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INTRODUCTION  

 

The wetland complex of the high plateaus in eastern Algeria (the Constantinois) 

comprises approximately twenty natural wetlands (Chotts, Sebkhes, and Garaets) 

scattered across the provinces of Oum El Bouaghi, Khenchela, and Batna. These wetlands 

stretch over a distance of 300km and cover an area of 55,000 ha (Amri et al., 2019). 

Sebkhet Ezzemoul is located to the east of Chott Tinsilt, and together, these two wetlands 

encompass an area of 8,919 ha. They are temporary wetlands that fill only during 

significant rainfall events in the winter season. These plains cover an area of 4,600 ha 

(Boulekhssaim et al., 2006; Messai et al., 2006; Aliat et al., 2016; Amri et al., 2019). 

The approach adopted in this study is purely cartographic, enabling the 

compilation of general information about the study site (exposure, slope, coverage, 

geographical coordinates, altitude, etc.) and its analysis through specialized software to 

produce NDVI (Normalized Difference Vegetation Index) and change maps. 

           To achieve this, we aimed to answer the following two questions: 
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ABSTRACT 
This research focused on monitoring the spatial and temporal 

dynamics of halophyte vegetation in Sebkhat Ezzemoul (6,765 ha) 

and Chott Tinsilt (2,154 ha), which are part of the wetland system in 

the high plateaus of Constantine, northeastern Algeria. Conducted 

within a semi-arid climate, the study employed geomatics tools to 

analyze changes over time. A 30-year diachronic study (1987–2017) 

was carried out using LANDSAT satellite imagery from the years 

1987, 2000, and 2017. The findings indicate that variations in 

halophyte species are primarily influenced by key environmental 

factors, including agricultural practices and overgrazing. 
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1. What is the wetland's evolution over time? 

2. What are the main factors influencing this evolution? 

 

 

MATERIALS AND METHODS  

 

Study area 

Sebkhet Ezzemoul and Chott Tinsilt are located in northeastern Algeria 

(35°53'14''N, 6°28'44''E and 35°53'14''N, 06°30'20''E, respectively) in the province of 

Oum El Bouaghi (Fig. 1). They are characterized by a semi-arid to arid Mediterranean 

climate, with an average annual rainfall of about 300mm and average temperatures 

ranging from approximately 3 to 37°C. Sebkhet Ezzemoul covers an area of 6,765 ha, 

with a maximum estimated depth of 0.40m (Moali & Remichi, 2009). In contrast, the 

floodable area of Chott Tinsilt is approximately 1,000 ha, while the entire site, including 

its surroundings, spans around 3,600 ha (Saheb, 2003). Both wetlands are listed under the 

Ramsar Convention. 

 
Fig. 1. Map of the study site 
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Materials and methods 

The setup primarily includes a Garmin GPS receiver (Model GPS map 60Cx) for 

georeferencing the study site and a digital camera for capturing images. 

Data used 

Cards 

 Topographic maps at a scale of 1:50,000 (Geodetic System North Sahara 1959, 

Clarke 1880 Ellipsoid, UTM Projection Zone 32 North) were used in digital format to 

delineate the study area's boundaries and analyze the terrain. The specific sheets used 

include Batna East (SHEET NI-32-XIX-3), Ain Fakroun West (SHEET NI-32-XIX-2), 

Chemora West (SHEET NI-32-XIX-4), and Souk Naamane East (SHEET NI-32-XIX-1). 

Additionally, thematic maps of land use and lithology for the Batna province, produced 

by the National Office for Rural Development Studies (NORDS), were utilized. 

Maps and satellite imagery 

 This study employed satellite images from LANDSAT 5 TM (1987), LANDSAT 

7 ETM+ (2002), and LANDSAT 8 LDCM (2017) to perform various image processing 

techniques such as false color composition and calculation of the Normalized Difference 

Vegetation Index (NDVI). A 30-meter resolution SRTM Digital Terrain Model (DTM) of 

Eastern Algeria was used to generate slope and aspect (exposure) maps of the study area. 

For image processing and analysis, Global Mapper 13, ArcGIS 9.3, and ENVI 5.0 

software were used. 

Mapping approach 

 A central goal of this study was to monitor changes in halophyte vegetation in 

Sebkhet Ezzemoul and Chott Tinsilt over a 30-year period (1987–2017). To achieve this, 

remote sensing and GIS techniques were employed to produce maps that visualize 

vegetation dynamics over time. 

Acquisition of satellite images 

 LANDSAT imagery was selected for this study for two main reasons: 

1. LANDSAT is the oldest Earth observation program, offering a long-term archive 

of over 30 years of imagery. 

2. LANDSAT data is freely available through the United States Geological Survey 

(USGS) platform, a U.S. government agency focused on Earth sciences. 

Selection of image dates 

 In diachronic vegetation studies, careful selection of image dates is crucial due to 

seasonal variability in field conditions. A major challenge is distinguishing natural 

vegetation—particularly herbaceous species—from cultivated land. Since vegetation 

monitoring relies on photosynthetic activity, imagery was selected from the spring 

season, when natural vegetation is most active. 
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Applying a mask and false color composition 

 A false color composite was applied using band combinations 4-3-2 for 

LANDSAT 5 and 7, and 5-4-3 for LANDSAT 8. These bands correspond to near-

infrared, red, and green wavelengths and are displayed as red, green, and blue on screen, 

respectively. This composition is effective for vegetation analysis due to the strong 

reflectance of healthy vegetation in the near-infrared range. On such images, high-activity 

vegetation appears bright red, water appears almost black due to high absorption, and 

bare or mineral surfaces show up in blue to white shades. 

Calculation of NDVI and change detection 

 As noted earlier, this study aimed to monitor the spatial and temporal evolution of 

halophyte vegetation in Sebkhet Ezzemoul and Chott Tinsilt from 1987 to 2017. NDVI 

values were calculated from satellite imagery for three dates: March 28, 1987; April 24, 

2000; and April 10, 2017. These dates correspond to the peak vegetation period in spring, 

which enhances comparability. By comparing NDVI maps from each date, vegetation 

cover changes in the study area were detected and visualized in a change map. 

The methodological steps of this approach are summarized in Fig. (2). 

 

 
Fig. 2. Methodological flowchart 
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RESULTS  

Cartographic results 

Using geomatics tools makes it possible to produce multi-date NDVI maps and 

change maps in order to better evaluate the objective of our work. 

NDVI results 

The NDVI results of this study show an increasing gradient of plant activity with 

values ranging between -1 and +1; values close to -1 indicate the decrease in vegetation, 

while those close to +1 indicate that the vegetation is growing well and in good health. 

The first method to specify the vegetation in an area is the average of NDVI values 

within the area. This solution supplies information about vegetation (Alatorre et al., 

2013; Zaitunah et al., 2018; Csete et al., 2021; Pushpanjali et al., 2021).  

Because vegetation cover is highly dynamic—affected by both climate change 

and human activities—the NDVI values are often found to vary significantly across 

different case studies. Therefore, it is essential not only to detect changes but also to 

evaluate the extent of change in plant cover (Peng et al., 2012). 

Each color displayed on the map indicates a different level of land cover change. 

The color gradient is interpreted as follows: 

• Black to dark orange: bare ground 

• Light brown: sparsely vegetated areas 

• Orange to yellow: moderately dense vegetation 

• Bright yellow: dense vegetation 

The NDVI results appeared as follows: 

 
Fig. 3. NDVI map of the study site (1987) 
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According to the 1987 NDVI map (Fig. 3), values can be categorized into three 

main classes: 

• Bare soil: NDVI values ranging from -0.6 to -0.2 

• Medium dense vegetation: NDVI values from -0.2 to 0.2 

• Dense vegetation: NDVI values between 0.2 and 0.7 

A visual interpretation of the 1987 NDVI map indicates that vegetation during 

this period was relatively dense and primarily concentrated around Sebkhet Ezzemoul 

and Chott Tinsilt. 

 

 
Fig. 4. NDVI map of the study site (2000) 

 

Fig. (4) summarizes the NDVI map results for the study site in the year 2000. The 

NDVI values fall into the following categories: 

• –0.7 to –0.2: bare soil 

• –0.2 to 0.3: medium dense vegetation 

• 0.3 to 0.7: dense vegetation 

• ˃0.7: agricultural vegetation 

Visual interpretation of this map indicates that dense vegetation is primarily 

concentrated to the north of Sebkhet Ezzemoul and Chott Tinsilt. Moderately dense 

vegetation surrounds the site, while bare ground appears mainly in the center and along 

the northern and eastern edges of the study area. Additionally, a noticeable reduction in 
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vegetated areas is observed in the northern region, accompanied by an increase in bare 

soil. This shift reflects a clear trend of vegetation regression. 

 

 

 
Fig. 5. NDVI map of the study site (2017) 

 

In the NDVI image from 2017 (Fig. 5), the NDVI values are categorized as 

follows: 

• –1 to –0.5: bare ground 

• –0.5 to 0.1: moderately dense vegetation 

• 0.1 to 0.6: dense vegetation 

• > 0.6: agricultural vegetation 

Visual interpretation of the 2017 NDVI map shows that dense vegetation is 

primarily located in the northern and eastern parts of the study area. Moderately dense 

vegetation and bare soil remain largely distributed in the same areas as in 2000. 

Agricultural vegetation is dominant in the southern and western parts, while bare soil is 

concentrated in the center and along the eastern edges of Sebkhet Ezzemoul and Chott 

Tinsilt. 

It is important to note that the maximum NDVI value (NDVI max = 0.7) was 

recorded in 1987 and remained the same in 2000. However, in 2017, this value decreased 

to 0.6. This decline in NDVI can be attributed to the degradation of halophyte vegetation 

in the study area. 
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Change map results 

The change detection analysis covers the same period. The trend between 1987 

and 2000 (Fig. 6) clearly indicates a regression of vegetation, particularly in the western 

part of the site, and similarly in the east. In the central region, the vegetation regression is 

less significant. Vegetation progression is minimal, especially in the southern part of the 

study area, although there is a noticeable improvement in the eastern region. 

. 

 

 

Fig. 6. Change detection map of the study area (1987-2000) 

As shown in Fig. (7), the analysis reveals that the majority of the surface area 

experienced slight regression, covering approximately 13,489.72 ha. Moderate regression 

is observed around the perimeter of Sebkhet Ezzemoul, with a relatively significant area 

of 6,651.05 ha transitioning to bare soil. Strong regression is concentrated in the western 

and southern parts of the study area, where 46.55 ha—previously covered by halophyte 

vegetation—have been lost. In contrast, the total area showing vegetation progression is 

relatively small and appears as isolated patches on the map. 
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Fig. 7. Change detection diagram of the study area (1987-2000) 

 
Fig. 8. Change detection map of the study area (2000-2017) 

Analysis of the results presented in Fig. (8) establishes a relationship between the 

state of vegetation and the type of detected changes. The regression observed between 

2000 and 2017—indicating vegetation deterioration—is relatively moderate, with areas 

of strong progression located in the central part of the map. This progression reflects an 

overall increase in vegetation cover across much of the study area. 

 



Boudehane et al., 2025 1942 

 
Fig. 9. Change detection  diagram of the study area (2000-2017) 

As shown in Fig. (9), over a total area of 6,765 ha, the regression recorded over a 

23-year period amounts to 604.19 ha, indicating slight degradation—primarily due to the 

reduction of halophyte vegetation. During the same period, a significantly larger 

regression area of 20,155.63 ha was recorded, primarily located in the central part of the 

Sebkhet. 

 

 
Fig. 10. Change detection map of the study area (1987-2017) 

Between 1987 and 2017, vegetation progression within the Sebkhet is particularly 

noticeable and pronounced, especially in the central part of the map, where it covers a 

significant area. Strong progression is also evident in the eastern, western, and 

particularly southern sectors, largely attributed to agricultural activities. Conversely, the 

map reveals slight regression, represented by moderately sized patches scattered 
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throughout various parts of the study area (Fig. 10). Despite the overall trend of 

progression, a notable decline in halophyte vegetation is observed in some areas, 

indicating localized but significant vegetation degradation. 

 

 
Fig. 11. Change detection map of the study area (1987-2017) 

Fig. (11) also shows a significant progression of vegetation, covering an area of 

20,586.99 ha. This expansion reflects a decrease in the water level of the Sebkhet and 

affects nearly the entire study area. In contrast, the regressed areas are limited, 

representing only 171.67 ha. 

 

DISCUSSION 

 

In this study, the focus was on processing multi-temporal remote sensing data to 

track the evolution of halophyte vegetation in Sebkhet Ezzemoul and Chott Tinsilt. By 

comparing NDVI values across three different years, and based on the analysis results, 

four primary land cover types were identified: 

1. Sebkhets 

2. Agricultural areas 

3. Halophyte vegetation 

4. Bare soils 

Over the three reference dates, the change detection maps show a marked 

regression in vegetation cover (Van Der Schriek & Giannakopoulos, 2017; Law et al., 

2018; Scordo et al., 2018; Woolway et al., 2019; Pushpanjali et al., 2021), while 

agricultural areas significantly expanded (Zender et al., 2004; Rodríguez et al., 2012). 

This expansion of agriculture has come at the cost of halophyte vegetation, whose 

coverage has steadily declined. 
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These changes suggest that climate—particularly precipitation—plays a major 

role in shaping vegetation dynamics under water-limited conditions (Chen et al., 2018; 

Negesse et al., 2024). In arid regions, where the average annual rainfall is around 

300mm, plant growth is more sensitive to rainfall than temperature. The decline in 

vegetation is therefore primarily associated with persistent water stress (Bao et al., 2014; 

Chen et al., 2018; Wang et al., 2019). These findings are consistent with previous 

studies (You et al., 2019; Setti et al., 2023). 

In addition to climatic factors, human activities—especially agricultural 

expansion and overgrazing—are major contributors to the regression of halophyte 

vegetation (Vitousek et al., 1997). Combined with natural stressors, anthropogenic 

pressures further intensify ecosystem degradation (Liu et al., 2018; Chen et al., 2019; 

Xu et al., 2021). The conversion of Sebkhets and Chotts into cereal cropland, 

urbanization, and increased livestock numbers—particularly under nomadic 

pastoralism—have all contributed to vegetation decline. Livestock farming remains a 

dominant livelihood in rural areas (Vitousek et al., 1997; Wang et al., 2019), and 

overgrazing has accelerated grassland degradation (Verbrugge et al., 2022). 

Simultaneously, agricultural practices are becoming more intensive, expanding 

into fragile ecosystems. This trend underscores the need for sustainable land management 

strategies. In this context, geomatics and remote sensing technologies provide efficient 

tools for studying ecological transformations (You et al., 2016; Liu et al., 2018; Peng et 

al., 2019; Yuan et al., 2022). These tools help identify changes and support decision-

making for conservation and land use planning. 

CONCLUSION 

 

This study demonstrates that both climate variability and human activities are the 

main drivers of plant cover distribution in the Sebkhet Ezzemoul and Chott Tinsilt region. 

In particular, anthropogenic pressures—such as agricultural expansion and overgrazing—

pose a serious threat to the regeneration of halophyte vegetation in the medium term. 

The results reveal a clear pattern of change over the study period (1987–2017), 

driven primarily by increasing agricultural activity. This has led to the degradation of 

halophyte-dominated ecosystems and a reorganization of land cover across the region. 

The use of cartographic approaches and geomatics has proven to be an effective 

methodology for analyzing ecological dynamics. These tools can support the 

reorganization of research efforts and guide a comprehensive, participatory conservation 

management strategy. 

Finally, the implementation of conservation programs in vulnerable areas is 

essential to preserving the region's biodiversity. Targeted interventions, informed by 

remote sensing and field-based data, could help safeguard these unique ecosystems under 

the current and future pressures of climate change and human impact. 
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