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Abstract: The Marshall-Olkin extended modified inverse Rayleigh (MOEMIR) distribution, a new
extension of the modified inverse Rayleigh (MIR) distribution, is introduced as a member of a pro-
posed Marshall-Olkin extended general inverse exponential (MOEGIE) family. This extension of-
fers enhanced flexibility for modeling lifetime data. Statistical properties of the MOEGIE family are
presented, and hence those of the MOEMIR distribution. Parameter estimation for the MOEMIR
distribution is discussed under an adaptive Type-II progressive censoring scheme involving discrete
uniformly distributed random removals. The parameters of the MOEMIR distribution are estimated
using both maximum likelihood and Bayesian methods. The Bayesian estimation is refined under
symmetric squared error loss (SEL) and asymmetric linear exponential loss (LINEX) functions, using
a Metropolis-Hastings (M-H) sampling method of the Markov chain Monte Carlo (MCMC) technique.
A simulation study is performed to highlight the obtained theoretical results. Finally, the utility of
the MOEMIR distribution is demonstrated using a real-world dataset involving the remission times of
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1. Introduction

Marshall and Olkin [11] proposed a versatile model that enhances conventional models by including
extra parameters, thereby increasing the flexibility and accuracy of data fitting. This model is valuable
for analyzing lifetime data with either increasing or decreasing hazard rates, making it well-suited
for applications in reliability engineering, biostatistics, and survival analysis. For further details, see
Ahmed et al. [1], Jose [8], and Santos et al. [15]. The cumulative distribution function (CDF) of a
Marshall-Olkin extended distribution takes the form,

F(x;é):&;—oo<x<oo,6>0,5:1—6, (1.1)

0+ 0G(x)
where G(x) is the CDF of the parent distribution. However, the effectiveness of such extensions de-
pends on the choice of the baseline distribution. Among these, the Inverse Rayleigh (IR) distribution
is a common statistical model applied in reliability engineering, life testing, and survival analysis. It is
characterized by a decreasing hazard rate, which makes it suitable for systems that are most likely to
fail early in their lifetimes due to some manufacturing errors—for example, mechanical components
and systems in pumps and electric motors. Despite its applicability, the IR distribution may not always
provide an adequate fit for real-world data, especially when the hazard rate does not follow a strictly
decreasing pattern. Khan [9] introduced the modified inverse Rayleigh (MIR) distribution as a modifi-
cation of the IR distribution to overcome its limitations. The CDF of the MIR distribution is expressed
as:

Gx;a,0) = exp(—a(% + {é)), x>0,a,¢>0. (1.2)

However, the flexibility of the MIR distribution may be further improved by incorporating an addi-
tional parameter 6 > 0, via the Marshall-Olkin extended distribution in (1.1), obtaining the proposed
distribution, which we call the MOEMIR distribution, with CDF

expl-a(! + 5)]

F(x;a,l,0) = —
(%:,£,9) 6 +dexp[-a(L + £)]

x>0, ,,6>0,0=1-6. (1.3)

Thus, our motivation behind proposing the MOEMIR distribution is enhancing the flexibility of the
MIR distribution. The MOEMIR distribution is a member of the proposed general family of distribu-
tions, the MOEGIE family, which will be introduced in Section 2. Some important statistical properties
of the MOEGIE family are studied and hence are applied to the MOEMIR distribution.

In real-world applications, particularly medical studies, data collection is often hindered by patient
dropouts, or limited follow-up periods, or censoring. Traditional estimation methods may perform
poorly under such conditions. To address this problem, we employ the adaptive Type-II progressive
censoring scheme proposed by Ng et al. [14], which combines the advantages of Type-I censoring and
Type-II progressive censoring, offering greater efficiency in parameter estimation. . Using this scheme,
we derive maximum likelihood estimates (MLEs) and Bayes estimates for the MOEMIR parameters.
The Bayesian approach is particularly valuable in medical studies, where prior knowledge from histor-
ical data can enhance inference, especially with small sample sizes. To validate the proposed model,
we conduct a simulation study to evaluate its performance and demonstrate its effectiveness through a
real-world application analyzing bladder cancer remission times. The results highlight the superiority
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of the MOEMIR distribution over existing models.

The organization of the present paper is as follows: The MOEGIE family, of which MOEMIR is a
member, is introduced in Section 2 along with some of its important statistical properties. In Section
3, the results obtained in Section 2 are applied to the MOEMIR distribution. Additionally, the MLEs
and Bayes estimates of the MOEMIR parameters are examined under an adaptive Type-II progressive
censoring scheme with random removals. A simulation study is performed to evaluate the performance
of these estimation methods. Furthermore, the proposed distribution is demonstrated to provide a good
fit to a real medical dataset, enabling the application of the derived theoretical results. Finally, the
conclusions of the study are summarized in Section 4.

2. MOEGIE Family of Distributions

2.1. Definition of the MOEGIE family

A non-negative random variable (r.v.) X is considered a member of the MOEGIE(«, £, 6) family if
its CDF is defined by

XPLeHN Ol 0 0,2,6505=1-6 2.1
0+ oexp[—aH(x; )]
where H(x;{) is a continuous, monotone decreasing and differentiable function with H(x;{) — 0 as
x — oo and H(x;{) — coas x — 0.

Comparing Equations (1.1) and (2.1), we observe that F(x; @, {, 0) represents the Marshall-Olkin ex-
tended distribution of the parent variable Y(«a, {) with the corresponding CDF and probability density
function (PDF) given by

F(x;a,0,0) =

G(x;a,0) = exp|[-aH(x;{)],x >0, (2.2)
and

g(x; @, {) = aexpl—aH(x; )" (x; {), (2.3)
respectively, where h*(x; ) > 0 is the derivative of —H(x; (). The distribution in (2.2) is said to have

an inverse exponential form (see Mohie El-Din et al. [12]).
Clearly from Equation (1.3) that the MOEMIR distribution is a member of the MOEGIE family with

HX; ) =1+(%.

2.2. PDF of the MOEGIE family

The following theorem shows that the PDF of a MOEGIE(«, ¢, 6) is a countable linear combination
of parent densities.

Theorem 2.1. Let X be a member of MOEGIE(«a, {, ) family, as defined in (2.1) with parent r.v.
having CDF and PDF given by (2.2) and (2.3), respectively. Then the density function of X can be
expressed as a countable linear combination of parent densities defined by the following relationship:

flra,,0) = ) wigls (j+ D, ), (24)
=0
where
1 l;
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Proof. From (2.1), the PDF of the MOEGIE family is given by

Sah*(x; §) exp[-aH(x; {)] = _1_
=301 — exp[—aH(: éV)])}z,x >0,0,(,0 >0,0=1-0, (2.6)

Now, we shall discuss the validity of (2.4) for all 6 > 0.
(i)For 0 < § < 1, it follows that |6(1 — exp[-aH(x;{)])| < 1. Applying the generalized binomial
expansion:

f(xa,l,0) =

(o)

(-a=y D, @)

k=0
where (@), = ala+ 1)....a+k—-1),a>0,and |7| < 1.
Thus, f(x;a,,d) in (2.6) can be rewritten as:

f(xa,¢,6) = Z 66" (k + 1ah"(x; ) expl—aH(x; OI(1 - expl—aH(x; 1),
k=0

Using the binomial expansion, we obtain:

oo B k k '
flxa,¢,6) = ) 68"k + Dah’(x; ) expl-aeH(x: O] ) | (J.)(—l)f(exp[—jaH(x; O
k=0 7=0

) ' [ _ k 1
= > -6 )y 5k(]: 1)0 + Dah®(x3.0) exp(—=(j + DaH(x; ),
=0 k=]
Using (2.3),we have:
= oo (k1 _
fenad. o= )18 )\ P G+ Das), (2.8)
J=0 k=j
It is easy to show that

o (k+ N\ =0 =
Z(,+ )5":51(1—5)—-'—2.
j+1

k=j

Substituting with the above result in (2.8), we get:

f(x;a,{,é):ijg(x;(j+l)cy,{), for 0 <6 < 1. (2.9)

J=0

(i1) For 6 = 1, f(x; @, ¢, 6) reduces to the parent distribution. Thus, f(x; @, {, ) can be expressed as:
fa,£,0) = ) wiglx (j+ D, 0), (2.10)
=0

where
1, forj=0,
WJ' = .
0, forall j=1,2,...
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(iii) For 0 > 1, f(x; a, , 6) could be written as:

ah’(x; {) exp[—aH(x; {)]

fxa,,0) = ; (2.11)
6{1 - (1 — D exp[-aH(x; )P
where |(1 — %) exp(—aH(x;{))| < 1. Using the power series (2.7), the PDF (2.11) becomes:
= (1= . ,
f@.£.8)= ) ——="=(j + Dah' (.0 expl—(j + DaH(x: )], (2.12)
=0
From (2.3) and (2.12), we obtain:
FOs0,2,6) = > wigle; (j + D 0), for &> 1. (2.13)
j=0
Combining (2.9), (2.10) and (2.13), we obtain (2.4). The proof is completed. m|

Corollary 2.2. If6 > 1, then the density function f(x;a,{,9) in (2.4) represents a countable mixture
of the parent distributions, where the weights {w;}, form a valid probability distribution, i.e.,
0<w;j<land 372 w; =1

Proof. For 6 > 1, we verify that {w;}?, forms a valid probability distribution.

First, observe that 0 < % < 1 implies 0 < 1 — % < 1, and consequently each weight satisfies:

1 1y
Wf:g(l‘g) € (0,1)forall j > 0.

Second, the series of weights converges absolutely to 1 since it is a geometric series:
= (RS ( 1)” 1/6
W] = — 1 _ — = = 1
]Z:;J 0 ; ) 1-(1-1/0)

Therefore, f(x; @, , ) represents a proper countable mixture of the parent densities. O

2.2.1. Moments, mean residual and mode of MOEGIE

Formula (2.4) allows us to calculate the mathematical quantities related to the MOEGIE distribution,
such as moments and others, by leveraging the known quantities of the parent distribution.
Using (2.4), we could calculate the following quantities.

1. The moment generating function (MGF) of a MOEGIE family member, X, as

Mx(r) = Z WMy j+1)a.0)(D), (2.14)
=0

where My (j+1)a,0)(t) 1s the MGF (if it exists) of the r.v. Y((j + 1)a, {) with PDF (2.3).
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2. The k™ ordinary moment of X as

E(X) = " wiEY(( + Da, ). (2.15)

J=0

3. The k™ incomplete moment of X as

Ii(2) = Zw,kag(x; (j+ Da, 0)dx. (2.16)
j=0
4. The mean residual of X as

m(t.a.¢.6) = (—MZ wi [ vew e ooy @17)

5. The mode of X is determined by solving the following equation

ijm Dl T exp(( + D 0) + (03 £ + Darexp(~( + DaH(x: 0] =
(2.18)

2.3. The hazard rate function (HRF) of MOEGIE family
The HRF considers the risk of instantaneous failure at some time ¢. The HRF of a MOEGIE family

member, X, is

lo) ah'(x; ) expl-aH(x; )]
[=56G()  (1-expl-aH(x: N1 - (1 - expl-aH@ D)

Ax;@,4,0) = >0,a,6 >0. (2.19)

where Ag(x) is HRF of the parent distribution. From (2.19), we note that ﬁ(x(‘s)) 1s increasing in x for

6 > 1, decreasing in x for 0 < ¢ < 1; and is equal to 1 for 6 = 1. It is obvious that the chosen parent
distribution influences the formula of the HRF of the MOEGIE family.

2.4. The quantile function of the MOEGIE family
Since F(x;a,,d) in (2.1) is continuous and strictly increasing, the quantile function X, = F~'(u) :
0 < u < 1 can be obtained by inverting (2.1), and expressed in terms of H~!(-). Thus, we have
1 -6u
ou

X, =H (— log ,O). (2.20)

16u léu

Clearly, log <> > 0 since > 1,for6>0,and 0 < u < 1.

Setting u = 0. 5 in (2.20) glves the median.

Furthermore, Bowley’s skewness [6] and Moors’ kurtosis [13] can be measured using (2.20) through
the following equations

X% +X% —ZX%
SK = XX , 2.21)
i i
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and
X:-Xs +X: -Xu
8 8 8 8

Xs — X2
8 8

K =

, (2.22)

where S K and K are the skewness and the kurtosis respectively.
These measures of skewness and kurtosis are less susceptible to outliers than moment-based measures
and can be computed even for distributions without moments.

3. MOEMIR Distribution

The MIR r.v. represents the maximum of two independent r.v.s: an inverse exponential variable
with parameter o and an IR variable with parameter /. The CDF of MIR is given by (1.2), and its
PDF is given by

) = 21+ ) expl-alt +{2).x> 0.0, > 0. 3.1)
X X X X

Clearly, from (1.2), (2.2), (2.3), and (3.1), we see that MIR distribution has an inverse exponential
form with

1 1
H(X;§)=;+§;, (3.2)
and 1
h'(X;0) = ;(x +20). (3.3)

Consequently, the Marshall-Olkin extended distribution of the MIR (MOEMIR) given in (1.3) is a
member of the MOEGIE family (2.1) with H(X; () in (3.2). Substituting (3.2) and (3.3) into (2.6), the
PDF of the MOEMIR is

20)exp(—a( L+ £
a5(x+_§)eXP( o+ ) x>0, a,0,6 > 0. (3.4)
(6 + Sexpl—a (L + £)1p

fa,l,0) =

If 6 = 1, the special case of the MIR distribution is obtained. In addition, if = 0, the Marshall-Olkin
extended inverse exponential distribution is obtained.
The survival function and HRF of the MOEMIR distribution are given respectively by

5(1 —exp[-a( + &
sy = Lzl D) o a0, (3.5)
6+ dexp[—a(t + 5)]

and R
a(t +20) exp(—a(; + %))
A1) = _ f 150, a.06>0. (3.6)
(6 + o expl—a(; + 5)D(1 —exp[—a(; + )]

Figure 1 displays various patterns of the PDF and HRF for the MOEMIR distribution, where cases 1,
2, and 3 correspond to (& = 2,8 =1), (8 =2,6 = 1.5), and (o = 2,6 = 1.5), respectively. As depicted,
the MOEMIR is positively skewed and unimodal, while its HRF follows an upside-down bathtub curve.
Additionally, the impact of { on the shape of the distribution is relatively minor compared to that of
a and 6. The graphs clearly depict a heavy-tailed distribution with long tails extending far from the
peak, indicating a higher probability of extreme values. Consequently, the MOEMIR distribution is
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Figure 1. Plots of the MOEMIR PDF (top row) and HRF (bottom row) for different param-
eter values.

appropriate for modeling a variety of practical fields. In reliability engineering, for example, it can
represent the lifetimes of systems subject to both wear and sudden shocks. While in survival analysis,
it can represent patient survival times and remission data for clinical use.

3.1. Statistical properties of MOEMIR distribution
3.1.1. Mean

If Y((j + Da, ) is an MIR distributed random variable with PDF given by (3.1) with parameters
(j+ Da and ¢, it is easy to show that

& —1D"((i+1 1-m ym
EQH( + Do) = Y U
m=0

2
@)+ —=
m! (j+ Da
Setting k = 1, in Equation (2.15) and substituting with Equation (3.7), the mean of the MOEMIR
distribution can be expressed as:

o X m 1-m ym
E(X):ZZW]( D ((J”)“) & rem + —2rom+ 1), (3.8)

g (j+ Da

where w; is defined in (2.5) and I'() is the gamma function. It should be noted that the MOEMIR
distribution does not possess finite moments of order greater than 1, emphasizing its heavy-tailed
nature.

I'2Cm+ 1)]. (3.7)

3.1.2. Mean residual life
Using (2.17), the mean residual life is given by

d+dexpl-a(t+5)] &
,a, ’6 - - = .
0 = ot +M)Z( ) (3.9)
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where

> (~1)"((j + Da) ™" 2
4= 3 EGE Do ¢

G+ Dal@m) + 2 = O Cm + 1) — — TQm +2)].
m! (j+ Da

m=0

In practical computations, the infinite sums in Equations (3.8) and (3.9) are truncated using a con-
vergence criterion. Specifically, the summation is terminated when the absolute difference between
consecutive partial sums falls below a predefined tolerance level of 10~%. Numerical validation demon-
strates that this criterion achieves relative errors under 0.1% with summation limits of j = 0 to 50
for the outer series and m = 0 to 20 for the inner series, ensuring robust accuracy while optimizing
computational efficiency.

3.1.3. The quantile function
Using (2.20), the quantile function of the MOEMIR distribution can be obtained as follows:

2

X, = :
Y1+ Elog(50) — 1

O<u<l. (3.10)

1-0u

Clearly, the argument of the square root in the expression above is always positive since <> > 1, and
hence log % > 0.
Substituting # = 1/2 in (3.10), the median of MOEMIR distribution is obtained as follows:
2
median = < (3.11)

Y1+ Elog(l + 1)~ 1
Using (3.10) in (2.21) and (2.22), the skewness and kurtosis are obtained respectively.

Table 1. Some statistical measures of MOEMIR distribution for different values of 6 (o =
0.01,Z =0.5)

0 mode | skewness | kurtosis | mean | median
0.01 | 0.032 0.1765 1.4588 | 0.0735 | 0.034
0.2 | 0.045 0.2963 1.6358 | 0.7985 | 0.0557
0.7 | 0.0557 | 0.3333 1.6725 2.651 | 0.0809
1.0 0.06 0.3372 1.679 3.9355 | 0.0925
1.2 | 0.0625 | 0.3409 1.6817 | 4.7053 | 0.0994
2.7 1 0.0776 | 0.3486 1.7171 | 10.4587 | 0.1428
5.0 | 0.0956 | 0.4446 2.0541 | 18.3546 | 0.1953

Using (2.18), (2.21), (2.22), (3.8) and (3.11), we numerically calculated the mode, skewness, kur-
tosis, mean and median, respectively, for the parameters @ = 0.01, £ = 0.5 and different values of ¢, as
shown in Table 1. From Table 1, it is evident that the MOEMIR distribution is positively skewed and
leptokurtic. Additionally, as ¢ increases, the mode, skewness, kurtosis, mean and median also show an
increasing trend.
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3.2. Parameters estimation using an adaptive Type-II progressive censoring scheme

The adaptive Type-II progressive scheme, proposed by Ng et al. [14], is a mixture of Type-I censor-
ing and progressive Type-II censoring. This approach enhances flexibility in life-testing experiments
by adjusting the termination criteria based on the experimental timeline and observed failures. In a
traditional Type-I censoring setup, the experiment ends at a fixed time, irrespective of the number of
failures. In contrast, a progressive Type-II censoring scheme begins with n units under test and an
effective sample size m < n fixed in advance. When the first failure occurs at time Xi.,,.,, R; units are
randomly withdrawn from the remaining n — 1 units. The process is repeated at the second failure at
time X5.,,.,, where R, units are removed from the remaining n — 2 — R; units. This continues until the
m™ failure at time X,,.,,., occurs, after which all remaining n —m — R| — - - - — R,,_; units are withdrawn,
concluding the experiment. The values of R;, i = 1,2,...,m — 1 may be predetermined or randomly
assigned. For a detailed discussion on progressive censoring methods, see Balakrishnan [3] and Bal-
akrishnan with Aggarwala [4], which provide comprehensive reviews.

The adaptive Type-II progressive censoring scheme extends these two concepts by introducing flexibil-
ity in the termination criteria. The experimenter specifies an ideal total test duration 7. If the m™ pro-
gressively censored failure occurs before 7, i.e., if X,,.,,., < T, the experiment concludes at time X,,,.,,,..,-
However, if the test reaches time 7" before observing m failures, the remaining removals are adjusted
to end the experiment promptly. Specifically, if j failures occur before T', i.e., if Xjnn < T < Xjs1.mm,
where j = 0,1,...,m, thenR;;; = ... = R,y =0,and R, = n—-m — Z{Zl R; are set to terminate the
experiment as quickly as possible. More paper used this scheme as [2, 5].

In extreme cases, if T — oo, time becomes irrelevant, reducing the scheme to a standard progressive
Type-II censoring. Conversely, if T = 0, the experiment must conclude as quickly as possible, resulting
in conventional Type-II censoring.

Assume the failure times of the n test items follow a continuous population with PDF f(x; ) and CDF
F(x;0), where 0 is the vector of parameters and x > 0. For J = j, the likelihood function of the
observed failure times Xi.,..n, ..., Xpmm:n Will be

m J
n—m-— R,‘
161 = ) = d; | | £ [ |11 = F it 111 = F: O &, (3.12)
i=1 i=1
where
m min{i—1,/}
dj = 1_[[” —i+1- Z Rk]a Xtiimn < X2omn < oo < Xpmen- (313)
i=1 k=1

It is to be noticed that there is a misprint in Ng et al. [14] in the equation of likelihood function where
the max there should be a min as given here (the letter of communication between us and Prof. Ng is
attached as per request).

3.2.1. Maximum likelihood estimation

Let X=(X1:mm> Xoumins ---» Xmemen) TEPresent an adaptive Type-II progressive censored sample from a
MOEMIR population with discrete uniformly distributed random removals R;,i = 1,...,m — 1, and
R,=n—-m-— Z?i‘ll R;. Thus, we assume that

1

PR, = = —;
Ry =r) n—-m+1

0<r<n-m, (3.14)
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1 i—
PRi:riRi— :rl._’._’R =r) = - ,O_ < n—m-— r,l:2,...,m_1. 3.15
( IRi-1 1 1 =71) P E j (3.15)

J=1

Using (3.12), the likelihood function is given by

m—1

10J =) =Lx;0)PR,=r,R,=r2,...R, =1,) = 1,(x;0
1) = j) = hOPR, = r1, Ry = 13 )= L)~ +1]_[nm2r]+1

(3.16)
where
dja"s" 122 exp(—a z<"'+€“)> H(l — exp(—a z<x’+‘)>)n<1 exp(a ()" A"
L(x:0) = = ;
fll(é + ;sexp(—a(“‘)))2 Hl((s + 5exp(—a(’““)))n (5 + 5 exp(~ a(*'"“))) A"
(3.17)

and for simplicity x; is used instead of x;.,,,.,.
Clearly, the joint PDF of R;’s, i = 1,....,m is free of unknown parameters. Thus, the log-likelihood
function for the vector of parameters 8=(c, £, 6)” is given by

Li(x:0) = const + nlog(d) + mlog(a) + Z log(X 4) —23'1 il 5
i=1 l i=1 i
J
—aZlog( )+Zr,log(1 — exp(— a éV)) Zr,l +§
‘xz i=1 1
J J _ X +§
+(n—m-— Z r)log(1 — exp(-a ™43y 4 (n—m - D" ri)log(6 + 8 exp(-a="2)).
i=1 m i=1 m
(3.18)

The MLEs of a, £, and ¢ are derived by taking partial derivatives of Equation (3.18) with respect to each
parameter, equating them to zero, and solving the resulting nonlinear system of equations numerically,
by applying the Newton-Raphson or the bisection method.

3.2.2. Bayesian estimation

The unknown parameters «, £, and ¢ are estimated via a Bayesian approach, utilizing an adaptive
Type-II progressive censored sample with discrete uniformly distributed random removals. The esti-
mation is performed under both the SEL and LINEX functions, incorporating informative priors.

The SEL function, a widely used symmetric loss measure, is defined for an estimator p of parameter p
as:

L(p:p) = (p - p)*. (3.19)
Under SEL, the Bayes estimator of any function g(#) of the vector parameter 6 = («, £, 6)” is given by

8ps(Oldata) = Eggaa(8(0)). (3.20)
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where the expectation is taken over the posterior distribution of 6.
In contrast, the LINEX loss function L(A) for a parameter p is defined as:

La)y=e*—-ca—-1,c#0and r=p—p. (3.21)

The corresponding Bayes estimator under the LINEX loss function of any function g(#) of the vector
parameter 6 is

gpL(Oldata) = —% log[Egara(exp(—cg(#)))], ¢ # 0. (3.22)

The parameters a, , and ¢ are assigned independent gamma prior distributions. The gamma distribu-
tion is chosen as the prior distribution due to its natural suitability for positive-valued parameters, its
flexibility in encoding prior beliefs through shape and rate parameters, and its computational tractabil-
ity for MCMC sampling. Formally, the priors are specified as:

(@) o (@) exp(=b@), m(&) o< ()™ exp(=bad) and 73(6) e (6) " exp(=b36); @, 4,6 > 0.
(3.23)
Combining the likelihood function with the priors yields the joint posterior distribution of the vector
parameter 6 denoted by 7*(6|data) as

" (@|data) o
n— m—é R;

m(a)nz@)m(a)amé"ﬁ%exp(—a_i("’ ))H(l—exp( aZ(W)))R (I -exp(-a(25%))

i=1

m _ - J _ X _ _ X n—m—_Zj: R;
[+ 5 exp(—a(*5)))? [+ Sexp(~a(*"5)))F(S + b exp(—a ()
(3.24)
The posterior conditionals of @, { and ¢ are, respectively,
e Xi J < Xi ri Xm n_m_-.zj“ fi
mi(@a™ exp(—a Y (*54) [T(1 - exp(-a ¥ (%59)))"(1 — exp(-a(252))) =
. i=1 =1 i=1 i "

ﬂ-l(a | é/, 57 data) o ] »

1166 + 3 exp(-a(5))2 1165 + B exp(-a(5)) (5 + Fexp(-a(y) " 4"
i=1 i i=1 i m

(&) H X exp(—a Z("’ %) le(l — exp(—a g(—ﬁ?)))”(l — exp(—a(*= ér)))’HWEI
* i i=1 i=1 N n
(¢ | @, 0, data) o

fll(fS +6 e7<I)(—6Y(x‘+{)))2 H(5 + 0 exp(— oz(“{)))’l (6 + dexp(— a(x'“{ R

and
m3(8)0"

50 | @, ¢, data) o

{106 + S exp(-a (22 1166+ Sexp(-a(2)) (5 + Sexpl-a()) "
(3.27)
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As we see, the conditional posterior distributions of @, {, and ¢ are not standard distributions. As a
result, the M-H Algorithm is applied for MCMC implementation. The following steps show how the
M-H algorithm is applied to obtain posterior samples and subsequently get the Bayes estimates, as
suggested by Tierney [16].

1.
2.
3.

Start with initial guess ¢© = o©, 7 50,
Put j = 1.
For each parameter, generate proposal value ¢* (where ¢ can be «,  or ¢) from a proposal density

gi(@" ™0, 07) = (VD — o),

where p(pV~" — ¢\) is the probability of obtaining a value ¢ from a previous value ¢V=".
Here,i =1 fora, i =2 for { and i = 3 for 6.

. Evaluate the acceptance probabilities for each parameter as follows:

ﬂ’{ (a*lé’(j_l), 5(]’—1)’ data)ql(a'*, a,(j—l))

o = i 1, - - : j ’ 328
Ve = min| 7 (@U-D|LG=D, 80D, data)g, (@D, a*) o
i 5, datahgs L) (3:29)
¢ " (LU VW), 807D, data)g, (U, ) |
d
an 756", ¢V, data)qs(6*, 697)
Vs = min[l, (330)

ﬂ;(é(J_l)la(l), é/(l>’ data)q3(§(l_1), 6*) ’

Note that when the proposal density g;(¢*,¢"~") is symmetric, the acceptance probability
simplifies to:

7 (¢*)

W]. (3.31)

v, = min[1,

. For each parameter ¢ = a, {, 6, draw u, ~ Uniform(0, 1) and perform the acceptance/rejection

step:
40 = " if u, < v,
oY= otherwise,

where v, is the acceptance probability for ¢.
Increment j = j + 1 and repeat Steps (3)-(5) for N iterations to obtain o, 7,67, i = 1,2, ...N.

. Compute the approximate Bayes estimates under SEL and LINEX loss functions, respectively,

as:

1 oo
~ _ )
Ps = E 0, (3.32)
N—Mj:MH
and
-1 1 al 0
Ppr = — log| ——— —coN|. 3.33
Pp1. = — log N_M/;MHCXP( cg”) (3.33)

where M denotes burn-in period, and ¢ represents either a, { or 6.
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3.3. Simulation study

A simulation study is conducted to evaluate the performance of the estimators derived earlier. 1,000
adaptive Type-II progressive censoring samples of varying sizes n = 40, 80 are generated from the
MOEMIR distribution, with random discrete uniformly distributed removals. The true parameters
are setas @ = 0.05, ¢ = 03,6 = 0.5, and T = 5. In this study, failure information percentages
(©+ X 100%) are considered at 50% and 75%. For the Bayesian estimation, independent gamma priors
are assigned to the parameters a, £, and 9, as specified in (3.23). In most practical situations, the
available information is usually very limited, so the hyperparameters are selected to reflect weak prior
information, ensuring the posterior distribution would be dominated by the data. Specifically, we chose
a; =0.1,b; = 0.1 fora; a, = 0.2,b, = 0.2 for ¢; and az = 0.3, b3 = 0.3 for 6. This specification ensures
that the posterior distribution is data-dominated, aligning with the principle of weakly informative
priors, which promotes robustness while minimizing undue influence on the estimates, see Gelman et
al. [7].

el 6 dat) " ({ a6, data) " (6], ¢ data)
12x10°
- s.x 107
4 x40 1.x1072
4xio
310722 Bt

axid
- 6.x10-10
20107
4110710 2010
1.x10"32
210710 1x1072

002 004 006 008 02 04 05 03 0 o mn o T

Figure 2. Samples of graphs of the conditional posterior density function of «, ¢, and §

As illustrated in Figure 2, the conditional posterior distributions of @, {, and ¢ are approximately
bell-shaped and symmetric, indicating that the proposal value ¢* can be appropriately sampled from
a normal distribution: ¢* ~ N(pV™, 0'3)), where O'i represents proposal variances derived from the
inverse observed information matrix.

The study primarily compares the performance of MLEs and Bayesian estimators based on the SEL
and LINEX loss functions, focusing on bias and mean squared error (MSE). Table 2 reveals that the
performance of Bayesian estimates is clearly influenced by the choice of loss function. Specifically,
LINEX with (¢ = 5) outperforms SEL with respect to both bias and MSE, whereas LINEX with
(c = —5) may sometimes underperform relative to SEL. In many cases, Bayesian estimates using the
LINEX (c = 5) often exhibit lower biases than the MLEs, indicating greater accuracy in estimating
the true parameter values. Furthermore, as both n and m increase, all estimates tend to exhibit reduced
bias, suggesting that larger sample sizes improve the accuracy of all methods, in line with statisti-
cal estimation principles. Overall, Bayesian estimates tend to outperform MLEs for smaller sample
sizes, providing better accuracy and precision. However, as sample sizes grow, MLEs become more
competitive, with their performance converging to that of Bayesian methods.
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Table 2. Average estimates of parameters (bias and MSE in parentheses): T = 5

n | m MLE SEL LINEX

c=-5 c=5

40 | 40 | & 0.0789 0.0797 0.0799 0.0795
(0.0289, 0.005) | (0.0297, 0.0053) | (0.0299, 0.0053)  (0.0295, 0.0052)

e 0.3805 0.3936 0.4414 0.3523
(0.0805, 0.0936) | (0.0936,0.158) | (0.1414,0.3097) (0.0523, 0.0963)

5 0.4799 0.4847 0.5 0.4699
(-0.0201, 0.1187) | (-0.0153, 0.1414) (0.0, 0.19) (-0.0301, 0.118)

30 | a 0.0767 0.0774 0.0776 0.0772
(0.0267, 0.0044) | (0.0274, 0.0047) | (0.0276, 0.0048)  (0.0272, 0.0047)

e 0.39 0.4591 0.5408 0.3771
(0.09,0.1032) | (0.1591,0.4171) | (0.2408, 0.8299) (0.0771, 0.1312)

5 0.4905 0.5127 0.5366 0.4884
(-0.0095, 0.1251) | (0.0127, 0.2264) | (0.0366, 0.3386) (-0.0116, 0.1442)

20 | & 0.0698 0.0715 0.0725 0.0708
(0.0198, 0.0036) | (0.0215, 0.0045) | (0.0225,0.0056)  (0.0208, 0.004)

e 0.4133 0.5527 0.7203 0.395
(0.1133, 0.1055) | (0.2527,3.1334) | (0.4203,9.1702)  (0.095, 0.1485)

5 0.5233 0.5347 0.5844 0.4909
(0.0233,0.172) | (0.0347,0.2948) | (0.0844, 0.5969) (-0.0091, 0.1714)

80 | 80 | & 0.0755 0.0759 0.0759 0.0758
(0.0255, 0.0039) | (0.0259, 0.004) | (0.0259,0.0041)  (0.0258, 0.004)

e 0.3473 0.3554 0.376 0.3355
(0.0473, 0.0754) | (0.0554,0.1112) | (0.076,0.1612)  (0.0355, 0.0758)

5 0.4715 0.4722 0.4759 0.4685
(-0.0285, 0.0769) | (-0.0278, 0.0785) | (-0.0241, 0.0823)  (-0.0315, 0.076)

60 | & 0.0778 0.0779 0.0779 0.0778
(0.0278, 0.0043) | (0.0279, 0.0044) | (0.0279, 0.0044)  (0.0278, 0.0044)

e 0.3551 0.3786 0.4162 0.342
(0.0551, 0.0831) | (0.0786,0.1794) | (0.1162,0.3089)  (0.042, 0.0947)

5 0.4583 0.4651 0.4721 0.4592
(-0.0417, 0.0764) | (-0.0349, 0.0866) | (-0.0279, 0.1016) (-0.0408, 0.0801)

40 | & 0.0767 0.0782 0.079 0.0774
(0.0267, 0.0048) | (0.0282,0.0061) | (0.029,0.0081)  (0.0274, 0.0051)

e 0.4082 0.4634 0.5247 0.4062
(0.1082, 0.1225) | (0.1634, 0.3606) | (0.2247,0.6392) (0.1062, 0.1934)

5 0.485 0.5154 0.5525 0.4799
(-0.015, 0.1064) | (0.0154,0.8157) | (0.0525,2.9488) (-0.0201, 0.1099)
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3.4. Real data illustration

We analyze a dataset of remission times (in months) for 128 bladder cancer patients from Lee and
Wang [10]. The dataset spans disease stages I-IV, with remission times ranging from 0.08 to 79.05
months.

Table 3. Summary statistics of the dataset

Statistic Mean Median Standard deviation Skewness Kurtosis
Value (months) 9.37 6.93 10.50 2.84 11.92

o
i

urvival function
[=]
w
T

1 ——— Empirical
\ MOEMIR

By

oof =

1 Il 1 1 1 H
0 20 40 60 80

[=]

Figure 3. Bladder cancer data fitted to MOEMIR

Table 3 presents a descriptive statistical summary of the data. The results indicate that the data
reveal right skewness. So, the MOEMIR distribution is suitable for modeling this data. Figure 3
plots the fitted survival functions, visually confirming close alignment of the MOEMIR distribution
with the empirical distribution. To demonstrate the fitness of the MOEMIR distribution, we compare
it with five alternative distributions: Marshall-Olkin Extended inverse Rayleigh (MOEIR), Marshall-
Olkin Extended Exponential (MOEE), Marshall-Olkin Generalized Weibull (MOGW), MIR, and IR,
all of which are flexible for survival analysis. Table 4 presents the Kolmogorov-Smirnov (K-S) statis-
tic, P-value, Akaike Information Criterion (AIC), Consistent AIC (CAIC), Hannan-Quinn Information
Criterion (HQIC), and Bayesian Information Criterion (BIC) for the six competing distributions. From
Table 4 we observe that MOEMIR distribution provides an appropriate fit to the data with the highest
p-value (0.9429) for K-S (0.0467). It also yields the lowest AIC, CAIC, HQIC, and BIC among the
MIR, IR, MOEE and MOGW distributions, with no significant difference compared to MOEIR.
Additionally, the unknown parameters of the MOEMIR distribution as well as its survival function
and HRF at month 1 are estimated via maximum likelihood estimation for complete data and adap-
tive Type-II progressive censored samples with random discrete uniformly distributed removals. For
m = 96 (25% elimination), the adaptive progressive sample i1s:{0.08, 0.2, 0.4, 0.5, 1.19, 1.26, 1.35, 1.4,
1.46, 2.02, 2.02, 2.07, 2.09, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.75, 2.83, 2.87, 3.25, 3.31, 3.36, 3.36,
3.52, 3.57, 3.64, 3.82, 4.18, 4.23, 4.26, 4.33, 4.34, 4.4, 4.5, 4.51, 5.09, 5.17, 5.32, 5.34, 5.49, 5.62,
5.71, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.62, 7.63, 7.66, 7.93, 8.26, 8.53,
8.65, 9.02, 9.22, 10.34, 10.66, 10.75, 11.64, 11.79, 11.98, 12.03, 12.07, 12.63, 13.11, 13.29, 13.8,
14.24, 14.76, 14.77, 15.96, 17.12, 17.14, 17.36, 18.1, 19.13, 22.69, 23.63, 25.74, 26.31, 32.15, 34.26,
36.66, 43.01, 46.12, 79.05} and the corresponding random removals are {29,2,1,0%}. Similarly, for
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m=64 (50% elimination), the adaptive Type-II progressive censored sample is: {0.08, 0.4, 0.51, 0.81,
1.05, 1.19, 1.35, 1.4, 1.46, 2.07, 2.09, 2.23, 2.46, 2.75, 2.83, 3.31, 3.36, 3.36, 3.57, 3.64, 3.82, 4.18,
4.34, 4.4, 45, 451, 487, 498, 5.09, 5.32, 5.32, 5.34, 5.41, 5.49, 5.62, 5.85, 6.25, 6.54, 6.94, 6.97,
7.09, 7.26, 7.32, 7.59, 7.62, 7.87, 7.93, 8.37, 9.47, 10.75, 11.25, 12.02, 12.63, 13.29, 13.8, 14.24,
15.96, 17.12, 17.36, 18.1, 21.73, 25.74, 25.82, 26.31} with random removals {32,2, 13,13, 1,3,0%)}.
From the results in Table 5, we may conclude that the probability of remission time being greater than
one month is greater than 93%, since S (1) > 0.93 remained robust across censoring schemes. This
indicates that a large proportion of bladder cancer patients are expected to experience remission times
longer than 1 month.

Table 4. Goodness-of-fit statistics for the competitive models

Distributions | MOEMIR MOEIR MOGW MOEE MIR IR
k-s statistics 0.0467 0.0495 0.0783 0.1121  0.2316 0.7502
p-value 0.9429 09124 0.3510 0.1024 < 0.0001 < 0.0001
AIC 833.385 831.124 838.76 845.210 924.765 1550.68
CAIC 833.578  831.220 838.953 845.403 924.861 1550.71
HQIC 836.861 833.411 842.236 848.686 927.082 1551.84
BIC 841.941 836.828 848.322 852.774 930.469  1553.54

Table 5. MLEs of parameters, survival and hazard functions for bladder cancer data

m & l o S(1) A1)
128 0.0149 3.3474 215302 0.935 0.0012
96 0.0099 4.1218 311.513 0.9417 0.1078
64 0.0088 4.5457 267.574 0.9301 0.1302

4. Conclusion

This paper proposes the MOEGIE family of distributions and studies some of its important sta-
tistical properties. A new distribution, referred to as the MOEMIR distribution, which is a member
of the proposed family and an extension of the MIR distribution, is introduced. Using the statistical
properties of the MOEGIE family, the properties of the MOEMIR distribution are derived. Under an
adaptive Type-II progressive censoring scheme with discrete uniformly distributed random removals,
the MLEs and Bayesian estimators of the parameters of the MOEMIR distribution are determined. The
Bayes estimates are obtained under two loss functions: symmetric (SEL) and asymmetric (LINEX).
The performance of the various parameter estimates is compared using a Monte Carlo simulation. Re-
sults show that Bayesian estimators tend to outperform MLE in small sample sizes, providing better
accuracy and precision. However, as sample sizes grow, MLE becomes more competitive, and its
performance approaches that of Bayesian methods. Based on the theoretical developments, simula-
tion results, quantile-based shape analysis, and model fitting statistics, we recommend adopting the
MOEMIR distribution as a suitable model for positively skewed lifetime data, especially under censor-
ing schemes.
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