Productive, Physiological and Economic Evaluation of Supplementing Fattening Rabbit Diets with *Spirulina platensis*

M.A. El-Sawy¹; M.A. Ahmed¹; A.M. Emam¹; M.G. Gharib¹; F.A. Noha¹; A.M.H. Ahmed² and A.M.Tammam²

¹ Animal Production Research Institute, Agric. Res. Cent., Ministry of Agric., Giza, Egypt

² Poult. Prod. Dept. Fac. of Agric. Ain Shams Univ. Egypt

corresponding author: <u>elsawy1966@gmail.com</u>

ABSTRACT

This study examined the effectiveness of Spirulina platensis powder (SPP) levels during the fattening of weaned rabbits regarding growth, blood, and economic Twohundred evaluation. eight commercial V-line male rabbits, aged 7 weeks (with an average weight of 795.92±12.1 g), were randomly divided into four tested groups. Each group tested a specific additive level of SPP in feedstuff. The 1st group was served as a control group with zero level (G_0) ; the 2^{nd} , 3^{rd} and 4^{th} groups were received 1, 2 and 4 g of SPP/kg of feedstuff (G_1 , G_2 and G_3), respectively.

Results indicated that the SPP additive had positive impact compared to the control group. Both G_2 and G_3 significantly ($P \le 0.05$) enhanced final body weight (2221.5 and 2208 g, respectively), feed conversion ratio (4.58 and 4.64, respectively), and

performance index (48.50 and 47.60, respectively). Furthermore, G_2 excelled in body weight gain (BWG) and growth (GR)(41.20 and 184.99, respectively). Treatments with SPP improved biochemical hematological parameters. Similarly, lipid profiles and kidney function were directly enhanced by SPP additives. Economically, thelevel of G_2 significantly increased $(P \le 0.05)$ net revenue (82.49) compared to the other groups.

Conclusively, it could be concluded that using 2 g SPP/kg diet as feed additive in fattening rabbits feedstuff can improve the growth performance and enhance feed utilization with highly net revenue.

Keywords: Additives, blood, economic, fattening, rabbits, *Spirulina platensis*.

INTRODUCTION

Algae play a crucial role as a nutritional supplement, improving feed efficiency and increasing benefits for farm animals. The biological characteristics and nutritional value of Spirulina, a form of filamentous cyanobacterium, give it a variety of special qualities and uses (Wu *et al.* 2016). The cells that make up a spiral are unbranched filaments that are 200–500 µm long and 5–10 µm wide. Spirulina contributes to carbon neutrality by capturing carbon dioxide, fixing atmospheric nitrogen, and improving environmental quality. Additionally, it can adsorb metal ions, thereby offering potential for environmental protection (Suwono and Suryoprabowo, 2025).

According to Frag et al. (2024), spirulina has a complex composition with a simple structure and high polynutrient value and phytopigments. It has essential

components like protein (50–70% on DM basis) that contains all of the essential amino acids (Farag *et al.* 2016 and Dimopoulou *et al.* 2025), essential fatty acids, alpha-, gamma-, and linolenic amino acids (Mendes *et al.* 2003), photosynthetic pigments (Čmiková *et al.* 2025), vitamins like thiamine, nicotinamide, riboflavin, folic acid, pyridoxine, vitamins A, D, and E (Hoseini *et al.* 2013), and minerals like calcium, potassium, chromium, copper, manganese, iron, phosphorus, magnesium, sodium, zinc, and selenium (Babadzhanov *et al.* 2004). As a result, spirulina is in high demand worldwide and is regarded as a safe and healthful food as well as animal feed for medical purposes (Suwono and Suryoprabowo, 2025).

The antioxidant defense system of spirulina includes both non-enzymatic (carotenoids, tocopherols, ascorbic acid, glutathione, and chlorophyll derivatives) and enzymatic (superoxide dismutase, catalase, and glutathione peroxidase, peroxiredoxin, and ascorbate peroxidase) components that eliminate oxidants to shield cells from the damaging effects of stressors (Abd El-Baky *et al.* 2007). Additionally, it was observed that spirulina enhanced digestibility and palatability while lowering toxicity (Spínola *et al.* 2022). According to previous literatures, adding spirulina to the diet improved the animals' and poultry's economic efficiency, health, and reproductive and productive performance when compared to other chemical products (El-Shall *et al.* 2023).

Spirulina platensis powder (SPP) is a suitable dietary supplement. The most attention has been paid to the potential pharmacological properties of these microalgae, which may reduce blood cholesterol, scavenge free radicals, strengthen the immune system, lessen nephrotoxicity caused by toxic metals, and provide protection from harmful radiation (El-Far et al. 2022 and Sabat et al. 2025). Spirulina, recognized for its high protein content, contains β -carotene, vitamin B_{12} , and minerals, which are becoming increasingly important for vegetarians concerned about their diets (Russell et al. 2022 and Podgórska-Kryszczuk, 2024). It is known that spirulina serves as a significant source of vitamins, especially vitamin B₁₂, which is primarily found in animal-based diets (Altmann and Rosenau, 2022). According to Holman and Malau-Aduli, (2013), spirulina is an organic source of calcium and phosphorus (1200 and 13000 mg/kg, respectively) that can be incorporated into chicken and rabbit feed to promote healthy bone formation throughout life and enhance bone strength, thereby reducing carcass deterioration. Phytochemical screening of the ethanoic extract of Spirulina platensis identifies alkaloids, flavonoids, glycosides, tannins, phenolic compounds, steroids, and saponins (Ilieva et al. 2024).

In rabbits, adding *Spirulina platensis* to rabbit feedstuff enhances the hepatoprotective, immunostimulatory, antioxidative, and anti-inflammatory properties (Bashar *et al.* 2024). SPP may be used to prevent and treat a number of illnesses (Abd El-Hack *et al.* 2019), as well as to lower heat stress in rabbits by reducing inflammation and oxidative stress (Abdelnour *et al.* 2020). Additionally, it has been demonstrated that SPP enhances immunity and health, while lowering oxidative stress and inflammation brought on by heat stress (Abdel-Moneim *et al.* 2022).

Therefore, the purpose of current study was to assess the evaluation of *Spirulina platensis* affected the economic assessment of fattening rabbits, specific .blood parameters, and productive performance.

MATERIALS AND METHODS

Statement of Ethics:

The experimental design were acceptance (No. 5-2025-31) by the experimental care and research ethics committee of Ain Shams University, Agriculture sector committee, Egypt.

Housing and management:

The current study was conducted at a private rabbit farm in the Qalyubia Governorate, Egypt from December 2023 to February 2024. At 7 weeks of age, with an average weight of 795.92±12.1 g, 208 male developing V-line rabbits were randomly assigned to four equal treatments, each involving 52 rabbits, lasting for five weeks. The rabbits were housed in naturally ventilated facilities in galvanized wire batteries 60×55×40 cm. Water and feed were freely available in each cage, which was equipped with a stainless steel drinking nipple and feeders that allowed for the independent measurement of individual rabbit feed intake. During the experimental period, room temperatures ranged from 22 to 25°C, with relative humidity levels between 45 and 60%. Rabbits were housed under the same conditions. The rabbits were clinically free of internal and external parasites and healthy. Table 1 illustrates how the nutritional needs of the rabbits in this experiment were satisfied by the pellets produced according to NRC (1977).

Spirulina platensis dosages:

Rabbits of G_0 (control), G_1 , G_2 , and G_3 were fed a diet containing 0, 1, 2, and 4 g of spirulina powder/kg diet, respectively for 35 days.

Fatting indicators:

Initial body weight (IBW), final body weight (FBW), and feed consumption (FC) were recorded. In the same concept, daily body weight gain (BWG), growth rate (GR), feed conversion ratio (FCR), and performance index (PI) were calculated.

Physiological responses:

At the end of the fattening period (12 weeks), samples of blood were collected from the ear vein into heparinized tubs, and then centrifuged at 3000 rpm for 10 minutes to examine the biochemical blood and hematological parameters. After centrifuging, the plasma was stored at -20°C. Hematological parameters were evaluated immediately following whole blood collection, and biochemical analyses of albumin (Alb), total protein (TP), aspartate aminotransferase (AST) activity, and alanine aminotransferase (ALT) were conducted. The globulin (Glo) was calculated by using the differences between total protein (TP) and albumin (Alb). Also, total cholesterol (TC) and triglycerides (TG) and the renal functions of creatinine (Crea) and urea were assessed.

	Table 1. The com	position and	calculated of	f the basal	experimental diet
--	-------------------------	--------------	---------------	-------------	-------------------

r	
Ingredients	%
Whole barley grains	15.00
Yellow maize	6.22
Harsh wheat bran	23.33
Alfalfa hay	30.12
Soybean meal 44%	22.33
Premix ¹	0.30
Sodium chloride	0.50
Di-Calcium-phosphate	1.20
Limestone	1.00
Total	100
Calculated chemical analysis of basal diet	
Crude protein,%	17.4
Digestive energy, kcal/kg	2580
Ether extract %	2.59
Crude fiber %	13.20

The premix provided the following (per kg of diet): Vitamin A, 6000 IU; Vitamin D₃, 900 IU; Vitamin E, 40 mg; Vitamin K₃, 2 mg; Vitamin B₁, 2 mg; Vitamin B₂, 4 mg; Vitamin B₆, 2 mg; Pantothenic acid, 10 mg; Vitamin B₁₂, 0.01 mg; Niacin, 50 mg; Folic acid, 3 mg; Biotin, 0.05 mg; Choline, 250 mg; Fe, 50 mg; Mn, 85 mg; Cu, 5 mg; Co, 0.1 mg; Se, 0.1 mg; I, 0.2 mg and Zn, 50 mg.

Economic assessment:

In this study, the equations of economic assessment were used according to El-Speiy et al. (2015).

Statistical analysis:

Data were statistically analyzed using analysis of variance according to Snedecor and Cochran (1982) using the SAS software's general linear model approach was applied to analyze the rabbit data (SAS, 2001) as the following model

$$Y_{ii} = \mu + T_i + e_{ii}$$

 $Y_{ij}=\mu+T_i+e_{ij}$ Where: $Y_{ij}=$ The observation, $\mu=$ Overall mean, $T_i=$ Treatments (1,....4) and $e_{ij}=$ Experimental error, associated with i and j observations assumed to be randomly distributed.

Significant difference among means of treatment groups was detected by Duncan's multiple range test procedures (Duncan, 1955). The differences were considered significant at ($P \le 0.05$).

RESULTS AND DISCUSSION

Fattening records:

Using natural ingredients as growth-promoting and preventative feed supplements is a trend spreading in livestock production. Fatting indicators (FBW, BWG, FC, FCR, PI, and GR) were estimated under different levels of SPP (0, 1, 2,

and 4 g/kg diet) are presented in Table 2. The *Spirulina platensis* as a nutrient additive enhanced the fattening indicators generally ($P \le 0.05$) vs. the control group (0 level of SPP). The current results agreed with the previous results (Hanan *et al.* 2014, Khalifa *et al.* 2016, Martins *et al.* 2021, Alghonaim *et al.* 2022 and Lestingi *et al.* 2024) in different farm animal species. In this decade, several studies focused on evaluating *Spirulina platensis* as a feed additive in growing rabbits and found basically enhancement in the growing rabbit traits (Al-Azab *et al.* 2020; Bashar *et al.* 2022 and Farag *et al.* 2024).

Adding SPP at 2 and 4g SPP/kg diet to growing rabbits enhanced ($P \le 0.05$) significantly ($P \le 0.05$) FBW. In the same context, growing rabbits received 2 and 4g SPP/kg diet significantly ($P \le 0.05$) improved BWG (41.20 and 39.88 g) as compared with the other groups. The synergistic effect of *Spirulina platensis's* chemical constituents may be the reason for the improvement in growth performance (FBW and BWG) when added to a diet. *Spirulina platensis* supplements have a high protein content that includes the entire essential amino acids, high carotenoids, and a high mineral and vitamin content (Begum *et al.* 2024 and Spínola *et al.* 2024). Supplementing with dietary SPP at levels of 2 and 4 g/kg feed showed a positive impact on the average FCR (13 and 12%, respectively) and PI (21.5 and 19.3 %), respectively. Additionally, other beneficial bacterial populations are likely to be disrupted. El-Sawy *et al.* (2024) concluded that 200 mg/kg body weight of *Spirulina platensis extract* (SPE) can improve productive performance and feed utilization of growing rabbits.

Table 2. Effects of supplentation of SPP to diets of fattening male rabbits on growth performance

Items	_	Experimental groups					
	G_0	G_1	G_2	G_3			
IBW (g)	787.33	803.83	779.50	813.00	12.10	NS	
FBW (g)	2104.0^{b}	2126.0^{ab}	2221.5 ^a	2208.7^{a}	128.48	*	
FC (kg)	6.94^{a}	6.51 ^b	6.60^{b}	6.48^{b}	0.59	*	
BWG (g)	37.62°	37.78^{c}	41.20^{a}	39.88^{b}	3.40	*	
FCR	5.27^{a}	$4.92^{\rm b}$	4.58^{c}	4.64 ^c	0.98	*	
PI	39.92^{c}	43.21 ^b	48.50^{a}	47.60^{a}	3.14	*	
GR	167.23 ^c	164.48 ^c	184.99 ^a	171.67 ^b	15.16	*	

^{a,b,c} Means in the same row with different superscripts are significantly different ($P \le 0.05$),

Physiological profile:

Blood biochemistry parameters:

According to the results, in Table 3, rabbits that fed feedstuff in different levels of SPP (G_1 , G_2 , and G_3) had significantly ($P \le 0.05$) lower plasma of TP, Alb, Glo, AST, and ALT levels than the control group (G_0). Results are in agreement with those reported by El-Hawy *et al.* (2022), El-Sawy *et al.* (2024) and Elhady *et al.* (2025).

^{• (} $P \le 0.05$), MSE: standard error of the mean. Sig: Significant, G_0 : Control (un-supplemented), NS: Not significant; G_1 : Supplemented with 1 g SPP/kg diet, G_2 : Supplemented with 2 g SPP/kg diet, G_3 : Supplemented with 4 g SPP/kg diet; IBW: Initial body weight; FBW: Final live body weight; BWG: Daily body weight gain; FC: Feed consumption; FCR: Feed conversion ratio, PI: Performance index and GR: Growth rate.

Table 3.	Effects	of	supplementation	ı SPP	to	diets	of	fattening	male	rabbits	on
	bioch	em	ical blood paran	eters							

	oenemical olo	ou parame	ters			
Items		Experimen	MSE	Sig.		
	G_0	G_1	G_2	G_3	_	
TP, g/dl	6.00^{a}	5.97 ^a	5.70^{ab}	5.32 ^b	0.65	*
Alb, g/dl	4.73^{a}	4.77^{a}	4.47^{ab}	4.21^{b}	0.54	*
Glo, g/dl	1.27^{a}	1.20^{ab}	1.23^{a}	1.11 ^b	0.22	*
AST, U/l	77.00^{a}	43.00^{b}	20.67^{c}	40.00^{b}	4.49	*
ALT, U/l	101.33 ^a	73.33 ^c	52.00^{d}	78.00^{b}	10.31	*

^{a,b,c} Means in the same row with different superscripts are significantly different ($P \le 0.05$).

The reasons for liver problems include increased levels of the liver enzymes AST and ALT, as well as lower levels of TP and Alb. An overdose of the toxic substances mentioned seems to have resulted in the production of reactive oxygen species, which caused oxidative stress and indicated hepatotoxicity (Thakur et al. 2024). Plasma AST and ALT serve as markers for diagnosing hepatic injury since they are released into circulation following cellular injury (Skat-Rørdam et al. 2025). Unlike the production of Albumin (van de Wouw and Joles 2022), the liver was also damaged by hepatotoxins. Total blood protein levels decreased in rabbits given any hazardous chemical, likely due to liver tissue damage affecting protein synthesis (El-Gindy, 2025). When comparing the SPP- supplemented group to the control group, the current study showed a decrease in the levels of liver enzymes AST and ALT, alongside a slight increase in TP, Alb, and Glo. This suggests that exposure to antioxidant phytochemical compounds like flavonoids and chromogenic acid helps suppress lipid peroxidation caused by free radicals and prevents toxicity (Ravindran and Mohamed, 2019). However, Khalifa et al. (2016) discovered that goats fed a diet supplemented with spirulina powder had significantly $(P \le 0.05)$ more total protein than the control group. In contrast, the untreated goats had higher AST and ALT concentrations compared to the treated group $(P \le 0.05)$. Reports indicate that spirulina can increase total protein levels in lambs without compromising renal function (Assar et al. 2023 and El-Sawy et al. 2024).

Every value fell within the typical range of physiological values. According to references, the AST and ALT values were within the normal range of liver enzymes (Momo *et al.* 2021). This finding is consistent with that of Aladaileh *et al.* (2020), who suggested that *Spirulina platensis* might be protective against liver dysfunction. However, Mazokopakis *et al.* (2014) found that adding *Spirulina platensis* to diet has a number of positive metabolic effects and that mean levels of triglycerides, total cholesterol, AST, and ALT were dramatically reduced 38.5%, 37.5%, 24.8%, and 9.1%, respectively. According to Nedeva *et al.* (2014), piglets' liver function was unaffected by *Spirulina platensis*. The levels of the liver enzymes AST and ALT in the control and

^{*(} $P \le 0.05$), MSE: Standard error of the mean. Sig: Significant G_0 : control (un-supplemented), G_1 : Supplemented with 1 g spirulina/kg diet, G_2 : Supplemented with 2 g spirulina/kg diet, G_3 : Supplemented with 4 g spirulina/kg diet; TP: Total protein; Alb: Albumin; Glo: |Globulin; AST: Aspartate aminotransferase and ALT: Alanine aminotransferase.

experimental groups did not differ significantly. Both experimental groups' absolute levels of these enzymes fell within acceptable physiological ranges. The data reported above suggested that the addition had an anabolic impact (Nedeva et al. 2014). Attiya et al. (2019) reported that, while the liver function enzyme AST was significantly impacted by high *Spirulina platensis*, where they were recorded at the lowest ($P \le 0.05$) in comparison to the control, the liver function enzyme ALT was not significantly affected by spirulina levels.

b. Hematological parameters:

The results indicated that rabbits receiving SPP had significantly ($P \le 0.05$) higher levels of WBCs, hemoglobin, and all other parameters compared to the control group (Table 4). According to Zeweil *et al.* (2016), varying dosages of supplements such as Spirulina (0.5 and 1 g/kg diet) reduced the negative effects of heat stress on chickens' WBCs, RBCs, and immunity. In addition, current results are nearly similar to those of Bashar *et al.* (2022 and 2024) at the mean RBCs, WBCs, Hb, and MCV. In contrast, it does not agree with Bléyéré *et al.*

Table 4. Effects of supplementation of SPP to diets of fattening male rabbits on hematological parameters

	parameters	MOE				
Item	G_0	G_1 G_2		G_3	– MSE	Sig.
Hb g/dl	11.33 ^b	12.13 ^a	11.10^{b}	12.00 ^a	0.28	*
RBCs, $\times 10^6$	5.80^{a}	5.97^{a}	5.17^{b}	5.95 ^a	0.19	*
WBCs, $\times 10^3$	8.20^{b}	10.00^{a}	9.93^{a}	9.90^{a}	0.22	*
Eosinophils %	7.00^{c}	10.67^{a}	8.33^{b}	$8.50^{\rm b}$	0.24	*
Monocytes %	15.30^{c}	17.07^{b}	18.50^{a}	17.00^{b}	0.43	*
Lymphocytes %	50.10^{a}	40.30^{c}	44.77^{b}	43.21 ^b	2.14	*
Neutrophils %	27.60^{c}	31.96 ^a	28.70^{b}	31.29^{a}	1.99	*
Hematocrite %	37.39^{b}	40.03^{a}	36.63 ^c	39.60^{a}	2.01	*
MCH pg	19.53 ^c	20.32^{b}	21.47 ^a	20.17^{b}	0.90	*
$MCV \mu m^3$ (fl)	64.47 ^c	67.05^{b}	70.85^{a}	66.55^{b}	4.30	*
Platelets ×10 ⁻³ /l	349.7^{b}	267.3°	370.7^{a}	$348.7^{\rm b}$	20.12	*

^{a,b,c} Means in the same row with different superscripts are significantly different, *: $(P \le 0.05)$, MSE: Standard error of the mean o. Sig: Significant, G_0 : Control (unsupplemented), G_1 : Supplemented with 1 g SPP/kg diet, G_2 : Supplemented with 2 g SPP/kg diet, G_3 : Supplemented with 4 g SPP /kg diet.

(2013) and Al-Azab *et al.* (2020) when they didn't differ significantly among values. Red blood cell, hemoglobin, hematocrit, MCV, and MCH mean values were comparable to those found by Ouedraogo *et al.* (1998) and Bléyéré *et al.* (2013). However, Aboh *et al.* (2012) found that the RBC count was 7.30×10^6 /mm³, which was statistically different from our results. These findings demonstrated that, while maintaining the reference values, blood cell counts might differ within a rabbit population or between locations. Follet, (2003) states that the range of RBC counts is 3.8×10^6 /mm³ to 7.9×10^6 /mm³. The ratios of the hematocrit value to erythrocyte and the rate of total hemoglobin to red blood cell

count in a liter are represented by MCV and MCH, respectively, and they fluctuated in the same proportions.

c. Lipid profile and kidney function:

Table 5 shows that the reduction of plasma Creatinine for the SPP groups $(0.69, 0.35, \text{ and } 0.52 \text{ for } G_1, G_2, \text{ and } G_3, \text{ respectively})$ is greater significantly ($P \le 0.05$) than that of the control group (1.43). The same indicators were observed in TC and TG, while the increase in urea levels is significantly higher in G_3 (38.33) compared to the others, which aligns with the findings of Abdelnour *et al.* (2020). The decrease in TC and TG in rabbits was consistent with Nedeva *et al.* (2014) and Abdelnour *et al.* (2020). The inclusion of phytochemicals, particularly flavonoids and other phenolic compounds (Jha *et al.* 2010), known for their free radical scavenging properties, may contribute to SPP's hypocholesterolemic effect. Our findings demonstrate that the use of SPP increases renal enzyme levels associated with urea. These results are consistent with Dalle Zotte *et al.* (2003) and El-Sawy *et al.* (2024).

Table 5. Effects of supplementation of SPP to diets of fattening male rabbits on lipid profile and kidney function

Items	Experimental groups					Sig.
Items	G_0	G_1	G_2	G_3	– MSE	Sig.
TC, mg/dl	62.40 ^a	58.57 ^в	42.57 °	32.40 ^d	7.7	*
TG, mg/dl	113.33 ^a	96.17 ^b	75.08 °	62.33 ^d	8.9	*
Urea, mg/dl	35.33 ^b	32.27 °	32.93 °	38.33 a	4.24	*
Crea, mg/dl	1.43 ^a	0.69 ^b	0.35 ^d	0.52 °	0.21	*

^{a,b,c} Means in the same row with different superscripts are significantly different ($P \le 0.05$), *: ($P \le 0.05$), MSE: Standard error of the mean. Sig: Significant, G₀: Control (unsupplemented), G₁: Supplemented with 1 g spirulina/kg diet, G₂: Supplemented with 2 g spirulina/kg diet, G₃: Supplemented with 4 g spirulina/kg diet; TC: Total cholesterol; TG: Triglyceride; and Crea: creatinine.

Total cholesterol, total lipids, LDL cholesterol, and VLDL cholesterol all significantly decreased due to the mechanisms by which SP plays a substantial role in lipid metabolism (Bondar *et al.* 2023 and Spinola *et al.* 2024). This reduction in serum cholesterol has been attributed to the influence of SPP on lipoprotein metabolism and the elevation of lipoprotein enzyme activity levels (Karkos *et al.* 2008). It is believed that one of SPP's primary metabolic functions is enhancing several biochemical parameters, potentially leading to a reduction in liver histological changes. The active ingredients in SPP, which suggest antioxidant activity, may account for its hepatoprotective properties. The presence of compounds that activate lipoprotein lipase, responsible for hydrolyzing triglycerides into fatty acids and glycerol in the liver, may explain the observed decrease in triglyceride levels in hypercholesterolemic rabbits treated with SPP. The active ingredients in SPP that indicate antioxidant activity may be the cause of its hepatoprotective properties (El Nabtity *et al.* 2023).

Economic analysis:

According to Table 6, adding SPP at different levels to fattening rabbit feedstuff improved the net profit (180.71, 188.83, and 187.93 for G_1 , G_2 , and G_3 , respectively) significantly (*P resp*) vs. the control group (178.84). In the same context, the cost of feed intake was significantly (*P vs.*) reduced in SPP groups compared to other. The G_2 level improved the net revenue/rabbit (82.94), while G_3 expressed the lowest value (73.94), as is shown in Figure 1.

According to Hanan *et al.* (2014), rabbits given meals supplemented with both spirulina levels outperformed the other treatments in terms of economic performance. Additionally, Mariey *et al.* (2012) discovered that the most cost-effective feeds for laying hens were those that contained 0.1, 1.5, and 2.0 percent spirulina.

Table 6. Effects of supplementation of SPP to diets of fattening male rabbits on economic evaluation

		Experimental groups				
Items	G_0	G_1	G_2	G_3		
Final body weight, kg (A)	2.104 ^d	2.126 ^c	2.222^{a}	2.209^{b}	0.37	*
Body weight price, L.E. /kg (B)	85.00	85.00	85.00	85.00		
Net profit, L.E./rabbit (C)**	178.84 ^b	180.71 ^{ab}	188.83 ^a	187.93 ^a	24.3	*
Total feed intake, kg (D)/5 weeks	6.94 ^a	6.51 ^b	6.60^{b}	6.48 ^b	0.92	*
Price of kg feed, L.E. (E)	15.0	15.0	15.0	15.0		
Feed intake cost, L.E. (F)**	31.93 ^a	29.94 ^c	30.36^{b}	29.81 ^c	2.6	*
Cost weaned rabbits, L.E. (J)	60.00	60.00	60.00	60.00		
Mangemental cost rabbits, L.E. (L)	7.0	7.0	7.0	7.0		
Spirulina cost/rabbit/35 days, L.E.	0.00	4.43	8.98	17.63		

^{a,b,c} Means in the same row with the same letters are not significantly different. MSE: Standard error of the mean. Sig: Significant, * ($P \le 0.05$). G₀: Control (un-supplemented), G₁: Supplemented with 1 g SPP/kg diet, G₂: Supplemented with 2 g SPP/kg diet, G₃: Supplemented with 4 g SPP/kg diet.

Price of 1 one kg of Spirulina powder = 680.0 L.E., one gram= 0.68 L.E.

^{*}Calculations included period from 49 to 84 day-old, fixed cost = price of weaning live rabbit + care + electricity + vaccinationect, according to price in February 2024. ** $C = A \times B$, $F = D \times E$.

 $^{^{}a,b,c}$ Means in the same row with the same letters are not significantly different. MSE: Mean standard error NS: Non-significant, *: (*PMeans*). G_0 : control (un-supplemented), G_1 : supplemented with 1 g SPP/kg diet, G_2 : supplemented with 2 g SPP/kg diet, G_3 : supplemented with 4 g SPP/kg diet

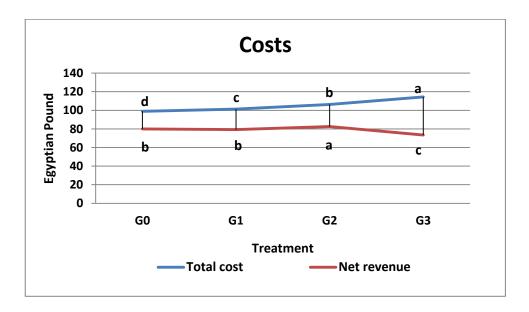


Figure.1. The treatment summery of total cost and net revenue.

 a,b,c Means in the same row with the same letters are not significantly different. MSE: Mean standard error NS: Non-significant, *: (*PMeans*). G_0 : control (un-supplemented), G_1 : supplemented with 1 g SPP/kg diet, G_2 : supplemented with 2 g SPP/kg diet, G_3 : supplemented with 4 g SPP/kg diet

Conclusively, it could be concluded that using 2 g SPP/kg diet as feed additive in fattening rabbits feedstuff can improve the growth performance and enhance feed utilization with highly net revenue.

REFRENCES

Abd El-Baky, H.H.; El-Baz, F.K. and G.S. El-Baroty (2007). Enhancement of antioxidant production in Spirulina platensis under oxidative stress. American-*Eurasian J. Sci. Res.*, 2: 170-179.

Abd El-Hack, M.E.; Abdel-Moneim, A.M.E.; Shehata, A.M.; Mesalam, N.M.; Salem, H.M.; El-Saadony, M.T. and K.A. El-Tarabily (2023). Microalgae applications in poultry feed. In Handbook of Food and Feed from Microalgae (pp. 435-450). *Academic Press*. https://doi.org/10.1016/B978-0-323-99196-4.00008-5.

Abdel-Moneim, A.M.E.; El-Saadony, M.T.; Shehata, A.M.; Saad, A.M.; Aldhumri, S.A.; Ouda, S.M. and N.M. Mesalam (2022). Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. *Saudi Journal of Biological Sciences*, 29(2): 1197-1209. https://doi.org/10.1016/j.sjbs.2021.09.046.

- Abdelnour, S.A.; Swelum, A.A.; Salama, A.; Al-Ghadi, M.Q.; Qattan, S.Y.; Abd El-Hack, M.E. and M.T. El-Saadony (2020). The beneficial impacts of dietary phycocyanin supplementation on growing rabbits under high ambient temperature. *Italian Journal of Animal Science*, 19(1): 1046-1056. https://doi.org/10.1080/1828051X.2020.1815598.
- Aboh, A.B.; Dougnon, J.T.; Tossa, I.G.; Kpodekon, M.T.; Akakpo, R.P.A. and I. Youssao (2012). Growth performance, hematological and serum characteristics of rabbit fed Moringa oleifera leaves pellets as substitute to commercial concentrate. *Res. Opin. Anim. Vet. Sci.*, 2(8): 454-458.
- Aladaileh, S.H.; Khafaga, A.F.; Abd El-Hack, M.E.; Al-Gabri, N.A.; Abukhalil, M.H.; Alfwuaires, M.A. and S. Abdelnour (2020). Spirulina platensis ameliorates the sub chronic toxicities of lead in rabbits via anti-oxidative, anti-inflammatory, and immune stimulatory properties. *Science of the Total Environment*, 701: 134879. https://doi.org/10.1016/ j.scitotenv. 2019.134879.
- Al-Azab, A.M.; Mona Ragab; H.N. Fahim; A.El.M.I. El Desoky; H.M.M. Azouz and Soheir Shazly (2020). Effect of Spirulina platensis Supplementation in Growing Rabbit's Diet on Productive Performance and Economic Efficiency. *Journal of Animal and Poultry Production*, 11(9): 325-330. http://doi. 10.21608/jappmu.2020.118215
- Alghonaim, A.A.; Alqahtani, M.F.; Al-Garadi, M.A.; Suliman, G.M.; Al-Baadani, H.H.; Al-Badwi, M.A. and I.A. Alhidary (2022). Effects of different levels of spirulina (*Arthrospira platensis*) supplementation on productive performance, nutrient digestibility, blood metabolites, and meat quality of growing Najdi lambs. *Tropical Animal Health And Production*, 54(2): 124. https://doi.org/10.1007/s11250-022-03115-9.
- Altmann, B.A. and S. Rosenau (2022). Spirulina as animal feed: Opportunities and challenges. *Foods*, 11(7): 965.
- Assar, D.; Al-Wakeel, R.; Elbialy, Z.; El-Maghraby, M.; Zaghlool, H.; El-Badawy, A. and A. Abdel-Khalek (2023). Spirulina platensis algae enhances endogenous antioxidant status, modulates hemato-biochemical parameters, and improves semen quality of growing ram lambs. *Adv. Anim. Vet. Sci.*, 11(4): 595-605. https://dx.doi.org/10.17582/journal.aavs/2023/11.4.595.605.
- Attiya, H.; Hussein, S.; Al-Senosy, Y. and M. Arafa (2019). Spirulina platensis and alpha lipoic acid are protective against the deleterious effects of aspartame on the liver and kidneys of rabbits. *Benha Veterinary Medical Journal*, 36(2): 274-281. http:// 10.21608/bvmj.2019.16355.1085.
- Babadzhanov, A.S.; Abdusamatova, N.; Yusupova, F.M.; Faizullaeva, N.; Mezhlumyan L.G. and M.K. Malikova (2004). Chemical composition of Spirulina platensis cultivated in Uzbekistan. *Chem. Natl. Comp.*, 40: 276-279.

- Bashar, A.; El-Darawany, A. and A.M. Sheiha (2022). Effect of selenium nanoparticles and/or spirulina platensis on growth, hematobiochemical, antioxidant status, hormonal profile, immunity, and apoptosis of growing rabbits exposed to thermal stress. *Egyptian Journal of Rabbit Science*, 32(1): 77-103.
- Bashar, A.M.; Abdelnour, S.A.; El-Darawany, A.A. and A.M. Sheiha (2024). Dietary supplementation of microalgae and/or nanominerals mitigate the negative effects of heat stress in growing rabbits. *Biological Trace Element Research*, 202(8):3639-3652. https://doi.org/10.1007/s12011-023-03953-0.
- Begum, N.; Qi, F.; Yang, F.; Khan, Q.U.; Faizan, Fu.Q. and W. Zhang (2024). Nutritional Composition and Functional Properties of A. platensis-Derived Peptides: *A Green and Sustainable Protein-Rich Supplement. Processes*, 12(11): 2608. https://doi.org/10.3390/pr12112608.
- Bléyéré, N.M.; Kimse, M.; Amonkan, K.A.; Fantodji, T.A. and A.P. Yapo (2013). Changes of Blood Cells in Growing Young Rabbit (*Oryctolagus Cuniculus*) with Fodder as a Dietary Supplement in Côte d'Ivoire. *J. Anim. Prod. Adv.*, 3(4): 134-143. https://doi.org/10.5455/japa. 20130411110051.
- Bondar, A.; Horodincu, L.; Solcan, G. and C. Solcan (2023). Use of Spirulina platensis and Curcuma longa as Nutraceuticals in poultry. *Agriculture*, 13(8): 1553.
- Čmiková, N.; Kowalczewski, P.Ł.; Kmiecik, D.; Klimowicz, P.; Drożdżyńska, A.; Ślachciński, M. and M. Kačániová (2025). Comparative analysis of nutritional composition and bioactive properties of Chlorella vulgaris and Arthrospira platensis: Implications for functional foods and dietary supplements. *Open Chemistry*, 23(1): 20250150. https://doi.org/10.1515/chem-2025-0150.
- Dalle Zotte A.; Cullere M.; Sartori A.; Dal Bosco A.; Gerencsér Zs.; Matics Zs.; Kovàcs M. and Zs. Szendrő (2003). Effect of Dietary supplementation of Spirulina (*Arthrospira platensis*) and Thyme (Thymus vulgaris) on carcass composition, meat physical traits, and vitamin B12 content on growing rabbits. *World Rabbit Sci.*, 22: 11-19. http://doi:10.4995/wrs.2014.1449.
- Dimopoulou, M.; Kolonas, A.; Stagos, D. and O. Gortzi (2025). A Review of the Sustainability, Chemical Composition, Bioactive Compounds, Antioxidant and Antidiabetic Activity, *Neuroprotective Properties and Health Benefits of Microalgae. Biomass*, 5(1):11. https://doi.org/10.3390/biomass5010011.
- Duncan, D.B. (1955). Multiple Ranges and Multiple F- Test. Biometrics, 11:1-42.
- El Nabtity, S.; Eleiwa, N.Z.; Kamel, M.A. and A. Fahmy (2023). Hyperlipidemia: Methods of induction and possible treatments. *Zagazig Veterinary Journal*. 51(2): 169-181. doi: 10.21608/zvjz.2023.189986.1206

- Elakkad, H.A.; Abdel-Monem, U.M.; Mousa, Y.I. and S. Hamza (2023). Effect of spirulina levels on New-Zealand White rabbits performance. *Zagazig Journal of Agricultural Research*, 50(3): 359-365. http://doi.10.21608/ZJAR.2023.313659.
- El-Far, O.A.; Billa, N.; Lim, H.R.; Chew, K.W.; Cheah, W.Y.; Munawaroh, H.S.H. and P.L. Show (2022). Advances in delivery methods of Arthrospira platensis (spirulina) for enhanced therapeutic outcomes. *Bioengineered*, 13(6): 14681-14718. https://doi.org/10.1080/21655979.2022.2100863
- El-Gindy, Y.M. (2025). The impact of enriching heat-stressed rabbit diets with flaxseed oil with/without allicin, lycopene, or Punicalagin on antioxidative status, physiological response and meat omega-3. BMC *Veterinary Research*, 21(1): 187. https://doi.org/10.1186/s12917-025-04615-0
- Elhady, E.E.; Abdelhafez, H.M. and D. Gewily (2025). Effect of Microalgae Nannochloropsis oculata and Moringa oleifera Leaves Additives on Growth Performance and Blood Constituents of Hi-Plus Rabbits under North Sinai Conditions, Egypt. *Egyptian Academic Journal of Biological Sciences*, B. Zoology, 17(1): 137-165.
- El-Hawy, A.S.; El-Bassiony, M.F.; Abd El-Hamid, I.S.; Shedeed, H.A.; Fouda, W.A.; Ali, S.A.M. and K.R.S. Emam (2022). Semen characteristics and blood metabolites of Hi-plus buck rabbits fed on microalgae Nannochloropsis oculata meal during the summer season. *World's Veterinary Journal*, (4), 449-458.
- El-Sawy, M.A.; Ahmed, M.A.; Emam, A.M.; Gharib, M.G.; Noha, F.A.; Ahmed, A.M.H. and A.M. Tammam (2024). Impact of Spirulina platensis Extract Administered on Growth Performance and Economy of Growing Rabbits. *Journal of Productivity and Development*, 29(4): 395-415. http://10.21608/jpd.2024.429303.
- El-Shall, N.A.; Jiang, S.; Farag, M.R.; Azzam, M.; Al-Abdullatif, A.A.; Alhotan, R. and M. Alagawany (2023). Potential of Spirulina platensis as a feed supplement for poultry to enhance growth performance and immune modulation. *Frontiers in immunology*, 14: 1072787. https://doi.org/10.3389/fimmu.2023.1072787.
- El-Speiy, M.E.; Kamel, K.I.; Kamal El-Din, A.E.; Abd El-Hamid, A.E. and EL-Kamhawey, A. (2015). Effect of feed restriction on productive performance, carcass yield, blood pictures and relative organ weights of growing rabbits. *Egypt. Poult. Sci. J.*, 35(2): 439-454.
- Farag, B.F.; Khalifa, A.M.A. and A.S.H. Soliman (2024). Growth performance, serum biochemistry, and carcass traits of growing rabbits fed supplemental levels of Spirulina platensis. *Archives of Agriculture Sciences Journal*, 7(2): 254-365. http://doi.10.21608/aasj.2024.405640.

- Farag, M.R.; Abd EL-Aziz, R.M.; Ali, H.A. and S.A. Ahmed (2016). Evaluating the ameliorative efficacy of Spirulina platensis on spermatogenesis and steroidogenesis in cadmium-intoxicated rats. *Environmental Science and Pollution Research*, 23: 2454-2466. https://doi.org/10.1007/s11356-015-5314-9.
- Follet, S. (2003). Dermatologie du lapin de compagnie. *Ecole Nationale Vétérinaire d'Alfort, Thèse de doctorat vétérinaire*, 78.
- Hanan A.M. Hassanein; Marvat M. Arafa; M.A. Abo Warda and Azza A. Abd—Elall (2014). Effect of using Spirulina Platensis and chlorella vulgaris as feed additives on growing rabbit performance. *The 7th International Conference on Rabbit Production in Hot Climate*, 8-12 September, 2014, 413-431.
- Holman B.W.B. and A.E.O. Malau-Aduli (2013). Spirulina as a livestock supplement and animal feed. *Journal of Animal Physiology and Animal Nutrition*, 97: 615- 623. http://doi:10.1111/j.1439-0396.2012.01328.x.
- Hoseini, S.M.; Khosravi-Darani, K.; and M.R. Mozafari (2013). Nutritional and medical applications of spirulina microalgae, *Mini- Reviews in Medicinal Chemistry*, 8:1231–1237.
- Ilieva, Y.; Zaharieva, M.M.; Najdenski, H. and A.D. Kroumov (2024). Antimicrobial activity of Arthrospira (former Spirulina) and Dunaliella related to recognized antimicrobial bioactive compounds. *International Journal of Molecular Sciences*, 25(10): 5548. https://doi.org/10.3390/ijms25105548
- Jha, M.K.; Alam, M.B.; Hossain, M.S. and A. Islam (2010). In vitro antioxidant and cytotoxic potential of Costuss peciosus (Koen.) Smith rhizome. *Int. J. Pharm. Sci. Res.*, 1(10): 138–144.
- Karkos, P.D.; Leong, S.C.; Karkos, C.D.; Siraji, N. and D.A. Assimkapoulos (2008). Review of spirulina in clinical practice: Evidence-Based human applications. *e CAM Adv. Access*, 14: 1-4.
- Khalifa, E.I.; Hanan, A.M. Hassanien; A.H. Mohamed; A.M. Hussein and Azza A.M. Abd-Elaal (2016). Influence of addition spirulina Platensis Algae powder on reproductive and productive performance of dairy Zaraibi goats. *Egyptian J. Nutrition and Feeds*, 19 (2): 211-225.
- Lestingi, A.; Alagawany, M.; Di Cerbo, A.; Crescenzo, G. and C. Zizzadoro (2024). Spirulina (*Arthrospira platensis*) used as functional feed supplement or alternative protein source: a review of the effects of different dietary inclusion levels on production performance, health status, and meat quality of broiler chickens. *Life*, 14(12): 1537. https://doi.org/10. 3390/life14121537

- Mariey, Y.A.; Samak, H.R. and M.A. Ibrahem (2012). Effect of using Spirulina platensis algae as a feed additive for poultry diets: 1- Productive and reproductive performances of local laying hens. *Egypt. Poult. Sci.*, 32(1): 201-215.
- Martins, C.F.; Pestana Assuncao, J.; Ribeiro Santos, D.M.; Madeira, M.S.M.D.S.; Alfaia, C.M.R.P.M.; Lopes, P.A.A.B. and J.P.B. Freire (2021). Effect of dietary inclusion of Spirulina on production performance, nutrient digestibility and meat quality traits in post weaning piglets. *Journal of Animal Physiology and Animal Nutrition*, 105(2): 247-259. https://doi.org/10.1111/jpn.13470
- Mazokopakis, E.E.; Starakis, I.K.; Papadomanolaki, M.G.; Mavroeidi, N.G. and E.S. Ganotakis (2014). The hypolipidaemic effects of Spirulina (*Arthrospira platensis*) supplementation in a Cretan population: a prospective study. *Journal of the Science of Food and Agriculture*, 94(3): 432-437. https://doi.org/10.1002/jsfa.6261
- Mendes, R.L.; Nobre, B.P.; Cardoso, M.T.; Pereira, A.P.; and A.F Palavra (2003). Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. *Inorganica Chimica Acta*, 356: 328-334.
- Momo, C.M.M.; Adam, M.T.M.; Herve, T.; Narcisse, V.B.; Ferdinand, N. and T. Joseph (2021). Effects of Spiruline (*Spirulina platensis*) supplementation on oxidative stress markers, biochemical characteristics, and hematological parameters in rabbit (*Oryctolagus cuniculus*) does. *Asian Journal of Agriculture and Rural Development*, 11(2): 163-170. http://10.18488/journal.ajard.2021.112.163.170.
- Nedeva, R.; Jordanova, G.; Kistanova, E.; Shumkov, K.; Georgiev, B.; Abadgieva, D.; Kacheva, D.; Shimkus, A. and A. Shimkine (2014). Effect of the addition of Spirulina platensis on the productivity and some blood parameters on growing pigs. *Bulgarian Journal of Agricultural Science*, 20(3): 680-684.
- NRC (1977). National Research Council *Nutrient Requirements Of Domestic Animals* Nutrients requirement of rabbits. USA. National Academy of Science, Washington, D.C.
- Ouedraogo, Y.; Nacoulma, Guissou I.P.I.; Traore, S.A. Guédé-Guina, F. and Etude, de l'effet (1998). Stimulant de mitragyna inermis (rubiaceae) sur le système de défense immunitaire chez le lapin. *Pharm. Méd. Trad. Afr.*, 10: 87-94.
- Podgórska-Kryszczuk, I. (2024). Spirulina An Invaluable Source of Macro-and Micronutrients with Broad Biological Activity and Application Potential. *Molecules*, 29(22): 5387. https://doi.org/10.3390/molecules29225387

- Ravindran, N.T. and S.A. Mohamed (2019). Pharmacological activity of Ulva lactuca polyphenols fraction: Hepato-protective and antioxidant activities against paracetamol-induced liver damage in rats. *Asia. J. Pharm. Clin. Res.*, 12: 55-58.
- Russell, C.; Rodriguez, C. and M. Yaseen (2022). High-value biochemical products and applications of freshwater eukaryotic microalgae. Science of the Total Environment, 809: 151111. https://doi.org/10.1016/j.scitotenv.2021.151111.
- Sabat, S.; Bej, S.; Swain, S.; Bishoyi, A.K.; Sahoo, C.R.; Sabat, G. and R.N. Padhy (2025). Phycochemistry and pharmacological significance of filamentous cyanobacterium Spirulina sp. *Bioresources and Bioprocessing*, 12(1): 27. https://doi.org/10.1186/s40643-025-00861-0.
- SAS (2001). SAS /STAT Guide for Personal Computer, proprietary software version 9. SAS Institute Inc. Cary, North Carolina, USA. https://support.sas.com/documentation/onlinedoc/91pdf/.
- Skat-Rørdam, J.; Lykkesfeldt, J.; Gluud, L.L. and P. Tveden-Nyborg (2025). Mechanisms of drug induced liver injury. *Cellular and Molecular Life Sciences*, 82(1): 1-21. https://doi.org/10.1007/s00018-025-05744-3.
- Snedecor, G.W., and W.G. Cochran. (1982). *Statistical Methods*. 2nd Ed. Iowa University, Press Ames, Iowa, USA.
- Spínola, M.P.; Costa, M.M. and J.A. Prates (2022). Digestive constraints of Arthrospira platensis in poultry and swine feeding. *Foods*, 11(19), 2984. https://doi.org/10.3390/foods11192984.
- Spínola, M.P.; Mendes, A.R. and J.A. Prates (2024). Chemical composition, bioactivities, and applications of Spirulina (*Limnospira platensis*) in food, feed, and medicine. *Foods*, 13(22): 3656. https://doi.org/10.3390/foods13223656.
- Suwono, L.V. and S. Suryoprabowo (2025). Nutrition and Health Functions of Spirulina and its application in Food Industry: A review. In IOP Conference Series: *Earth and Environmental Science*, 1488: 012101.
- Thakur, S.; Kumar, V.; Das, R.; Sharma, V. and D.K. Mehta (2024). Biomarkers of hepatic toxicity: an overview. Current Therapeutic Research, 100737. https://doi.org/10.1016/j.curtheres.2024.100737.
- Van de Wouw, J. and J.A. Joles (2022). Albumin is an interface between blood plasma and cell membrane, and not just a sponge. *Clinical Kidney Journal*, 15(4): 624-634. https://doi.org/10.1093/ckj/sfab194
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D. and K. Kuča (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. *Archives of Toxicology*, 90: 1817-1840. https://doi.org/10.1007/s00204-016-1744-5.

Zeweil, H.; Abaza, I.M.; Zahran, S.M.; Ahmed, M.H.; Haiam, M. and A.S. Asmaa (2016). Effect of spirulina platensis as dietary supplement on some biological traits for chickens under heat stress condition. *Asian Journal of Biomedical and Pharmaceutical Sciences*, 6(56): 08-12. http://doi:10.1590/1806-9061-2018-0977.

تقييم الأداء الإنتاجي والفسيولوجي والإقتصادي لإضافة الأسبيرولينا بلاتينسس إلى علائق أرانب التسمين

۱ معهد بحوث الأنتاج الحيواني _ مركز البحوث الزراعية _ وزارة الزراعة _ مصر
 ٢ قسم إنتاج الدواجن _ كلية الزراعة _ جامعة عين شمس _ مصر

يهدف هذا البحث لدراسة تأثير إضافة الأسبيرولينا بلاتينسيس لتقييم أداء النمو، والدم، والتقييم الاقتصادي لأرانب التسمين. إستخدم عدد 17.1 + 0.0 أرنب ذكر من أرانب الـ " في لاين" عمر 17.1 + 0.0 أسابيع ووزنٍ متوسط 17.0 + 0.0 الأسبيرولينا حيث تم تفسيمها عشوائيًا إلى 17.0 + 0.0 مجاميع تجريبية متساوية. أضيف الأسبيرولينا بلاتينسيس (SPP) بتركيزات مختلفة حيث إستخدمت المجموعة الأولى كمجموعة مقارنة (10.0 + 0.0) بدون أي أضافات، تلقّت المجموعات 10.0 + 0.0 و 10.0 + 0.0 و 10.0 + 0.0 و 10.0 + 0.0 التوالى.

وقد أشارت النتائج لوجود مردود إيجابي لإضافة الإسبيرولينا مقارنة $P \leq 0$ بمجموعة المقارنة. أظهرت كل من المجموعتين G_3 و G_3 تحسنا معنويا G_3 في كل من وزن الجسم النهائي(٢٢٢١ و ٢٢٢٨ جم) معدل التحويل الغذائي (٥٠٨ و ٤٢٦٤) وكذلك دليل الأداء (٤٨٠٠ و ٤٧٠٦ على التوالي.

تفوقت مجموعة G_2 في الزيادة الوزنية اليومية (BWG)، معدل النمو (GR)، معدل النمو (GR) (GR)

تحسنت الصفات الطبيعية والبيوكيميائية للدم مباشرة بإضافة الأسبيرولينا للعليقة. كما ان كل من وظائف الكلى ودهون الدم أظهرت تحسنا مع إضافة الأسبيرولينا مقارنة بمجموعة المقارنة.

P) من المنظور الاقتصادي، قدمت المعاملة G_2 أفضل عائد صافى معنويا (Λ جنيه) عند المقارنة بباقى المجاميع. Λ Λ جنيه) عند المقارنة بباقى

التوصية: يمكن الاستنتاج أن ٢ جم إسبير ولينا/كجم علف أدى إلى تحسين الأداء الإنتاجي والفسيولوجي مع تحقيق كفاءة اقتصادية جيدة.