- Frisoli, M. L., Essien, K., & Harris, J. E. (2020). Vitiligo: mechanisms of pathogenesis and treatment. Annual review of immunology, 38(1), 621-648.
- Spritz, R. A., & Santorico, S. A. (2021). The genetic basis of vitiligo. Journal of Investigative Dermatology, 141(2), 265-273.
- Marchioro, H. Z., Castro, C. C. S. D., Fava, V. M., Sakiyama, P. H., Dellatorre, G., & Miot, H. A. (2022). Update on the pathogenesis of vitiligo. Anais Brasileiros de Dermatologia, 97(4), 478-490.
- Speeckaert, R., & van Geel, N. (2017). Vitiligo: an update on pathophysiology and treatment options. American journal of clinical dermatology, 18(6), 733-744.
- Wang, Y., Li, S., & Li, C. (2021). Clinical features, immunopathogenesis, and therapeutic strategies in vitiligo. Clinical Reviews in Allergy & Immunology, 61(3), 299-323.
- Beyzaee, A. M., Goldust, M., Patil, A., Rokni, G. R., & Beyzaee, S. (2022). The role of cytokines and vitamin D in vitiligo pathogenesis. Journal of Cosmetic Dermatology, 21(11), 6314-6325.
- Komen, L., Da Graça, V., Wolkerstorfer, A., De Rie, M. A., Terwee, C. B., & Van Der Veen, J. P. W. (2015). Vitiligo Area Scoring Index and Vitiligo European Task Force assessment: reliable and responsive instruments to measure the degree of depigmentation in vitiligo. British Journal of Dermatology, 172(2), 437-443.
- Lobbes, H., Reynaud, Q., Mainbourg, S., Lega, J. C., Durieu, I., & Durupt, S. (2020). Dosage de la tryptase: un guide d'utilisation pour le clinicien. La Revue de Médecine Interne, 41(11), 748-755.
- Lyons, J. J. (2021). Inherited and acquired determinants of serum tryptase levels in humans. Annals of Allergy, Asthma & Immunology, 127(4), 420-426.
- Paolino, G., Moliterni, E., Didona, D., Cardone, M., Lopez, T., Garelli, V., ... & Calvieri, S. (2017). Serum tryptase levels in melanoma patients: case-control study and review of the literature. Giornale Italiano di Dermatologia e Venereologia: Organo Ufficiale, Societa Italiana di Dermatologia e Sifilografia, 154(1), 18-25.
- Xiao, H., Dong, Y., Xiao, L., Liang, X., & Zheng, J. (2022). Identification of key gene contributing to vitiligo by immune infiltration. International Journal of Clinical and Experimental Pathology, 15(4), 157.
- Grimes, P. E., & Nashawati, R. (2017). Depigmentation therapies for vitiligo. Dermatologic clinics, 35(2), 219-227.
- Said Fernandez, S. L., Sanchez Domínguez, C. N., Salinas Santander, M. A., Martinez Rodriguez, H. G., Kubelis Lopez, D. E., Zapata Salazar, N. A., ... & Ocampo Candiani, J. (2021). Novel immunological and genetic factors associated with vitiligo: A review. Experimental and therapeutic medicine, 21(4), 1-1.
- Bergqvist, , & Ezzedine, K. (2020): Vitiligo: a review. Dermatology, 236(6), 571-592.
- Rahman, Q. S., & Takahashi, S. (2011): 2 Hyperpigmentation and skin- lightening agents. In Comprehensive Aesthetic Rejuvenation (pp. 173- 176). CRC Press.
- Speeckaert, R., & van Geel, N. (2017). Vitiligo: an update on pathophysiology and treatment options. American journal of clinical dermatology, 18(6), 733-744.
- Wang, Y., Li, S., & Li, C. (2021). Clinical features, immunopathogenesis, and therapeutic strategies in vitiligo. Clinical Reviews in Allergy & Immunology, 61(3), 299-323.
- Katayama, I., Yang, L., Takahashi, A., Yang, F., & Wataya-Kaneda, M. (2021). The two faces of mast cells in vitiligo pathogenesis. Exploration of Immunology, 1(4), 269-284.
- Garcia, G., Curiel, B., Félix, D. V., De Lira-Quezada, C., Gomez, C. E., & Gonzalez-Diaz, S. (2023). POSITIVE OUTCOMES WITH OMALIZUMAB IN A PATIENT WITH AUTOIMMUNE URTICARIA AND DIABETES MELLITUS: CASE REPORT. Annals of Allergy, Asthma & Immunology, 131(5), S129.
- Gan, E. Y., Cario-André, M., Pain, C., Goussot, J. F., Taïeb, A., Seneschal, J., & Ezzedine, K. (2016): Follicular vitiligo: a report of 8 cases. Journal of the American Academy of Dermatology, 74(6), 1178- 1184.
- Aroni, K., Voudouris, S., Ioannidis, E., Grapsa, A., Kavantzas, N., & Patsouris, E. (2010). Increased angiogenesis and mast cells in the centre compared to the periphery of vitiligo lesions. Archives of dermatological research, 302, 601-607.
- Bertolini M, Zilio F, Rossi A, et al. (2014): Abnormal interactions between perifollicular mast cells and CD81 T-cells may contribute to the pathogenesis of alopecia areata. PLoS One.;9:e94260.
- Chen, Y., Griffiths, C. E., & Bulfone-Paus, S. (2023). Exploring Mast Cell–CD8 T Cell Interactions in Inflammatory Skin Diseases. International Journal of Molecular Sciences, 24(2), 1564.
- Inoue, S., Katayama, I., Suzuki, T., Tanemura, A., Ito, S., Abe, Y., ... & Matsunaga, K. (2021): Rhododendrol‐induced leukoderma update II: Pathophysiology, mechanisms, risk evaluation, and possible mechanism‐ based treatments in comparison with vitiligo. The Journal of Dermatology, 48(7), 969-978.
- Kwon, S. H., Na, J. I., Choi, J. Y., & Park, K. C. (2019): Melasma: Updates and perspectives. Experimental dermatology, 28(6), 704-708.
- Amer, M., & Maged, M. (2009). Cosmeceuticals versus pharmaceuticals. Clinics in dermatology, 27(5), 428-430.
- Moretti, S., Nassini, R., Prignano, F., Pacini, A., Materazzi, S., Naldini, A., ... & Massi, D. (2009). Protease-activated receptor-2 downregulation is associated to vitiligo lesions. Pigment cell & melanoma research, 22, 335-338.
- Shakhbazova, A., Wu, H., & Sivamani, R. (2020). 18478 Alternative and adjunct therapies for vitiligo. Journal of the American Academy of Dermatology, 83(6), AB213.
- Vitte, J. (2015): Human mast cell tryptase in biology and medicine. Molecular immunology, 63(1), 18-24.
|