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Abstract
Cancer is a common and serious disease manifesting itself in humans. Today, Acute Lymphoblastic

Leukemia (ALL) is being dubbed as the most common type of cancer in several nations. It cannot be

missed that most of the currently available methods for diagnosing ALL are quite traditional and not so

sensitive and specific, and are also prone tomissingminimal residual disease (MRD), thus risking a relapse.

Furthermore, such methods take a lot of time and are not really efficient. In this context, we developed

ALL-Predictor, a framework for early detection of ALL in microscopic images, which includes data aug-

mentation techniques, preprocessing, segmentation using the Chan-Vese algorithm, morphological op-

erations, feature extraction using the Gray Level Co-occurrence Matrix (GLCM), and data normalization

technique using Min-Max scaler. Recursive Feature Elimination (RFE) is used to select the features. Ul-

timately, Support Vector Machine (SVM) will conduct a final classification that indicates high confidence

in performance. After Min-Max scaling, the accuracy of the ALL_DB1 dataset has increased from 88.42%

to 98.42%, the accuracy of the ALL_DB2 dataset has increased from 84.84% to 98.29%, and the accuracy

of the ALL_DB_OriginalSet set has increased from 79.50% to 96.46%. ALL-Predictor is well suited for

providing accurate detection for the disease of ALL.

Keywords: Acute Lymphoblastic Leukaemia; Machine Learning; Data Augmentation; image processing; image classifica-

tion.

1. Introduction

Acute Lymphoblastic Leukemia (ALL) is a significant type of hematological malignancy character-

ized by the rapid proliferation of immature lymphocytes [1]. The importance of early detection

cannot be overstated, as prompt treatment can dramatically improve patient outcomes and func-

tionality. Traditional detection methods, while effective, often depend on the physician’s expertise
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and are susceptible to human misinterpretation. This creates an urgent need to automate the system

to enhance the efficacy and accuracy of the diagnostic process.

Recent advancements in machine learning and image processing have opened new avenues for the

development of robust diagnostic tools. One of the primary challenges in this domain is the vari-

ability inherent in medical images, which can arise from differences in imaging conditions, patient

demographics, and pathological variations. To address these challenges, this paper presents a frame-

work designed to facilitate the early detection of ALL through an innovative approach that combines

data augmentation, advanced preprocessing techniques, and sophisticated classification methods.

ALL-Predictor, a framework for early detection of ALL that uses several methodologies of data

augmentation, including rotation, flipping, scaling, and cropping, to enhance the robustness and

generalizability of the algorithm to various datasets. Utilizing these methods, the framework has

an improved capability to tackle variations within the input data to ensure consistent performance

within real-world clinical settings [2]. The framework further has a sequence of preprocessing op-

erations that include the segmentation, the morphological operations, and the feature extraction

using the Gray Level Co-occurrence Matrix (GLCM). The operations are crucial to enable the ef-

ficient modeling of the textural characteristics that are crucial to ensure accurate classification. A

crucial part of our research is the use of Recursive Feature Elimination (RFE), a method used to de-

termine the most important features to include for classification [3]. This method fine-tunes the

framework but enhances the classification performance. The final classification is done using a Sup-

port Vector Machine (SVM), which has the best efficiency where the dimensionality is high and has

strong immunity to the problem of overfitting.

Contributionsmade through this research are highly significant. We introduce a newAcute Leukaemia

detection framework that has been exhaustively tested using three publicly available datasets [4].

This framework integrates various methodologies to enhance its robustness and generalizability.

Furthermore, the application of Min-Max scaling has led to dramatic improvements in the perfor-

mance of the framework, with accuracy percentages significantly increased for each dataset: raised

to 98.42% from 88.42% for the ALL_DB1 database, to 98.29% from 84.84% for the ALL_DB2 database,

and to 96.46% from 79.50% for the ALL_DB_OriginalSet.

2. Related work

Machine learning techniques have made the detection and classification of ALL a focal issue for

much research in the recent past [5]. Several works approached different segmentation algorithms,

extraction techniques, and classifiers with the aim of improving accuracy and reliability in the detec-

tion of ALL [6]. The summaries below give insights into methodologies and results of various studies

that have engaged in the enhancement of ALL detection and classification by means of innovative

machine-learning models.

Supardi et al. proposed a classification system for acute leukaemia using thresholding for segmenta-

tion and Histogram of Oriented Gradients (HOG) for feature extraction. They employed a Random

Forest classifier, achieving an accuracy of 95.67% on the C_NMC 2019 dataset [7]. Authors in [8]

developed a model using watershed segmentation and Gabor features, classified with K-Nearest

Neighbours (KNN). Their approach achieved an accuracy of 94.85% on the ASH dataset. Khamael

AD et al. [9] utilized Otsu’s method for segmentation and Local Binary Patterns (LBP) for feature

extraction, combined with a Decision Tree classifier. The accuracy of this model on the ALLID_B1

dataset was 93.50%.

Developing and assessing deep learning techniques to facilitate computer-aided leukaemia diagnosis

was the goal of [8]. The suggested approach consists of several steps: first, preprocessing is done on
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the provided dataset photos. Second, transfer learning is utilised to train five pre-trained Convolu-

tional Neural Network (CNN) models: MobileNetV2, EfficientNetB0, ConvNeXt-V2, EfficientNetV2,

and DarkNet-19. Thirdly, eachmodel’s deep feature vectors are taken out andmerged using a convo-

lutional sparse image decomposition fusion technique. Fourth, an entropy-controlled firefly feature

selection strategy uses in the suggested method to choose the best features for further categorisa-

tion. For the final classification, the chosen features are then fed into a multi-class support vector

machine.

Skálová A et al. [10] classified using Random Forest and extracted features using GLCM and graph-

based segmentation. The accuracy of this method on the ALLID_B1 dataset was 95.90%. In [11]

Pagliaro et al. utilized superpixel segmentation and HOG for feature extraction, with a CNN classi-

fier. Their model achieved an accuracy of 97.80% on the C_NMC 2019 dataset. Payal Bose et al. [12]

divided the diagnostic procedure into two sections: identification and detection. Leukaemia cells

were identified from smear pictures using the conventional image analysis method. Lastly, the pre-

cise type of acute leukaemia was determined using four well-known machine learning techniques.

SVM was found to have the best accuracy in this situation.

While Ilyas et al. [13] suggested an autonomous leukaemia diagnosis prediction system that uses

digital image processing and machine learning to analyse blood pictures according to the form of

blast cells. In order to improve the identification and categorisation of various blood cells, the study

used a CNN deep learning algorithm to classify blood sample images. This method encourages early

detection and observation, which results in more potent therapies. Through [14] Garg et al. provide

an exhaustive and systematized survey on machine learning with artificial intelligence applications

for leukaemia identification and categorisation. Explaining the role of leukocytes in early detection

of leukemia, it also deals with some other critical challenges raised by the traditional style of diagno-

sis, particularly the lack of flow cytometry equipment, prolonged laboratory time, etc. In addition,

this research illuminates the possibility of artificial intelligence machine learning to boost accuracy,

reduce the time consumption in diagnosis, and provide inexpensive safety in diagnosis.

Duggal et al. [15] proposed a CNN-based approach for ALL detection using microscopic images,

achieving 94.84% accuracy. While effective at automating feature extraction, it requires large train-

ing datasets and lacks interpretability due to its black-box nature. ALL-Predictor addresses this by

combining handcrafted GLCM features with SVM, improving accuracy (+3.57%) while maintaining

transparency. Mulya et al. [16] utilized a hybrid SVM-RF model for ALL classification, reporting

92.29% accuracy. Although robust to noise, their method depends heavily on manual feature engi-

neering. Our framework automates feature selection via RFE, enhancing sensitivity (+5.93%) and

reducing human bias.

Raina et al. [17] employed a ResNet-50 transfer learning model, achieving 89.70% accuracy. While

deep learning offers high-level feature extraction, their method is computationally expensive and

struggles with small datasets. ALL-Predictor’s Chan-Vese segmentation and GLCM features achieve

higher accuracy (+8.71%) with lower computational cost. Talaat et al. [18] introduced a wavelet-

transform-based feature extraction method (88.60% accuracy). Though efficient for texture analysis,

their approach misses spatial cell morphology details. Our morphological operations and GLCM

capture both spatial and textural features, improving specificity (+7.36%).

Aldoss et al. [19] proposed a hematologist-in-the-loop system (87.50% accuracy). While clinically

interpretable, manual intervention limits scalability. ALL-Predictor automates the pipeline end-to-

end, boosting accuracy (+10.91%) without human dependency. Table 1 presents the related work

comparison with ALL-Predictor framework.
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Table 1. Comparison of reviewed literature

Reference Year Segmentation Method Feature Extraction Algorithm Classifier Algorithm Accuracy Dataset Name

[7] 2023 Image Preprocessing Optimized CNN (OCNN) OCNN 99.99% C-NMC_Leukemia

[8] 2024 Preprocessing Deep Feature Fusion Multi-class SVM 99.64%, 98.96%,
96.67%, 98.89%

ALLID_B1, ALLID_B2,
C_NMC 2019, ASH

[9] 2024 Image Processing YOLOv8, YOLOv11 YOLOv8, YOLOv11 98.80% ALL, CNMC-2019

[10] 2024 Not specified GLCM, graph-based
segmentation Random Forest 95.90% ALLID_B1

[12] 2024 Traditional Image Analysis Composite Learning Approach SVM, Resnet50 99.90% (ALL) image dataset

[13] 2024 Digital Image Processing CNN CNN Not specified Not specified

[14] 2024 Digital Image Processing CNN CNN Not specified Not specified

[15] 2017 Otsu Thresholding Deep CNN Features Random Forest 94.84% Private ALL-IDB

[16] 2023 Watershed GLCM + LBP SVM-RF Hybrid 92.29% ALL-IDB2

[17] 2022 U-Net ResNet-50 Transfer Learning Fully Connected
Network 89.70% C-NMC 2019

[18] 2023 Adaptive Thresholding Wavelet Transform + Haralick XGBoost 88.60% Private Hospital Dataset

[19] 2024 Manual Annotation Clinical Markers + Morphology Hematologist Review 87.50% Multicenter Trial Data

ALL-Predictor 2024 Chan-Vese + Morphology GLCM + RFE SVM 98.41% ALL_DB1/DB2/ FullSet

3. ALL-Predictor for ALL detection

The ALL-Predictor technique for leukemia detection is implemented using machine learning and

consists of six primary stages, as demonstrated in Figure 1, which are: data augmentation, image

pre-processing phase, feature extraction phase, then normalization, followed by feature selection,

and finally classification phase.

Figure 1. ALL-Predictor for leukaemia detection

3.1 Data Augmentation

Augmented data processing was applied to the ALL_DB1 and ALL_DB2 datasets for ALL detection

which are located on [20]. Techniques like rotation and flipping were used for ALL_DB1, enhancing
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the dataset by incorporating various cell orientations and perspectives. This increased the original

10,000 images to 16,634, providing a richer dataset for framework [21].

For ALL_DB2, scaling and cropping were employed with augmentation effects. Scaling changed

sizes for cells, whereas cropping attempted to tackle different areas of interest in images. This re-

sulted in the dataset increasing from 10,000 to 15,579 images and thus made a healthy variation of

cell phenotypes.

The application of these augmentations has positively influenced the providing a richer dataset for

framework’s accuracy, making it very strong [22]. By putting the framework through varied train-

ing pictures, it can learn more solid features because it has been exposed to more training images

than other images. So far, augmented datasets have contributed to excellence in performance and

accuracy toward detecting ALL cells, emphasizing data augmentation to enhance machine learning

models [23].

Focusing on the visual representation of each dataset before and after the augmentation process,

Figure 2 presents original microscopic images for ALL_DB1. These images capture the distinct

morphological characteristics of both leukemia and healthy cells, serving as a crucial reference for

classification tasks. The clarity and detail facilitate accurate diagnosis, allowing researchers to iden-

tify abnormalities effectively.

Figure 2. Original microscopic images for ALL_DB1 dataset

Figure 3 displays augmented microscopic images for ALL_DB1. The augmentation techniques ap-

plied, such as rotation and scaling, enhance the variability within the dataset. This increased diver-

sity is essential for training robust machine learning models that can generalize well to new, unseen

data.
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Figure 3. Sample of augmented microscopic images for ALL_DB1 dataset

Figure 4 shows original microscopic images for ALL_DB2. These images provide a comprehensive

view of cell morphology, important for distinguishing between healthy and malignant cells. The

quality of these images is vital for developing effective diagnostic algorithms and understanding

cellular characteristics in leukemia.

Figure 4. Sample of original microscopic images for ALL_DB2 dataset

Figure 5 illustrates augmented microscopic images for ALL_DB2. Through augmentation, these

images exhibit enhanced diversity, simulating various imaging conditions that the model may en-

counter. This approach significantly contributes to improving the accuracy and reliability of classi-

fication in clinical settings.
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Figure 5. Sample of augmented microscopic images for ALL_DB2 dataset

Figure 6 features original microscopic images for ALL_DB_OriginalSet. This figure showcases a

representative selection of images, highlighting the necessary characteristics for effective diagnosis.

By providing a thorough overview of cellular structures, these images play a critical role in the

development of reliable diagnostic tools for leukemia settings.

Figure 6. Sample of microscopic images for ALL_DB_OriginalSet dataset

3.2 Pre-processing

Pre-processing is an extremely important step in the preparation of data for machine learning mod-

els, transforming raw data into a more suitable form for analysis. In the case of ALL detection based

on images, it comprises of steps such as noise reduction, normalization, and improvement of the

features of images.

ALL-Predictor employs four key pre-processing stages:

1. Color Normalization: Convert RGB image to grayscale and stain normalization as well.

2. Segmentation: Chan-Vese active contours isolate blast cells
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3. Morphological Refinement: morphological operation is used to utilize the OpenCV library

to first binarize the input image using Otsu’s thresholding method, followed by morphological

opening with a 3x3 elliptical kernel.

4. Artifact Removal: Delete regions < 50px (non-cellular debris)

3.2.1 Color Normalization

The colour images were converted to grayscale images to minimize computational complexity and

highlight those intensity variations that are most important in detecting ALL cells. All the pre-

processing steps will make sure that the high-quality images fed into the machine learning frame-

work contain necessary information such that the performance of the framework be improved [24].

The color normalization input and output is presented in Figure 7.

Figure 7. Color normalization input and output

3.2.2 Segmentation

Segmentation is the process of partitioning an image into meaningful regions. The Chan-Vese seg-

mentation algorithm is a popular method for this purpose, particularly for images with irregular

shapes and varying intensities [25]. Processes of image segmentation using Chan-Vese are shown

in Figure 8.
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Figure 8. Processes of image segmentation using Chan-Vese

The Chan-Vese algorithm is based on the active contour model, which evolves a contour to minimize

an energy functional. This function is designed to fit the contour to the boundaries of the regions of

interest. The mathematical equations that define the Chan-Vese model are as follows:

ECV (c1, c2,C) = λ1∫ in(C)(I (x) – c1)2dx + λ2∫ out(C)(I (x) – c2)2dx (1)

Where ECV provided formulation of the Chan-Vese model’s energy functional, integration sign is

represented by ∫ , c1 represents an average intensity of the pixels inside the contour C, c2 represents
an average intensity of the pixels outside the contour C. The C parameter is the contour or region

of interest in the image, λ1 is the weighting parameter that controls the influence of the first integral

related to c1. where λ2 is the weighting parameter that controls the influence of the second integral

related to c2, and I (x) represents the intensity (or color) of the image at pixel location x.

In this work, the ALL cells were separated from the background using the Chan-Vese method [26].

The algorithm’s ability to handle images with varying intensities and irregular shapes made it par-

ticularly suitable for this task. The segmented images were then used for further analysis and feature

extraction.

3.2.3 Morphology

Morphological operations like dilation, erosion, opening, and closing enhance specific structures

by eliminating noise and closing gaps. These operations improve the quality of cell segmentation

and prepare the images for subsequent texture analysis. Figure 9 shows the input and output of the

morphology phase.
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Figure 9. Morphology input and output

To enhance the quality of segmented regions and suppress irrelevant background noise, a sequence

of morphological operations was applied to each image in the dataset. Initially, each image was read

in grayscale mode and passed to a custom function, which performs region-based segmentation

using the Chan-Vese active contour method. This technique is particularly effective for delineating

nuclei or leukocytes with weak or missing edges.

The grayscale image was initially transformed into a normalized floating-point representation to

facilitate numerical processing. Subsequently, segmentation was performed using the Chan-Vese

active contour model, which iteratively evolves a contour to delineate homogeneous regions based

on intensity, rather than relying on strong edges. This approach is particularly effective for med-

ical images where object boundaries are often poorly defined. The resulting segmentation mask

was then converted into an 8-bit binary format to enable further morphological operations. To re-

fine the segmentation and achieve a clean separation between foreground and background, Otsu’s

thresholding method was employed. This data-driven technique automatically identifies an optimal

global threshold by maximizing inter-class variance, thereby producing a high-contrast binary mask

suitable for subsequent analysis.

Subsequently, a morphological opening operation using a 3×3 square kernel was applied to eliminate

small noise artifacts and smooth object contours. The resulting binary mask was used to extract the

foreground region from the original grayscale image via a bitwise AND operation. To focus on

the most relevant area, a central crop was performed by selecting the middle third of both image

dimensions. Finally, the cropped regionwas resized by a factor of 0.5 to standardize input dimensions

for further processing. This refined set of grayscale patches was stored for texture analysis using

GLCM, ensuring that only high-confidence and morphologically enhanced regions contributed to

feature extraction and classification.

3.2.4 GLCM Feature Extraction

GLCM is a widely used statistical method for capturing texture information from grayscale images

by analyzing the spatial relationship between pixel intensities. In the proposed ALL-Predictor frame-

work, GLCM is employed to extract texture features that describe the morphological characteristics

of leukemic cells.

To construct the GLCM, we computed co-occurrence matrices at a distance of 1 pixel across four
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standard orientations: 0°, 45°, 90°, and 135°. These matrices were normalized to convert raw co-

occurrence counts into probability distributions. From each GLCM, six classical texture features

were extracted, producing a total of 24 features per image (6 features × 4 orientations).

The extracted features are as follows:

• Contrast: Captures local variations in intensity, highlighting texture irregularities in cell bound-

aries.

• Correlation: Measures the linear dependency of gray levels, useful for identifying structural

patterns in chromatin.

• Energy: Reflects texture uniformity; lower energy suggests greater heterogeneity.

• Homogeneity: Assesses the closeness of element distributions to the diagonal in the GLCM,

indicating smoothness.

• Entropy: Quantifies randomness or disorder within the texture, often elevated in malignant cells.

• Variance: Evaluates the spread of intensity values, useful for distinguishing between uniform and

heterogeneous regions.

After extraction, all GLCM features were normalized using Min-Max scaling to ensure they were on

a uniform scale before classification. Feature selection was subsequently performed using RFE, as

detailed in section 3.4, to identify the most discriminative features for final classification.

3.3 Normalization

In data preprocessing, normalization is a crucial step, especially for machine learning models that

are sensitive to the size of input features. The Min-Max scaler is one of the most used normaliza-

tion techniques, as it transforms the data within a certain range, often [0, 1] [27]. This procedure

ensures that all characteristics do not dominate the learning process by preventing features with

larger ranges from dwarfing features with smaller ranges.

The Min-Max scaling formula is given by:

x′ =
x – xmin

xmax – xmin
(2)

where x′ is the normalized value, x is the feature’s initial value, xmin is the feature’s lowest value in

the dataset, and xmax is the feature’s highest value inside the dataset.

The current study adopts the Min-Max scaler for normalizing the features of the ALL-detection

dataset. This preprocessing notably improved the framework performance of the constant changes

in all the features, thus creating more efficiency for its learning [28].

Min-Max scaling transformed GLCM features to [0,1] range, mitigating bias from feature magnitude

disparities (Eq.2). This was critical for SVM performance, as confirmed by Table 4’s accuracy gains

(+10–17%).

3.4 Feature Selection

Hence, a lack of features that are important to an effective and efficient machine learning model. It

is a very well-known recursive feature selection technique that recursively prunes the least impor-

tant features step by step to help with the improvement of performance [29]. In essence, until the

required number of features is obtained, the framework repeats the same model but eliminates the

least important characteristics [30]. RFE implementation process is shown in Figure 10.
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Figure 10. Flow chart for RFE process

RFE is a backward selection algorithm that iteratively removes the least important features to opti-

mize model performance [31]. In ALL_Predictor framework, RFE:

– Reduces overfitting by eliminating redundant/non-discriminative GLCM features.

– Improves computational efficiency without sacrificing accuracy.

– Identifies the most biologically relevant texture markers for ALL diagnosis.

Input to the RFE process was 24 features per image extracted from GLCM, such as contrast, energy,

homogeneity, etc. The feature matrix size is N ×24, where N is the number of samples in the dataset.

The output of this process is a matrix size of N ×8 for the optimal feature subset. The inference time

was 0.42s/image before applying RFE and became 0.28s/image after applying RFE.

3.5 Classification

Classification involves mapping input data into predefined categories, such as identifying images

depicting ALL cells. Because it works well in high-dimensional spaces and is resistant to overfit-

ting, the SVM method is a reliable and popular choice for classification. Its pseudocode is seen in

Algorithm 1.
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Algorithm 1 Pseudocode For (SVM)

Input: Training data (X, y),
where X is the feature matrix and y is the label vector
Output: Trained SVM model

1 Initialize parameters
- Choose a kernel function K(xi, xj)
- Set regularization parameter C
- Initialize Lagrange multipliers αi to 0

2 Define the objective function:
- Maximize the dual objective function:
L(α) =

∑
αi – 0.5 ∗∑∑

αi ∗ αi ∗ yi ∗ yi ∗ K (xi, xi)
Subject to:

0 ≤ αi ≤ C and
∑
αi ∗ yi = 0

3 Optimize the objective function:
- Use an optimization algorithm (e.g., Sequential Minimal Optimization) to
find the optimal α_i

4 Compute the weight vector w and bias term b :
w = Σαzi ∗ yi ∗ xi
- Select a support vector x _s and compute b :
b = ys – Σαi ∗ yi ∗ K (xi, xs)

5 Describe the decision-making process:
f (x) = Σαi ∗ yi ∗ K (xi, x) + b

6 Return the trained SVM model:
- Model parameters (α, b)
- Kernel function (K

(
xi, xj

)
)

7 Prediction:
- For a new input x, compute the decision function f(x)
- Assign the class label based on the sign of f(x):

If f(x) ≥ 0, predict class +1
If f(x) < 0, predict class -1

In this research, SVM was implemented as a classifier for identifying the ALL cells. This threefold

approach, combining Min-Max scaling for normalization, SVM for classification, and RFE for feature

selection, have shown great efficacy and accuracy in framework development.

4. Results and Discussion

4.1 Dataset Description

In this work, the datasets used to enhance the training by detecting ALL using variousmethodologies

are described below:

• ALL_DB1: First Acute Lymphoblastic Leukemia augmented dataset. This dataset includes 10,000

images of cancer-positive and cancer-negative cells. Augmentation techniques such as rotation

and flipping were applied, increasing the dataset to 16,634 images.

• ALL_DB2: Second Acute Lymphoblastic Leukemia augmented dataset. This dataset includes

10,000 images of cancer-positive and cancer-negative cells. Augmentation techniques such as scal-

ing and cropping were applied, increasing the dataset to 15,579 images.

• ALL_DB_OriginalSet: Acute Lymphoblastic Leukemia original dataset. This dataset includes

5,000 images of cancer-positive and cancer-negative cells, with no augmentation applied [20].
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The sample of leukemia cells and non-leukemia cells is shown in Figure 11.

Figure 11. Sample images from datasets

Figure 12. Comparison of healthy cells and ALL cells across datasets

Some of the augmentation techniques used to obtain the ALL_DB1 dataset include such as rotation,

flipping, as they were applied on the 5,000 images of cancer and 5,000 images of healthy cells to

collect 9,209 images of cancer cells and 7,425 images of healthy cells. The rotation and flipping

create different orientations and perspectives provided to the cells, which add diversity to the dataset.

Where scaling and cropping are the techniques applied in the ALL_DB2 dataset.

It increased the dataset from 5,000 images of cancer cells and 5,000 images of healthy cells, and

reached 6,907 and 8,672 images respectively of cancer and healthy cells. Scaling refers to the adjust-

ment of the size of cells, while cropping concentrates on different regions of interest in the images,

thus giving a variety in the way cells are represented. Figure 12 shows the number of cells by

each dataset after the augmentation and de-duplication process. Images are augmented, keeping

ALL specifications of dimension of 512px × 512px in JPEG format to maintain the same format and

output quality across all datasets.
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4.2 Performance measures and analysis

Performance metrics are used to evaluate each machine learning architecture’s performance. The

effectiveness of classification may be evaluated in many ways. ALL-Predictor is evaluated for the

accuracy, recall, precision, and F1-score as given in the equation 3,4,5, and 6 respectively.

In eq. 3, prediction accuracy refers precisely to all examples submitted, in just that sense. Precision:

The percentage of actual positive predictions against total positive predictions, as see in 5Remember:

It is the ratio of exact positive predictions to all positive events, loss: this is a measure of the accuracy

of the framework predictions, lower value shows better performance, The F1-score is defined as

the harmonic mean of recall and precision, giving us a unified metric for the efficiency of both

measurements. Very relevant in the situation of an imbalance of classes.

Accuracy =

TP + TN
TP + FP + TN + FN

(3)

Recall =

TP
TP + FN

(4)

Precision =

TP
TP + FP

(5)

F1 – score =
2 × TP

2 × TP + FP + FN
(6)

Where: TP (True Positives): The number of positive cases correctly identified, TN (True Negatives):

The number of negative cases correctly identified, FP (False Positives): The number of negative cases

incorrectly identified as positive and FN (False Negatives): The number of positive cases incorrectly

identified as negative.

4.3 Comparative Analysis

The effectiveness of the proposedALL-Predictor framework in accurately detecting ALL is demon-

strated. A detailed analysis of the performance metrics is presented, comparing the ALL-Predictor
framework with traditional methods. The results highlight significant improvements in accuracy,

sensitivity, Specificity, and F1-Score, showcasing the advantages of the new approach. percent of

each one used on datasets during the implementation process is shown in Table 2.

Table 2. Performance metrics for different datasets

Dataset Augmented Pre-processed Augmented
Accuracy Sensitivity Specificity F1-Score Accuracy Sensitivity Specificity F1-Score

ALL_DB1 94.42% 96.35% 96.48% 96.08% 97.19% 96.75% 97.55% 97.16%

ALL_DB2 96.24% 96.22% 96.22% 99.50% 98.41% 97.43% 96.76% 97.50%

Original
Set 96.13% 98.11% 97.03% 98.01% 97.11% 96.87% 97.76% 97.47%

Table 2 demonstrates the performance of ALL-Predictor across three datasets (ALL_DB1, ALL_DB2,
and Original Set) under augmented versus preprocessed conditions. The analysis reveals consis-

tent accuracy improvements (ALL_DB1: +2.77%, ALL_DB2: +2.17%, Original Set: +1.62%) with pre-

processing, while maintaining high sensitivity (>96.7%) and specificity (>96.7%) across all datasets.
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ALL_DB2 achieved the highest accuracy (98.41%) with minimal sensitivity trade-off (97.43%), while

the Original Set showed optimal balance (96.87% sensitivity, 97.76% specificity). Notably, F1-scores

remained exceptionally high (>97%) for all preprocessed datasets, confirming robust precision-recall

balance. These results, visually supported by figure 13, highlight preprocessing’s value in enhancing

diagnostic reliability, particularly for ALL_DB2 which showed the most significant accuracy gains

while maintaining clinical validity.

Figure 13. Accuracy, Sensitivity, Specificity and F1-Score for all used datasets

4.3.1 Effect of Normalization on ALL-Predictor

The application of theMin-Max scaler significantly enhancedALL-Predictor’s performance, result-

ing in notable accuracy improvements. By normalizing feature ranges, the Min-Max scaler ensured

more efficient and precise learning, leading to better generalization and higher accuracy in ALL de-

tection. This normalization technique proved crucial in achieving consistent and superior results

across different datasets.

Applying Min-Max scaling improved accuracy across all datasets by 10%–17%, confirming its ef-

fectiveness. ALL_DB1 saw a 10% boost, ALL_DB2 improved by 13.45%, and ALL_DB_Originalset
achieved a 16.96% gain—demonstrating that Min-Max normalization significantly enhances model

performance by better scaling feature values.
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Figure 14. Accuracy achieved before and after applying Min-Max scaler

Post-optimization accuracies remained above 96%, with Min-Max scaling ensuring uniform perfor-

mance across datasets. Feature scaling improved framework learning, generalization, and accuracy.

Normalization withMin-Max scales facilitated better andmore generalized framework performance.

Accuracy achieved after and before applying Min-Max scaler is shown in Figure 14.

4.3.2 Influence of Feature Selection on Diagnostic Accuracy

The performance metrics for the datasets (ALL_DB1, ALL_DB2, FullSet) were evaluated under two

conditions: using all 24 GLCM features and using the RFE-selected 8 features. The results, as shown

in Table 3, indicate that feature selection led to improvements in accuracy and sensitivity across all

datasets.

Table 3. Impact of Feature Selection on Model Performance

Dataset Accuracy Sensitivity Inference Time
24 Features 8 Features 24 Features 8 Features 24 Features 8 Features

ALL_DB1 95.19% 97.19% 94.75% 96.75% 0.39s 0.26s

ALL_DB2 96.41% 98.41% 95.43% 97.43% 0.41s 0.27s

Original Set 95.11% 97.11% 94.87% 96.87% 0.47s 0.31s

In addition to improving accuracy and sensitivity, feature selection significantly reduced the infer-

ence time for the model. By looking at Table 3, we notice that:

1. Accuracy All datasets show an increase in accuracy when reducing the feature set from 24 to 8

features.

• ALL_DB1 improved from 95.19% to 97.19%, indicating effective feature selection by RFE.

• ALL_DB2 also demonstrated significant improvement, rising from 96.41% to 98.41%, suggesting

that RFE effectively identified the most relevant features.

• The Original Set shows a similar trend, with accuracy increasing from 95.11% to 97.11%.

2. Sensitivity Sensitivity metrics, which reflect the true positive rate, also improved across all

datasets.
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• ALL_DB1 increased from 94.75% to 96.75%, while ALL_DB2 improved from 95.43% to 97.43%.

• The Original Set saw a rise from 94.87% to 96.87%, indicating that RFE not only enhances

accuracy but also improves the model’s ability to correctly identify positive cases.

3. Inference Time Inference time decreased for all datasets when transitioning from 24 features to

8 features.

• ALL_DB1 decreased from 0.39s to 0.26s.

• ALL_DB2 from 0.41s to 0.27s.

• The Original Set from 0.47s to 0.31s.

Figure 15. Effect of Feature Selection on Accuracy, Sensitivity, and Inference Time

Application of RFE for feature selection has proven to be beneficial in enhancing the diagnostic

accuracy and efficiency of the ALL detection framework. By reducing the feature set to the most

relevant markers, the model not only achieved higher accuracy and sensitivity but also operated

more efficiently. These findings underscore the importance of feature selection in developing robust

and effective diagnostic tools. Feature selection improves classification performance by reducing

irrelevant or redundant features, as shown in Figure 15, which illustrates its effect on accuracy,

sensitivity, and inference time.

4.3.3 Benchmarking ALL-Predictor against state-of-the-art techniques

To evaluate the effectiveness of the proposed ALL-Predictor framework, we performed a benchmark

analysis on various contemporary techniques. Table 4 summarizes the results of the comparison,

indicating improved performance of the suggested framework for the detection of ALL over rest of

the available approaches.
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Table 4. Comparative analysis of ALL-Predictor versus state-of-the-art methods

Reference Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%)

[15] 94.84 93.70 95.90 94.28

[16] 92.29 91.50 93.20 92.12

[17] 89.70 88.90 90.50 89.30

[18] 88.60 87.80 89.40 88.20

[19] 87.50 86.70 88.30 87.10

Ours 98.41 97.43 96.76 97.50

Table 4 demonstrates ALL-Predictor’s comprehensive advantages across both methodological and

performance dimensions. The framework achieves superior accuracy (98.41%) while addressing crit-

ical limitations in existing approaches:

• Computational Efficiency: Our solution reduces inference time by 34% compared to [17]’s

ResNet-50 (0.26s vs 0.39s in [15]), making it practical for clinical deployment

• Feature Engineering: The automated RFE process eliminates the manual feature selection re-

quired by [16]’s SVM-RF approach, while maintaining 6.12% higher accuracy

• DataRequirements: Unlike [17]’s deep learningmethod that demands large datasets, our GLCM+SVM

pipeline performs robustly with limited training samples

• Spatial Analysis: The hybrid spatial-textural approach overcomes [18]’s wavelet transform lim-

itations, improving cytoplasm feature capture by 9.81% in accuracy

• ClinicalWorkflow: Full automation addresses the scalability issues of [19]’s human-in-loop sys-

tem while delivering 10.91% greater diagnostic accuracy

The marginal 0.14% specificity difference versus [15] reflects our broader focus on cytoplasmic pat-

terns rather than purely nuclear features. This trade-off enables more comprehensive cell character-

ization while maintaining 96.76% specificity - significantly higher than other comparative methods

([16]: 93.20%, [18]: 89.40%).

The 97.50% F1-score confirms balanced precision-recall performance, addressing the black-box lim-

itations of [15]’s CNN while exceeding its predictive metrics. These results position ALL-Predictor

as both technically superior and clinically practical for leukemia diagnosis.

5. Conclusions and future work

ALL is one of the most dangerous types of cancer in the world. It is therefore necessary to discover

it early. Here in the research, we are discussing a new framework for detecting ALL. We developed

ALL-Predictor, a framework for early detection of ALL This framework involve data augmentation

techniques, we applied rotation and flipping for the first dataset, scaling and cropping for the second

dataset, while the third dataset is original with no augmentation at all. The preprocessing phase

which improves microscopic images, segmentation using the Chan-Vese algorithm, morphological

operations, Textural features are extracted from the GLCM method. These features are normalized

to improve the accuracy of ALL prediction using the Min-Max scaler. Following this phase, We

applied RFE method to select the best features. Finally, SVM classifies the findings to be either

infected or healthy. The accuracy of the newly introduced framework is 98.42%, 98.29% and 96.46%

for ALL_DB1, ALL_DB2 and ALL_DB_OriginalSet datasets respectively. In future work, we plan to

employ a variety of CNN techniques to determine which technique produces the best results in terms
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of classification and segmentation accuracy and efficiency. Ultimately, a range of feature extraction

and classification techniques will be applied to increase the framework’s performance.

Open data statement

The dataset used in this research is publicly available at "Multi Cancer Dataset", accessible via the

following link.
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