here, the force FA could be the dierence between
the gravitational force and the buoyant force. We consider that both the surface
of the particle and the inner surface of the cavity are hydrophobic, hence we can
assume slip at their surfaces. In this study, we may regard the porous medium as
a polymer gel, under the assumption that long-range hydrodynamic eects occur.
This necessitates that the ratio between the pores of the gel and the particle size
is large, indicating that the gel medium is dilute.

Under low Reynolds number conditions NR(NR << 1), the velocity distribution
u⃗ and hydrodynamic pressure prole p of the uid are governed by the transient
Brinkman equation:

ρ

φ

∂u⃗

∂t
= µ∇2u⃗− µ

K
u⃗−∇p, (1)

along with the conservation of mass,

∇ · u⃗ = 0 (2)

Here ρ is the density of the uid, K is the permeability of the porous materiel,
µ is the eective viscosity and φ is the porosity. In general, µ is dierent from
µ. Brinkman equation (1) reduces to Darcy’s equation when µ → 0 and to the
Stokes equation when K → ∞. Breugem [7] suggested that the eective viscosity
µ is a function of the geometrical structure and the porosity of the porous medium.
However, many authors e.g. [10, 37] considered µ = µ. The spherical coordinate
system (r, θ,ϕ) places the center of the particle at the origin, with θ = 0 representing
the axis in the z direction with corresponding unit vectors (e⃗r, e⃗θ, e⃗ϕ). The ow
within the spherical cavity exhibits axial symmetry and is independent of ϕ.

The symmetrical nature of the ows allows us to establish stream function,
denoted as ψ, which is linked to velocity through the equation:

u⃗(r, θ) = ur e⃗r + uθ e⃗θ = −∇ ∧


ψ

r sin θ
e⃗ϕ


 (3)

It is important to observe that equation (3) is in accordance with the conservation
of mass stated in equation (2). By applying the curl operation to equation (1)
and utilizing equation (3), we derive the dierential equation governing the stream
function ψ as

E2


E2 − λ2 − 1

ν

∂

∂t


ψ = 0, (4)

with pore-average pressure gradient as

∇p = − µ
r sin θ


e⃗r
r

∂

∂θ
− e⃗θ

∂

∂r


E2 − λ2 − 1

ν

∂

∂t


ψ, (5)

where E2 ≡ ∂2

∂r2 + sin θ
r2

∂
∂θ


1

sin θ
∂
∂θ


is the Stokes operator, ν = φµ

ρ is the eective

kinematic viscosity, λ =


µ
µK is the permeability parameter characterizing the
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porous medium. To address the solution of (4), the initial and boundary conditions
must be specied.

The initial and boundary conditions for the volume-averaged velocity vector are

t = 0, u⃗ = 0 (6)

r = a : ur = U(t) cos θ, uθ + U(t) sin θ = β−1
1 Πrθ, (7)

r = b : ur = 0, uθ = β−1
2 Πrθ, (8)

where U(t) is the transient migration velocity of the spherical particle with U(0) = 0
to be determined, β1,β2 are, respectively, the sliding friction slip coecients of the
particle and cavity which are depend on the nature of particle and porous medium,
and Πrθ is the tangential stress tensor is given by

Πrθ = µ

r
∂

∂r

uθ

r
+

1

r

∂ur

∂θ


 (9)

We have also the expression of the normal stress as

Πrr = −p+ 2µ∂ur

∂r
 (10)

When β1 approaches 0, the particle’s surface experiences perfect slip, causing the
particle to resemble a spherical gas bubble. Conversely, the traditional no-slip
boundary condition for the particle and cavity is achieved by allowing β1 and β2

to approach innity.

3. Analysis

The initial and boundary conditions (6)-(9) imply a solution for (4) represented
as

ψ(r, θ, t) = g(r, t) sin2 θ (11)

The Laplace transform with respect to the time t for a function g(r, t) is dened as

ḡ(r, s) =

 ∞

0

g(r, t)e−stdt, (12)

where the transform is represented by placing a bar over the function and s is
the transform parameter. By substituting equation (11) into equation (4) and
subsequently applying the Laplace transform, we obtain


d2

dr2
− 2

r2


d2

dr2
− 2

r2
− ξ2


ḡ(r, s) = 0, ξ =


λ2 +

s

ν
, (13)

where we have used the initial condition (6). The boundary conditions (7), (8) are
transformed to:

ḡ = − 1
2r

2Ū , r = a, (14)

dḡ

dr
+ rŪ = b1


r2

d

dr

1

r2
dḡ

dr
+

2ḡ

r2


, r = a, (15)

ḡ = 0, r = b, (16)
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dḡ

dr
= b2


r2

d

dr

1

r2
dḡ

dr
+

2ḡ

r2


, r = b (17)

Here b1 = µβ1 and b2 = µβ2 are dimensional slip lengths. The general solution
of the fourth order dierential equation (13) can be written in the following form:

ḡ(r, s) =
A

r
+Br2 + C


1

r
+ ξ


e−ξr +D


1

r
− ξ


eξr (18)

The transformed pressure, normal stress and tangential stress are as follows:

p̄ = p0 − µξ2

A

r2
− 2B


cos θ, Π̄rr = µf̄1(r, s) cos θ, Π̄rθ = µf̄s(r, s) sin θ, (19)

where

f̄1(r, s) =


ξ2

r2
+

12

r4


A+ 2Bξ2r +

4C

r2
(3 + 3ξr + ξ2r2)e−ξr

+
4D

r4
(3− 3ξr + ξ2r2)eξr,

(20)

f̄2(r, s) =
6A

r4
+

C

r4
(ξ3r3 + 3ξ2r2 + 6ξr + 6)e−ξr

− D

r4
(ξ3r3 − 3ξ2r2 + 6ξr − 6)eξr,

(21)

and p0 is a constant. Inserting (18) into the transformed boundary conditions (14)-
(17), we obtain the following set of the four simultaneous equations for determining
the unknown constants A, B, C and D ,

A+Ba3 + C(η + 1)e−η −D(η − 1)eη =
−1

2
a3Ū , (22)

(6λ1 + 1)A−2Ba3 + C

λ1η

3 + (1 + 3λ1)η
2 + (1 + 6λ1)(η + 1)


e−η

−D

λ1η

3 − (1 + 3λ1)η
2 + (1 + 6λ1)(η − 1)


e−η = a3Ū ,


(23)

Aσ3 +Ba3 + σ2C(σ + η)e−η/σ + σ2D(σ − η)eη/σ = 0, (24)

σ3(1− 6σλ2)A− 2Ba3

+C

σ(σ2 + ση + η2)− λ2σ(6σ

3 + 6σ2η + 3ση2 + η3)

e−η/σ

+D

σ(σ2 − ση + η2)− λ2σ(6σ

3 − 6σ2η + 3ση2 − η3)

e−η/σ = 0,





(25)

where, η = aξ =


α2 + a2sν, α = aλ, λ1 = b1a, λ2 = b2a and σ = ab. Here
we document the expression of constant A, as it is the sole constant present in the
hydrodynamic drag force exerted on the particle:

A = −a3Ū(s)

2∆


(c1d3 − d1c3) + 2(c1d2 − d1c2)


, (26)

where

∆ = a1(c2d3 − d2c3)− c1(a2d3 − d2a3) + d1(a2c3 − c2a3), (27)
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and ai, ci, di, i = 1, 2, 3 are dened as shown in following expressions,

a1 =6λ1 + 3,

c1 =

λ1(6 + 6η + 3η2 + η3) + (3 + 3η + η2)


e−η,

d1 =

λ1(6− 6η + 3η2 − η3) + (3− 3η + η2)


eη,

a2 =σ3 − 1,

c2 =(σ3 + σ2η)e−η/σ − (1 + η)e−η,

d2 =(σ3 − σ2η)eη/σ − (1− η)eη,

a3 =2 + σ3 − 6σ4λ2,

c3 =

(σ3 + σ2η + ση2)− σλ2(6σ

3 + 6σ2η + 3ση2 + η3)

e−η/σ

+ 2(1 + η)e−η,

d3 =

(σ3 − σ2η + ση2)− σλ2(6σ

3 − 6σ2η + 3ση2 − η3)

eη/σ

+ 2(1− η)eη





(28)

3.1. The drag force acting on the particle. Due the axial symmetry of the
ow, the drag force acting on the spherical particle is only one force component in
the direction of the unit vector e⃗z ,its transformed version is given by

F̄h = 2πµa2
 π

0


f̄1(a, s) cos

2 θ − f̄2(a, s) sin
2 θ


sin θdθ (29)

Inserting (20) and (21) into (29) and using (22), we obtain

F̄h = 4
3πµξ2(3A+ a3Ū) (30)

The combined eect of the applied force and hydrodynamic drag acting on the
particle is equivalent to the multiplication of its mass and acceleration:

FA + Fh = 4
3πa

3ρs
dU

dt
, (31)

where ρs is the mass density of the particle. Replacing equation (31) in the Laplace
transform of equation (30) gives a formula detailing the particle’s migration re-
sponse to the abruptly applied force:

6πµa Ū

FA
=

9

2s


sa2

ν


ρ∗ + 3η2


(c1d3 − d1c3) + 2(c1d2 − d1c2)

2∆
− 1

3

−1

, (32)

where ρ∗ = φρsρ is the density ratio between the particle and uid.
The transient velocity of the particle U(t), can be determined numerically by

applying an inverse Laplace transform to the calculated formula (32) of Ū(s), [44,
2, 1].

3.2. The steady-state particle velocity. The velocity of the particle, U∞ as
t → ∞ can be calculated as

U∞ =
FA

4πaµα2


(c

′
1d

′
3 − d

′
1c

′
3) + 2(c

′
1d

′
2 − d

′
1c

′
2)

2∆′ − 1

3

−1

, (33)

where,

∆
′
= a

′
1(c

′
2d

′
3 − d

′
2c

′
3)− c

′
1(a

′
2d

′
3 − d

′
2a

′
3) + d

′
1(a

′
2c

′
3 − c

′
2a

′
3), (34)
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and a
′
i, c

′
i, d

′
i, i = 1, 2, 3 are the same as the expressions listed in (28) with η replaced

by α.

4. Results and Discussion

The transient velocity U(t) of a particle, momentarily located at the center of a
cavity lled with a gel medium, is calculated using the numerical inverse Laplace
transform of equation (32). This velocity is then scaled by the steady-state Stokes-
law value FA6πaµ, and plotted against various values of the scaled elapsed time
νta2, relative density ρ∗, the permeability parameter α of the porous medium, and
the non-dimensional slip length of the particle λ1 and λ2, respectively, in Figs 2-5.
Fig. 6 also exhibit the results of the normalized transient acceleration for the same
set of parameters.

Table 1 presents the normalized transient velocity 6πµaUFA of a hydrophobic
spherical particle inside a concentric spherical cavity lled with a Brinkman medium
under the inuence of a suddenly applied body force. The results are given for
dierent congurations of the permeability parameter α, the radius ratio σ, and the
scaled time νta2, assuming no-slip boundary conditions on both the particle and
cavity surfaces (λ1,λ2 = 0). A signicant observation from the table is the behavior
of the transient solution under extreme conditions. As the permeability parameter
approaches zero (α → 0), the Brinkman medium functions equivalently to a pure
Newtonian uid. As the radius ratio σ approaches zero (σ → 0), the cavity expands
innitely, allowing the particle to traverse an unbounded uid. This situation
pertains to the classical transitory motion of a solid particle within a transparent
uid, specically the scenario examined by Keh [9], in which the particle is an
impermeable sphere.

Conversely, when α approaches innity and σ approaches one (α → ∞, σ →
1), the Brinkman medium becomes exceedingly resistant (tending towards Darcy’s
law), and the cavity tightly connes the particle. This conguration corresponds
with the premises of Keh’s model for a completely contained solid particle within
a Brinkman medium. Notably, the values in the third column of Table 1 (α = 0,
σ → 0) converge precisely with those in the last column, which represent the
identical results documented by Keh. This agreement veries that our transient
model accurately replicates Keh’s solution as a specic instance in which the particle
is an impermeable sphere, hence oering robust validation for both the analytical
formulation and the numerical methodology.

Fig. 2 shows the variation of normalized transient velocity 6πµaUFA versus
the permeability parameter α for various values of the scaled elapsed time νta2

under conditions of perfect slip at the particle and cavity surfaces (λ1,λ2 → ∞).
The curves correspond to dierent values of elapsed time and relative density ρ∗,
with two representative values of ρ∗ = 02 (solid lines) and ρ∗ = 2 (dashed lines).
The x-axis is labeled with ”Stokes ow” on the left, corresponding to low α values
(low permeability, or nearly clear uid), and ”Darcian ow” on the right, where α
is large, indicating a highly porous medium with limited uid resistance. For both
values of relative density ρ∗, the normalized transient velocity 6πµaUFA decreases
with increasing α. Physically, this can be attributed to the eect of permeability
on uid ow resistance. At lower α values (Stokes ow regime), the uid ows
more freely around the particle, leading to higher velocities. As α increases, the
porous medium restricts uid movement, resulting in a reduction in the particle’s
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Table 1. Normalized transient velocity 6πµa U
FA

at various values

of elapsed time νta2, ρ∗ in the case of no-slip surfaces (λ1 =
0, λ2 = 0). The exact analytic results of Keh. [9] are represented
as α → ∞.

6πµa U
FA

νta2 ρ∗ α = 10, σ → 1 α = 5, σ = 05 α = 0, σ → 0 Keh [9]
νta2 = 03

0 0 0.0684 0.3712 0.3712

1 0 0.0684 0.3046 0.3046

2 0 0.0683 0.2535 0.2535

3 0 0.0678 0.2155 0.2156

4 0 0.0668 0.1869 0.1869

5 0 0.0655 0.1648 0.1648

6 0 0.0639 0.1472 0.1472

7 0 0.0622 0.1329 0.1329

8 0 0.0603 0.1211 0.1211

9 0 0.0585 0.1112 0.1112

10 0 0.0566 0.1028 0.1028

20 0 0.0414 0.0584 0.0584

νta2 = 1
0 0 0.0684 0.5545 0.5546

1 0 0.0684 0.5163 0.5163

2 0 0.0684 0.4773 0.4773

3 0 0.0684 0.4403 0.4404

4 0 0.0684 0.4067 0.4067

5 0 0.0684 0.3766 0.3767

6 0 0.0684 0.3500 0.3501

7 0 0.0684 0.3265 0.3265

8 0 0.0684 0.3057 0.3057

9 0 0.0683 0.2871 0.2872

10 0 0.0682 0.2706 0.2706

20 0 0.0653 0.1704 0.1704

νta2 → ∞
Steady state 0 0 0.0684 0.8268 0.8278

1 0 0.0684 0.8235 0.8245

2 0 0.0684 0.8200 0.8210

3 0 0.0684 0.8162 0.8171

4 0 0.0684 0.8121 0.8130

5 0 0.0684 0.8078 0.8086

6 0 0.0684 0.8030 0.8039

7 0 0.0684 0.7980 0.7988

8 0 0.0684 0.7926 0.7933

9 0 0.0684 0.7868 0.7875

10 0 0.0684 0.7808 0.7814

20 0 0.0684 0.7087 0.7091
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velocity. In the limit as α → ∞ (Darcian ow), the particle’s velocity approaches
zero because the highly porous medium essentially immobilizes the particle within
the gel. Fig. 2 indicates that each curve is labeled with a dierent value of the
scaled elapsed time νta2, showing how the transient velocity changes over the
called elapsed time. For short times (e.g., νta2 = 0005), the particle’s velocity
starts low, as the surrounding uid has not fully responded to the applied body
force. At intermediate times (e.g., νta2 = 005, 05), as time progresses, the
uid velocity around the particle increases, reaching a peak. At long times, the
system approaches a steady state, and the transient velocity stabilizes. The curves
labeled νta2 → ∞ represent this steady state, showing the nal, time-independent
normalized velocity.

The solid lines (ρ∗ = 02) and dashed lines (ρ∗ = 2) represent dierent particle-
to-uid density ratios. For higher relative density (ρ∗ = 2), the particle experiences
greater inertia, resulting in lower normalized velocities across all times and α values
compared to the lower-density particle (ρ∗ = 02). The dependence on ρ∗ reects
how inertia impacts the particle’s response to the body force; a denser particle
moves more slowly due to the added resistance from its mass relative to the sur-
rounding uid. The gure spans two ow regimes: Stokes ow (low α) and Darcian
ow (high α). In the Stokes ow regime, where the permeability parameter is zero,
the particle’s velocity remains relatively high because the clear uid allows easy
passage. In the Darcian ow regime, where permeability is low (high α), the uid
within the porous medium restricts movement, leading to a gradual decay in ve-
locity toward zero. This plot helps illustrate the impact of permeability, elapsed
time, and density on the transient behavior of a colloidal particle within a polymer
gel. In applications like drug delivery or biocompatible materials, these parameters
can be tuned to control the particle’s mobility. For example, higher permeability
or a lower relative density can enhance mobility, which might be desirable in cases
where rapid diusion through the medium is needed. Conversely, higher density
or lower permeability Fig. 3(a, b, c) show how the normalized transient velocity
changes with the non- dimensional slip length λ1 of the particle, ranging from a
”no slip” condition (λ1 = 0) to ”perfect slip” (λ1 → ∞), for dierent elapsed times,
νta2 with a xed slip length of the cavity (λ2 = 1). As λ1 increases, the normal-
ized transient velocity generally tends to increase. This indicates that a larger slip
length at the particle surface allows for reduced frictional resistance between the
particle and surrounding uid. Physically, this can enhance particle mobility as the
resistance to movement in the uid decreases with greater slip. Fig. 3(a) indicates
that, as α increases, the normalized velocity of the particle decreases across all slip
lengths λ1. For small λ1 (low-slip conditions), the eect of α is more pronounced,
as the particle is subject to high drag from both the uid viscosity and the porous
medium’s resistance. For large λ1 (high-slip conditions), the normalized velocity
increases regardless of α, although the overall velocity remains lower for higher α.
This suggests that slip at the particle surface can partially mitigate the drag eect
imposed by the porous medium. Fig. 3(b) shows the variation of the normalized
velocity of the particle for three critical cases of the density ratio: ρ∗ = 0, 1, and
∞. In the case ρ∗ = 0, the particle has no eective mass, which could represent a
case where the particle is neutrally buoyant or experiences no gravitational eects.
When ρ∗ = 1, the particle has the same density as the uid, introducing inertial
eects that may alter its response to the applied force. For ρ∗ → ∞, the particle is
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very dense, has a large mass, and therefore signicant inertia. For ρ∗ = 0, the par-
ticle reaches a higher normalized transient velocity compared to ρ∗ = 1, as a lighter
particle (with eectively zero density) responds more directly to the applied force
without inertial resistance. As the time νta2 increases, the normalized velocity for
both cases tends toward a steady state, but the lighter particle (ρ∗ = 0) maintains
a higher velocity. For higher slip lengths, λ1, both density cases show increased
velocity, though the dierence in velocity between ρ∗ = 0 and ρ∗ = 1 is more
pronounced at smaller λ1 values, where drag eects dominate. As ρ∗ → ∞, the
particle’s motion becomes nearly negligible due to its large inertia. Here, the slip
length λ1 and other hydrodynamic factors have minimal impact, and the particle
essentially remains stationary under the applied force.

The plot in Fig. 3(c) shows the normalized velocity of the particle for dierent
particle-to-cavity radius ratios, σ. When σ = 01, this represents a small particle
in a relatively large cavity. The particle experiences less inuence from the cavity
walls, allowing it to move more freely and resulting in higher normalized velocities,
particularly for large slip lengths, λ1. When σ = 05, the particle is larger compared
to the σ = 01 case, so the cavity walls have a more noticeable impact on its
movement, slightly reducing the normalized velocity. For σ = 1, the particle and
cavity are nearly the same size, placing the particle close to the cavity walls. This
proximity signicantly increases hydrodynamic resistance, reducing the particle’s
normalized velocity, especially at lower slip lengths (small λ1).In summary, the
plot illustrates how the normalized transient velocity of the particle varies with slip
length and elapsed time, with signicant dierences arising from the radius ratio,
σ. Smaller particles (small σ) move more freely within the cavity, experiencing
less drag, while larger particles (large σ) encounter greater wall eects, reducing
their mobility. This insight is valuable for understanding the dynamics of colloidal
particles in polymer gels and designing controlled drug delivery systems, where
particle mobility can be tuned by adjusting slip properties and connement.

Fig. 4(a, b) illustrates the normalized transient velocity plotted against the
particle-to-medium density ratio, ρ∗, for various values of scaled elapsed time,
νta2. The parameters α (the permeability parameter) and σ (the radius ratio)
are varied to explore dierent cases. In Fig. 4(a), the velocity prole for clear
uid reaches a higher steady-state value, as a clear uid allows the particle to move
more freely. As the permeability parameter increases, the porous medium oers
greater resistance (higher inverse permeability), resulting in a lower steady-state
velocity. This increased permeability resistance dampens the particle’s movement.
The zoomed inset at the lower left highlights ne details in the normalized velocity
for small values of ρ∗, emphasizing that even slight changes in ρ∗ have a measurable
impact on velocity in this regime, particularly at low α values. Fig. 4(b) shows
that for a larger σ (e.g., σ → 1), the particle occupies a larger fraction of the cavity,
which restricts its mobility and lowers the transient velocity. Similar to Fig. 4(a),
there is an increase in transient velocity over time as it approaches steady state.
However, for dierent values of σ, the steady-state values vary, with lower values
of σ (indicating a smaller particle relative to the cavity) allowing higher steady-
state velocities. These insights could have implications for applications requiring
controlled particle mobility, such as drug delivery systems in porous gels, where
the particle’s density, the medium’s permeability, and cavity constraints can be
optimized to achieve desired motion proles.
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Fig. 5(a, b, c) illustrates the variation of the normalized transient velocity
6πµaUFA with respect to the dimensionless elapsed time νta2 for dierent values
of the relevant parameters. The plots show that the normalized transient velocity
6πµaUFA increases continuously from zero to its steady-state value over time. In a
porous medium, higher permeability parameter α values result in slower growth and
lower steady-state velocities due to increased resistance, whereas higher slip lengths
(λ1 and λ2) at the particle and cavity surfaces promote faster growth and higher
steady-state velocities by reducing frictional resistance. Additionally, particles with
a lower density ratio ρ∗ experience faster velocity growth and reach higher steady-
state values compared to denser particles, which exhibit slower response due to
their greater inertia.

The dimensionless acceleration, (6πρa3FA)dUdt, of a spherical particle under-
going initial migration is plotted against the scaled time, νta2, in Fig. 6 (a, b,
c), for dierent values of the density ratio ρ∗, permeability parameter α, particle-
to-cavity radius ratio σ, and the slip lengths λ1, and λ2. This acceleration mono-
tonically decreases as νta2 increases, starting from a maximum at νta2 = 0 and
approaching zero as νta2 → ∞across the entire range of the parameters ρ∗, α, σ,
λ1, and λ2.

Fig. 6(a) shows multiple curves for dierent values of the non-dimensional slip
length parameters λ1 and λ2. For early time behavior, the normalized transient
acceleration is high for all curves, showing that the particle initially accelerates
quickly in response to the applied force. Higher slip lengths (both λ1 and λ2) lead to
higher initial accelerations. This is because slip conditions reduce drag, allowing the
particle to respond more rapidly to the force. As time progresses, the acceleration
decreases for all curves, indicating a transition phase where the particle’s velocity
approaches its steady state. At large values of νta2, the normalized transient
acceleration approaches zero for all curves, indicating that the particle has reached
steady velocity and is no longer accelerating. Particles with higher slip lengths
(λ1 → ∞ and λ2 → ∞) reach steady state slightly faster, as they experience less
resistance in the medium. For a given cavity slip length λ2, increasing λ1 results
in a higher initial acceleration and a more gradual decline over time. This reects
reduced drag on the particle itself. For a given particle slip length λ1, increasing
λ2 generally results in higher initial acceleration values and extends the transient
phase, delaying the particle’s stabilization at a steady velocity. Therefore, adjusting
λ1 and λ2 allows ne-tuning of the particle’s transient behavior, which could be
critical for applications requiring precise timing of particle responses.

Fig. 6 (b) examines the eects of the relative density ratio ρ∗ and the particle
slip length λ1 on transient acceleration. For both slip cases (λ1 = 0 and λ2 = 1), the
normalized transient acceleration is high at small values of νta2, indicating that
the particle begins with a sharp initial response to the applied force. For ρ∗ = 0
(massless particle), the initial acceleration is the highest, as there is no inertia to
slow the particle’s response. For ρ∗ = 1 (density of particle equal to medium),
the initial acceleration is slightly lower than for ρ∗ = 0, indicating that inertia
from the particle’s own mass begins to moderate the response. For ρ∗ → ∞ (very
dense particle), the initial acceleration is almost zero, suggesting that the particle
is largely inert due to its high mass. At large νta2, the acceleration for all curves
approaches zero, indicating that the particle reaches a steady-state velocity where
it no longer accelerates.
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Fig. 6 (c) focuses on the eects of the radius ratio σ and the permeability
parameter α on the transient acceleration of the particle. For both values of α
(α = 0, 1), the curves show high initial accelerations, with smaller values of σ (i.e.,
smaller particle relative to cavity size) showing the highest initial acceleration.
This suggests that particles with smaller sizes relative to the cavity respond more
immediately to the applied force. For α = 0 (no porous medium), the initial
acceleration is slightly higher compared to α = 1. This is due to the absence
of resistance from the porous structure, allowing faster response. For α = 1, the
porous medium slows down the initial response, leading to lower acceleration values
compared to the clear uid case. At large νta2, the acceleration for all curves
approaches zero, indicating that the system has reached a steady-state velocity.
These insights can be valuable for applications requiring controlled acceleration
and motion of particles within conned spaces. Adjusting the radius ratio and
permeability could help optimize particle behavior for processes such as ltration,
material design, and drug delivery.

We have sketched some of the streamlines in Fig. 7 to achieve a more complete
understanding of the transient migration of a hydrophobic colloidal spherical par-
ticle inside a hydrophobic, impermeable, concentric cavity with a combination of
the relevant parameters. The streamlines are clearly deected due to the presence
of the impermeable cavity.

Figure 2. Variation of the normalized transient velocity 6πµa U
FA

versus the permeability parameter α for various values of elapsed
time νta2 in the case of prefect slip surfaces (λ1,λ2 → ∞) and
σ = 04.
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(c)

Figure 3. Variation of the normalized transient velocity 6πµa U
FA

versus the non- dimensional slip length of the particle λ1 for various
values of elapsed time νta2 in the cases of cavity non-dimensional
slip length of the cavity λ2 = 1 with versus of permeability param-
eter α, density ratio ρ∗, and particle-to-cavity radius ratio σ.
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(a)

(b)

Figure 4. Variation of the normalized transient velocity 6πµa U
FA

versus particle–to-medium density ratio ρ∗ for various values of
elapsed time νta2 in the case of λ1 = λ2 = 6 with versus of
permeability parameter α, and particle-to-cavity radius ratio σ.
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(c)

Figure 5. Variation of the normalized transient velocity 6πµa U
FA

versus the dimensionless elapsed time νta2 for various values of:
a)particle-to-cavity radius ratio σ and permeability parameter α
with λ1 = λ2 = 1, ρ∗ = 1,
b) particle–to-medium density ratio ρ∗ in the cases of no slip, par-
tial slip, and prefect slip on the particle surface with α = 1, σ = 05,
and λ2 = 1,
c) non- dimensional slip length of the particle λ1 in the cases of no
slip, partial slip, and prefect slip on the cavity surface with α = 1,
σ = 05, and ρ∗ = 1.
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Figure 6. Variation of the normalized acceleration 6πρa3

FA

dU
dt ver-

sus the dimensionless elapsed time νta2 for various values of:
a) non- dimensional slip length of the particle λ1 with α = 1,
σ = 05, and ρ∗ = 1,
b) particle–to-medium density ratio ρ∗ in the cases of no slip, and
partial slip on the particle surface with α = 1, σ = 05, and λ2 = 1,
c) particle-to-cavity radius ratio σ with λ1 = λ2 = 1, ρ∗ = 1, and
various values of permeability parameter α.
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Figure 7. Sketch of streamlines of the Brinkman transient ow
between the particle and cavity:
a) α = 10, λ1 → ∞, λ2 = 0, ρ∗ = 10, σ = 02, νta2 = 05,
b) α = 1, λ1 = 1, λ2 = 1, ρ∗ = 1, σ = 02, νta2 = 1,
c) α = 30, λ1 = 1, λ2 = 1, ρ∗ = 07, σ = 03, νta2 = 5,
d) α = 1, λ1 → ∞, λ2 = 1, ρ∗ = 1, σ = 02, νta2 = 1.

5. Conclusions

This work analyzes the transient motion at low Reynolds numbers of a hydropho-
bic colloidal spherical particle within a concentric cavity with a hydrophobic sur-
face, lled with a polymer gel substance, following the sudden application of a
steady body force. The unsteady Brinkman equation governing the uid velocity
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distribution is solved, resulting in a closed form formula for the time-evolving par-
ticle velocity in the Laplace transform. Through an examination of the normalized
transient velocity and acceleration in low Reynolds number conditions, this analysis
provides important insights into the inuence of several system parameters, such
as the particle to-medium density ratio ρ∗, the scaled elapsed time νta2, the per-
meability parameter α, the non-dimensional slip lengths λ1 and λ2, and the radius
ratio σ. The main ndings of this study include the following:
Eect of permeability parameter α
A clear uid (α = 0) allows faster initial responses and higher transient velocities,
while the porous medium (higher α) reduces initial acceleration and introduces re-
sistance, slowing down the particle’s transition to steady-state velocity. In systems
where controlled slowing of particle motion is desired, increasing the permeability
parameter can modulate particle movement by adding drag from the porous struc-
ture.
Inuence of density ratio ρ∗

At higher density ratios, both transient velocity and acceleration decay more quickly,
leading to faster stabilization of the particle’s motion. Lower density ratios allow
the particle to maintain higher velocities over a more extended period. This implies
that particles with lower densities relative to the surrounding medium exhibit sus-
tained mobility, which could be advantageous in applications requiring prolonged
particle transport.
Eect of slip lengths λ1 and λ2

The slip lengths of the particle and cavity walls inuence both transient velocity
and acceleration. Higher slip length values (indicating reduced drag at the surfaces)
allow the particle to achieve higher initial accelerations and maintain velocity for
longer durations. Controlling slip lengths could provide a method to ne-tune par-
ticle mobility, which is particularly useful in designing surfaces that require specic
frictional characteristics, such as in microuidic devices or biomedical applications.
Eect of radius ratio σ
Smaller particles relative to the cavity size (σ close to zero) experience higher
transient accelerations and take longer to reach steady-state velocities, indicating
sustained responsiveness to the applied body force. Larger particles (increasing
σ) reach steady-state conditions faster, as connement eects increase drag. This
parameter is crucial when designing systems where particles need to navigate con-
ned environments, as adjusting σ can help regulate the particle’s responsiveness
and stabilization time.
Time-dependent behavior
The normalized acceleration decreases over time, eventually approaching zero as the
particle reaches steady-state velocity. Shorter response times at higher νta2 val-
ues indicate that the system can be optimized for either rapid or prolonged particle
motion depending on the application’s requirements.

This study provides a comprehensive framework for understanding and control-
ling the transient motion of particles within porous media, a topic with signicant
implications for elds such as drug delivery, ltration, and material design. By
varying density ratios, permeability, slip lengths, and cavity-to-particle size ratios,
it is possible to ne-tune particle behavior to achieve specic dynamic proles, from
rapid stabilization to sustained mobility. It is important to note that the initial
transient behavior of a hydrophobic, impermeable particle moving at low Reynolds
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numbers within a porous medium enclosed in a hydrophobic cavity has not been
previously studied.
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