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Abstract

This paper extends our previous research on anisotropic conformal changes F(x,y) = F(x,y) =
e?YIF (x,9). The studyffocuses on the behavior of the Berwald connection, which measures the
deviation of a Finslerstructure from a Riemannian one, and the Chern-Rund connection on conic
pseudo-Finsler surfaces under this anisotropic conformal transformation, along with the dynamical
covariant derivative.In particular, we express the Landsberg tensor of the transformed Finsler metric
F in terms of the difference between the horizontal coefficients of the Berwald and Chern-Rund
connections. Consequently, we,find the necessary and sufficient conditions under which the
Landsbergian property is preserved under the anisotropic conformal transformation. Our findings
shed light on the relationship between anisotropic conformal transformations and the intrinsic
geometry of Finsler surfaces. Additionally, we provide explicit formulas for the anisotropic
conformal transformation of the dynamical covariant derivatives in the context of conic pseudo-
Finsler surfaces.

Keywords: anisotropic conformal change; conic pseudo-Finsler surface; modified Berwald frame;
dynamical covariant derivative; Berwald connection.

direction. In the Finsler geometry, this
transformation takes the form F(x,y)~

Introduction F(x,y) = e?®YF(x,y), where the function

Anisotropic conformal transformations

generalize

changes by allowing the conformal factor to
depend not only on the position but also on the

¢ (x,y) encodes the directional anisotropy. This
anisotropy is important in various physical
scenarios such as enables richer models of
describing the universe, new solutions to
gravitational field equations, light propagation

classical (isotropic) conformal
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in anisotropic materials and potential
explanations for phenomena not addressed by
isotropic theories [Friedl-Sz'asz et al., 2025;
Heefer et al., 2023; Hohmann et al., 2020;
Pfeifer and Wohlfarth, 2012; Savvopoulos and
Stavrinos, 2023; Voicu et al., 2023; Youssef et
al., 2024; Youssef et al., 2025b].

The anisotropic conformal
transformation of a conic pseudo-Finsler
surface has been introduced and thoroughly
investigated in [Youssef et al., 2024; Youssef et
al., 2025a; Youssef et al., 2025b]. Unlike
isotropic conformal changes, anisotropic
conformal changes do not necessarily yield a
pseudo-Finsler metric. Consequently, we have
determined  the necessary and sufficient

conditions for (M, F) to remain a conic pseudo-
Finsler surface under such transformations.
Notably, there exist non-homothetic conformal
factors ¢ (x, y) that preserve the geodesic spray.
Moreover, it is possible to transform a pseudo-
Finsler metric into a pseudo-Riemannian one,
and vice versa. These results highlight the
greater geometric flexibility and significance of
anisotropic conformal transformations. We
have further investigated the relationships
between key geometric objects of F and,their

counterparts for F, including the Berwald,
Landsberg, and Douglas‘tensors, as well as the
T-tensor. In particular, we have determinged the
conditions under which the geodesic spray of a

two-dimensional pseudo-Berwald métric F is
metrizable by a two-dimensional pseudo-
Riemannian metric F. Furthermore, we study
the Cartan connection and “derive several
identities satisfied under the™ anisotropic
conformal transformation.

In Finsler geometry, the Berwald and
Chern-Rund cennections are canonical linear
connections defined on the pullback bundle or
the tangent bundle of.a Finsler manifold [Miron
and Anastasiei “2012; YOUSSEF, 2008;
Youssef et al., 2009 ] ThesBerwald connection
generalizes the Levi-Civita connection of
Riemannian geometry and measures how far a
Finsler  structure departs from being
Riemannian. A» Finsler space is called a
Berwald space'if its Berwald curvature vanishes
[Antonelli et al., 2013; Bao et al.,, 2012;
Bidabadand Tayebi, 2011; Youssef et al., 2010;
Shen and Shen, 2016; Bucataru and Miron,
2007]. Both Berwald and Chern connections are
torsion-free and only slightly fail to be fully
metric-compatible, an expected feature in the

Finsler setting. These connections coincide
when the underlying Finsler structure is
Landsbergian and when the structure is of
Berwald type, they reduce to a linear connection
on the manifold M that acts directly on the
tangent bundle TM.

In this paper, we explore specific
properties of the Berwald connection on.conic
pseudo-Finsler surfaces (M, F). We express the
connection coefficients in terms of the modified
Berwald frame. The transformation of the
horizontal coefficients under anisotropic
conformal changes has alreadysbeen studied in
our previous work [Youssef etal., 2024]. Here,
we further examine the dynamical _covariant
derivative and provide an alternative proof that
the dynamical covariantyderivative of the
modified Berwald frame vanishes.
Additionally; Weranalyze how the dynamical
covaright ~ derivative, transforms under
anisotropic conformal changes. Furthermore,
we study the Chern-Rund connection, express
its horizontal coefficients using the modified
Berwald frame and deriyve their transformation
under anisotropic conformal changes.

It"is known that the difference between
the Berwald and Chern-Rund connections is the
Landsberg tensor. Therefore, we drive the
anisoetropic conformal transformation of the
Landsberg tensor. As a result, we determine the
necessary and sufficient conditions under which
the Landsbergian property is preserved under
the anisotropic conformal transformation
Proposition 4.7.

Notation and preliminaries

Let M be a smooth manifold of
dimension n. The tangent bundle of M is
denoted by (TM,my, M), where TM is the
disjoint union of all tangent spaces at each point
of M, and m,:TM — M is the the canonical
projection onto the base manifold. The slit
tangent bundle is defined as TM = TM\{0},
which is the tangent bundle with the zero
section removed. A local coordinate system on
M is denoted by (x!), which induces local
coordinates (x%,y") on TM, where x' are
coordinates on the base and y! are the
components of tangent vectors in each fiber.

A smooth function f € C*(TM) is
considered to be positively homogeneous of
degree r in the fiber coordinates y, denoted
f € h(r), if it satisfies
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fl,Ay)=Af(x,y), YA>0.
A conic sub-bundle of TM is a non-empty open
subset A S TM such that my(A) = M and A
is invariant under positive scaling of the fiber
coordinates; that is, for any (x,y) € A and any
A > 0, 0ne has (x,1y) € A.

Definition 2.1 A conic pseudo-Finsler
metric on M is a smooth function F: A » R,
with F € h(1), defined on a conic sub-bundle
A S TM. For each point (x,y) € A, the
Hessian matrix

1. .
gij(x,y): = Eaiasz(x' y),
0
oy’
must be nondegenerate. The pair (M,F) is
called a conic pseudo-Finsler manifold.

In terms of the Finsler metric F, there
exists a unique nonlinear Cartan (Ehresmann)
connection in the conic sub-bundle A c TM
with coefficients determined by

G] =20i[g7 (y"0m0iF? — 0,F?)].
This nonlinear connection defines the
horizontal derivatives &;:=9; — G/d;. The
coefficients of the geodesic spray coefficients
of F can be expressed as
G' = g™ (YOm0 F? — 0b?).
It is evident that G* are smooth and positively
homogeneous of degree 2 in A; furthermore,
the geodesic spray can be defined globally on
TMas S = y'd; — 2G'0;.

We are concerned with a two-
dimensional Fins!er space. (M, F) with
coordinates x = (x%), y = (y'), where.i = 1,2.
Then we have

o1 . . .
'Lpl=Fyl, €i=6iF, hU=F6161F,
gij = gigj + hij' (21)
The angular<metric tensor h;; of an n-
dimensional Finsler space has the matrix (h;;)
of rank n — 1. In a two-dimensional space, the

angular,metric has a matrix of rank one and we
have

where 9;:=

det(hij) = hy1hyy — (h12)2 =0.(2.2)
If hy; = h33 =0, then (2.2) implies hy, = 0,
leading to a contradiction h;j = 0. Therefore,
we assume h;; # 0 and choose the signe = +1
for hyy. We find that eh,; = (m;)? uniquely
determines a non-zero m, up to the sign of h,;.
Subsequently, €h,, = mym, determines m,,
and (2.2) gives €h,, = (m,)%. Consequently,
we have (m,, m,) and the sign &, satisfying

h;; = em;m,. 2.3
j j

Henceforward, we work in a two-
dimensional conic pseudo-Finsler space
equipped with a modified Berwald frame
(£i,m;). The components g;; of the metric
tensor are given by

apd its in\(erse as
gy =Lt + em'm/. (2.5)

Consequently, the Kronecker delta ' takessthe
form

§f =414 + em'm;, (2.6)
where ¢ is called theSignature of F. The two
vector fields £ = (¢1,€%) and m= (mYHm?)
have been chosen in such,a way that they satisfy
g, ) =1, g¥,m)y=0, glmm) =Ee.
The main_sealar, J(x,y) is a h(0)-smooth
function‘that is derived from the,Cartan tensor
[Antonelli et al., 2013] and defined by

FCijk = 7mimjmk. (27)
Fori a smooth function f € C*(TM), the
vertical and  horizontal scalar derivatives
(f.1, f2)and(f 1, f>) in@Finsler surface (M, F)
are given by

FO.f = f1t; + f;zmi'} (2.8)
6if = fati + famy
where

f;l N yla'ifﬂﬁZ = EF(alf)le
f1=@f)Ef2 = e(Sif)m'
In particular, if £ is h(r), then f,; = rf.
Lemma 2.2 [Matsumoto, 2003] Let
(M,F) be a conic pseudo-Finsler surface
equipped with modified Berwlad frames. Then,
we have the following:
(i) #'m; =£;m' =0, m'm; = ¢,
2 =1,
(ll) Fajfl = emimj = hi
Faj{’i = emimj,
(|||) Fajml = —('Bl — £7ml-)mj,
Fajmi =—(¢'+ sﬂmi)mj.
Definition 2.3 [Youssef et al.,, 2024] An
anisotropic conformal change of a conic
pseudo-Finsler metric F is defined by
F— F(x,y) = e?®YF(x,y), (2.9)
where the conformal factor ¢ (x, y) is a smooth
h(0)-function on A. Under this transformation,
the following condition holds:
F2(8;0;¢ + (0;)(0;¢))m'm/ + &
=0—(p.2)*+e#0,
with o = ¢, + €7, + 2(¢.2)%

jr



Berwald and Chern Connections under Anisotropic...

Scientific Journal for Damietta Faculty of Science 15(2) 2025, 1-10

In this case, we say that F is
anisotropically conformally changed to F. The
transformation (2.9) is called proper if the
conformal factor ¢ (x, y) is neither isotropic nor
homotbhetic, i.e., ¢, # 0.

Now, we define the v-scalar derivatives
(f.a» f.p) and h-scalar derivatives (fg, fp) in

(M,F) forf by:

Foif = f o + f.pmy,
8lf - f,afl + f,bmi'
where

fia=Y'9:f, fip=eF(3:S)m,

- i _ :
fa= (i), fo=e@Eif)m.
In [Youssef et al., 2024], we studied the
anisotropic conformal change of a conic
pseudo-Finsler surface (M, F) equipped with a
modified Berwald frame and determined how
this change affects the components of the
Berwald frame (¢,m) of F, that is,

7 =e® i (2.10)

. (2.11)
m =e~? [ep [m' — e, t'].
1
P e @ar Y
Furthermore, the anisotropic conformal
change of the geodeSic spray coefficients,
geodesic spray, Barthel connection coefficients
and Berwald connection coefficients areé given,
respectively, by
G =Gl +Qmi+Pe (2.13)
S=5-2(Qm!+ Pe)o,, (2.14)
—i 1 ; .
G; =G+ ={2Peie; + (P, — Q) fimy
+2Q¢;m' + (¢P + Q,, — €IQ)m'm;},
(2.15)
ij = Gk + = 72 [(2P€l + Zle)f 'ka
+{(P: - Q){)l + (6P +.0,, — £7Q)m'}
(&jmy + £emy) {(eP + P, — 20,
+€7P;2)'€l + (ZSP;Z + SQ + Q;z;z
—£7,Q = eﬂQ;Z)mi}mjmk], (2.16)
where
2Q.= epF* (o1 + D12 — 20 ), (2.17)
2P = —pF?h5(hap1 + b1 — 26 2)
+F2¢'1, (2.18)
28¢;2Q + 2P = Fz(l)'l. (219)
Also, we have the following identities [ Y oussef
et al., 2025a]:

%(sz,l - 2€P;2Q) =P, + 2e¢.,.,0
—F?¢,,+Q, (2.20)

22 (F2p1 — 26p2Q) = ~Po — 26020 +
F2¢,2 + Q. (2.21)
25 (F2p1 = 26p2Q) = P — £Q; ~ 7Q. (2.22)

¢;2P + P;Z + gd);ZQ;Z - :](I);ZQ
—F%$,—Q = 0. (2.23)

Berwald connection and
covariant derivative

dynamical

Definition 3.1 [Antonelli et al., 2013] For a
conic pseudo-Finsler surface (M, F)  there
exists a unique linear connection Bl =

(G}, i J,O) thatssatisfies the following:
Bl. ylj—Ole Gl=ka 5
B2: BT is h-metric: F; = 0,
B3: BT is h&symmetric: T/, = 0, i.e. G} =

Gjo
B4: the (v)hv-torsmn tensor: Pk =0,i.e.
aijL = ]k‘

B5: (h) hv-torsion vanishes, i.e. Ck =0.
This_connection BT = (G}, G/,0), is called
Berwald connection. The horizontal and
vertical covariant derivatives of X} with respect
to Berwald connection are given respectively
by:
v3.X] =Xjf|k:= 8 Xj + X GL — XLGh,

V5 X[ = X[lx:= 0iX}.

Proposition 3.2 Let (M,F) be a pseudo-
Finsler surface. Then for the Berwald

connection BI' = (G, G}, 0), the following
relations hold:
(i) €;=0, £y;=0, mj=
elymim;, my; =
(i) Fmi|j = —fimj — eﬂmimj, Fmy|; =
—t;m; + eJm;m,
(iii)F{’i|j = emimj, F¢;|; = emym;,
(iv) (¢;m; + €ymy) ) = —€d 1 (£im; +

jko Hjo

—ellmimj,

{’]ml)mk .
Proof.

(i) Since y'=F¢! take the horizontal
covariant derivative of both sides and using

B1 and B2, we obtain £{; = 0. The Berwald
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connection is not h-metrical, then

Jijik = —2.‘],1mimjm,.( (3.1)
Moreover, since £; = g;;¢/, then from (3.1)
and Lemma 2.2 (i) along with £{; = 0, we
have
Lir = Gijirt’ + 94t

= —27,1mimjmr£j = 0.
Next, differentiating ¢#;m'=0 and
giym'mJ = ¢ horizontally, leads to £;m; =
0 and mym|; = 7, m;. Thus we get
mfj = e.‘]llmimj.
Fromm; = g;;m" and (3.1), we get
my; = girym’ + grmj;

= —27;mym,mym" + &J,g;,;m"m;

= —&Jymym,.
Consequently, we obtain
=0 ;=0

mfj = e.‘]‘lmimj, m;; = —&Jymym,.

(i) From Lemma 2.2 (iii) and the vertical
covariant derivative of BT, we obtain
Fmi|j = Fajmi = —{’imj — sﬂmimj.
le|] = Fajml = —{’lm] + ejml-mj.

(iii) Similarly to (ii), from Lemma2:2«(i).and the
vertical covariant derivative of BI', we have
FeY; = F(?j{’i = emim;;.

Ft;|j = Fo;t; = emym;.
(iv) Follows directlyfrom (i).
(v) From (i), we have', then

=0, so L HEGH=0.

By B1,

0 = F&t' + y*G}, = F&; /' + Gf.

Therefore,

Gl = —F&;t'.
Definition 3.3 A nonlinear connection induces
a dynamical covariant derivative V, that acts
on functions f € C*(A) and Finsler vector
fields X € I'(n*TM) as follows:
Wf=y'sf=sFn (2
VpX = (VX")0;, VX"=p/6X" +GiX, (3.3)
where X,= X'9; in local coordinates. This
definition allows V, to map functions and
Finsler vector \fields to their corresponding
counterparts.

Let TS?ST; Sr” (x,y) be the components

of an (p, )dtensor field T. Then the
dynamical covariant derivative V, maps T to a
tensor field with components:

™. _ k ™. rp T mnry.. rp
vDTss s y(sTss -Sq +Gsts sl
152:Sq 152 152:-Sq
"D r
P72
ot G T
1Ty .1 r1Ty..1;
m 172-I'p m 172 p
~GITpr sF = = GIT, (3.4)

A scalar functlon with vanishing dynamical
covariant  derivative is constant along
geodesics, and therefore is a first integral of.the
geodesic spray S.

Lemma 3.4 In Finsler surfaces, @ scalar
function f € C*(A) is constant along the
geodesic, that is, it is a first integral ofsthe
geodesic spray if and only if £, = 0.

Proof. A function f is constant along geodesics
if its total derivative alang the spray vector field
vanishes:

af B A
£ =Vof =S(H =0,

From (2.8), we have

0 = y'5if =¥ (falt f2m:):

The conclusion follows from“Lemma 2.2 (i),
which implies that this_holds if and only if
f:l = 0.

Lemma 3.5 The /dynamical covariant
derivative V,,, the Berwald connection V2 are
related by

y*vs, = Vp.

We present an alternative proof of the
well-known result that the dynamical covariant
derivative of the Berwald frame of a conic
pseudo-Finsler surface vanishes [Bucataru and
Miron, 2007].

Lemma 3.6 Let (M,f) be a conic pseudo-
Finsler surface equipped with a Berwald frame
(¢,m). Then the dynamical covariant
derivatives of (¢, m) vanish.

Proof. From Proposition 3.2 (i), we have
;=0 £y, =0,

my; =elym'my,  omy; = —ed ymymy
Along with Lemma 3.5, we get

Vpt' =ylt}; =0,

VDf =Yy €l|1 = 0

Vp,mt = meU = eFJm! m; £/ =0,

Vpm; =y/my; = —eFﬂrlmlm]{’ =0.
Hence, the dynamical covariant derivative of
the Berwald frame vanishes.

Under the anisotropic conformal
transformation F — F = e®F, we define the
dynamical covariant derivatives in (M, F) as

Vpf =¥'8:f = S(f), (3.5)
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VpX! = yX 5.X! + G Xk — G XL, (3.6)
where S and E; are given by equations (2.14)
and (2.15), respectively, and the horizontal
derivative §; is defined by

F8; = F§; — (2P¢¢; + (P, — Q)¢'m; +
2Q¢;m' + (eP + Q., — €9Q)m'm;)9;.  (3.7)
Proposition 3.7 Let the conic pseudo-Finsler

metric F be anisotropically conformal to F =
e®F. Then we have:

Vnf = Vof —=(faP + ££2Q). (38)
- . o1
VpX' = VpX' + = [(=2P Ay — 26Q Ay
+eQB + 2P A + P, B) ¢
+(—2P B, — 2¢Q B, + PB + £Q,B
+QIB)m']. (3.9)
Proof. Firstly, from (3.5), (2.14) and (2.8) for a
scalar function f € C* (M), we have
Vof = (S —2(P ¢ +Qm)d;)(f)
=S(f) —2(P L'+ Qm)(f1li + fomy)
By using Lemma 2.2 (i), we obtain

— 2
Vpf =Vpf - F(fnp + ¢f.,Q)
Secondly, on a Finsler surface, any tangent
vector can be expressed in the form
X' = A(x,y)¢" + B(x,y)ni?, with
A,B € C*(TM).
Consequently, From«(2.8) and Lemma 2.2 (ii)
and (iii), we get
Fo;X' =F9;(A¢' +Bm')
= A,¢'¢; + (A, — B)¢'mj + B4m'¢; +
(B, + €A — sﬂB)mimj. (3.10)
According to (3.6), we get _
VpXi = yK 8, X1+ G X* = S(X) + Gpk*
=SXH —-2(P ¢/ +Qm))o; (X
. 1 .
+GLX* + F(ZPMR + (P,
—Q)¢'my, + 2Q¢,m' + (eP + Q,,
—e7Q)mim; )(A €X + B m*)
From\(3.10) and Lemma 2.2 (i), we obtain
—_ o1
VpXE=VpX' + F(-2P A1 —26Q A,
+£QB +.2P A + P, B)¢"
+(_2P B,‘Z - ZSQ B;Z + PB + SQ;ZB
+QIB)m!].

Chern-Rund connection and anisotropic
change

Definition 4.1 [Antonelli et al., 2013] For a

conic pseudo-Finsler surface (M,F) there
exists a unique linear connection RI =

(I3, G}, 0), that satisfies the following:
R1: yf'j =0,ie G/ =TLy*,

R2: R is h-metric: g = =0,

ijlk
R3: RT is h-symmetric: Tj, = 0, i.e. ;&= LY,
R4: (h) hv-torsion vanishes, i.e. Cj,i{ =

This linear connection is called Chern
(Rund) connection. The geometric. objects
associated with Chern connection will™ be
marked by a star.

The horizontal and vertical covariant
derivatives of X]-i w.r.t. Chern_connection»are
given respectively by:

. . * . .* -* . .
leTk: = 6kaL +X]r r'lk _X;‘r}l:' X]llk — akXJl
Lemma 4.2 Let (M,F) bea conic pseudo-
Finsler surface. .Then the modified Berwald
frame satisfies

£ (Oktp) +& mi(8kmj)

= —€](5k{”) — & mj(5km‘)
Proof. Since we;have
8} = £'¢; + emimy.
taking the horizontal derivative yields
0 =5, (8) = 8 (£4; + em'my)

L ej(akei) + ¢ (6kt)) + ¢ mj(Skmi)
+¢€ mi(5kmj)

Consequently, we have
fi ((Skfj) + ¢ ml((Yka)

= —€J(6k€‘) — & m](6kml)
Proposition 4.3 Let (M,F) be a pseudo-
Finsler surface. Then, for the Chern-Rund

connection RI' = (I3, G/,0), the following
relations hold:
(i) =0, £+« =0, m\ =0, m+ =0,
j i]j

lj ilj
.* . .
(i) Fm'|; = —f'm; — eIm'm;,
*
le*|] = —{’imj + 8.7TIlimj,

(|||)F'€L|J = £mimj, F'ellj = smimj,
fjmi)mk.
(V) Tj = €18 8; + em'Sm;.
Proof.
(i) Since the Finsler metric satisfies
F? = g;;y'y/, it follows from R1 and R2
that
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F« =0. 4.2)

li . .
Since yt=F ¢,
horlzontally gives
o_yI —F {"+F{’l

differentiating

1j
By (4.1), we have {ﬂT' = 0.
j

Next, taking the horizontal covariant
derivative of the covector ¢; = gi]-#f, we
obtain

L+ =g -« £f+gij£f;.

i|r ij|r

By R2and ¢/ =0, wehavef* = 0.

|r i|r
Moreover, differentiating #;m' =0 and
giym'mJ = & horizontally, we get gim%' =
]
0 and mimlT' = 0. Thus we get m‘T_ = 0.
] ]
Finally, from ml gi-m” and R2, we get

m« =g +»m" +g,ms =0, where
l|J ir|j lj

J
(i)From Lemma 2.2 (iii) and the vertical
covariant derivative of RI", we obtain

Fm'|; = Fom' = —f'm; — eJm'm;.
Fm;|; = Fajmi = —{;mi’+ edm;m;.
(iii) Similarly to (ii), from Lemma 2.2°(1) and

the vertical covariant derivative of R, we
have

F#llj = Fajfl = Smimj.
Fgll] =F61€l = S‘mimj.

(iv) Follows directly from (it) and (lii).
(v) From (i), we have {)'Tk = 0'and m'Tk =0,
j j

then

8m; —m,Ii; = 0. 4.3)

Multiply (4.2) by ¢ and (4.3) by em!, then
solve these equations to find U,i(taking
into account 8/ = £, + em'm;), we get
Fkij = €l8k€] + smiﬁkmj
Remark 4.4

(@). From Proposition 4.3 (i), we have {)if' =0
, j
and mLT' = 0. Therefore, we obtain the
j
following equations:

8§t + 5Ty = 0, (4.4)
§m' +m*T;; = 0. (4.5)

By multiplying (4.4) by ¢, and (4.5) by
em,., and solving these equations to find
Tk (taking into ~ account §f =41 +
em'm;), we get

1"]}c =—¥; 5k€ — sm](Skm

(b) The symmetry of T (i.e., I‘]k = I‘kj) is
obtained from (a), Lemma 4.2, and
Proposition 4.3 (v).

Proposition 4.5 Let (M, F) be conic pseudo-
Finsler surface and (2.9)_besthe anisotropic
conformal transformation.The transformation
of the horizontal /coefficients of _Chern

connection are given/by
—i

F? Tjie = F2Tj, + 2Pl + 2Qm ¢4,
+(Py= Q)({ﬂmjfk +£10my,)

(F2¢ +F2¢22—(1+€¢22

+&¢., —)(eP + Qo — e?Q)) l"mjmk
+(eP + Q » — £7Q)(m*¢; imy, +m mjl’k
<5F2¢2 —erp—p— (eﬂ + ¢, — Pz)

2p
(eP + Q. — €7Q) )ym'mmy.

Proof. The anisotropic transformation
of l“]k, in view of Proposition 4.3 (v), is given
by
szjl'k = —injgk?l - €F2mjgkmi (46)
Firstly, using (2.10), (2.1) and (3.7), we can
find the anisotropic transformation of the first
term of (4.6).

F22 5,2 = e P4i(F25, — [2PL74) + (P,
—Q)t"my +2Q4,m" + (eP + Q.

—JQ)M M JF0,) (e®(¢; + ¢.,m)))

From (2.8), we get

F22 5,2 = e 4 (e F2[8,2; + (12
+2mi) () + P amy) + ¢26my
+ (@210 + P2 2mi)my]
— eP[2P47 8, + (Pp — Q)" my
+2Q¢ym" + (eP + Q.
— eJQ)m my ] [pam,(€; + P,2m)
+ emim, + ¢,z omim, + ¢ (—€m,
+ eImym,)])

By using Lemma 2.2 (i), we obtain

F22 5,8, = F2L15,8; + F2¢p,6i5,m,
+F2E (1t + P 2my) (%) + ¢.2my)
(P21 0k + B2 omy)m;] — £1[2eQ 1y
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+(P + SQ;Z - jQ)mk][(p,Z({] + ¢;2mj)
+£mj + cj);z;zmj + (P,Z(_{] + eflm])]
From the formula of p (2.12), we get
F22 5,8; = F20L8,8; + F2¢,£15,m;
2@t + D om) (&) + domy)
+(P21 8k + D2 2my)my] — £4[2Q ) + (P
1
+€Q,2 — 7Q)mk]; m;
= F28'8,4; + F2 ot 5,m;
+F2(p 1ty + P oamy) e,
2¢ .
+[F2p 01+ Fp1 — ) Qle'm;ty

1
+[F2p. 0, + Fp,, — ;(P + €0,

—7Q)]{’imjmk 4.7
Secondly, we find the second term of (4.6), by
(2.10) and (2.11) along with (3.7), we have

F2m' s, m; = e(e~® Jep(m
—e¢.y tD))(F28, — [2PL7 ¢y + (P,
- Q)t"my, +2Q€,m" + (eP + Q.

. £
- s?Q)mrmk]Far)e‘l’\/;mj.
From (2.8), we get
F2m' 6, m; = e\[ep(m'& e, 1Y)

€
Fzﬁmj(qb,lgk + ¢ ,my
FZ\/_ (1% ‘;szk)

&
+F2\/;5kmj - [2P€T£’k + (P;Z

—Q){’ka + ZQ'Eka + (€P + Q:Z

—eJQ)m" my | \E¢;zmjmr

p2m €
Ep My ——= 2,02 ; (_’?jmr

+ eImjms.)

Byapplying Lemma 2.2 (i), we can rewrite the
expression as follows:
eFmM' 6, m; = eF*mism; — F2¢,016,m;
—qu');z'Qf‘{’jfk - q,');;(P + Q.
=JQ) iy + 2Qm' ity + (eP + Q,,

—eJQ)m'€;my, + (eF%¢p, — eF? g;

P2
(P + Q. — €7Q) (2 20
i P
+el))ymimymy, + (eF?¢, — eF? %
p,
—2Q(¢., — 2—; + &7))m' mﬁ?k

+(—F ¢2¢1+F2¢2—p+23¢2Q(¢2
—g—;+sﬂ))€‘m]€k+( F2¢ 0%

+F2¢>2 2+ ¢.2(P+ Q2 —IQ)(.2 —
5 + e?))#lm]mk (4.8)

From (4.7) and (4.8), we determine the
anisotropic conformal’ transformation_of the

horizontal coefficients of Cartan.connection
—i

F2Tj = F°Tjf + (F2¢q — 26Q¢ )04, By
+ (F%2 — e, 2(eP + Q2 — €1Q)) Ly,
+(F2¢22——5¢2 Q+F2¢21—2Q
_2€Q¢;2;2)‘Elmj€k + (Fz(l’;z 5 + F (]5;2’2

P,
_(1 + 8¢;2;2 + £¢;2 ?’[2;)(813 + Q;Z

—eJQ)) P mmye + 2Qm' ;) + (eF? ¢,

P1 , P2 i
~eF?2==+-20Q —2€7Q — 2¢.,Q)m'm; ¢

2p p , ¢,2 )p jtk

2¢)  _ cF222 _ Bz
+(EeF¢ , eF'zp (&T+ ., 2'D)(,SP
+Q,, = &IQ))m'mymy, + (eP + Q,,
—sﬂQ)mi{’jmk.
From (2.19) and (2.20)- (2.22) the formula of
—i

I’ can be obtained.

Proposition 4.6 Let the conic pseudo-Finsler
metric F be anisotropically conformal to F =
e®F. Then the Landsberg tensor of F is given
by
1

Lk_ij+ [((eP + P22 — 2Q;2

+eJP. ){” + (2eP, + €Q + Q22 €7,0Q

~£7Q,) miymmy, — (F? ¢ £2

p
+F2 o0 — (1 + e, +ed;, Z)(SP
+0Q.,—¢ 7Q))€imjmk — (eF? ¢,

—eF? ’2); (€T + ¢y — ’2)—';)(513 + Q.

—& ﬂQ))mimjmk].
Proof. Let (M,F) be a conic pseudo-Finsler
surface equipped with the Chern connection
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RT = (Tj;, G}, 0) and the Berwald connection
BT = (G}, G},0). The Landsberg tensor is
defined as the difference between the horizontal
coefficient of the two  connections,
consequently,

It .=GL —Tt

jk*— Yjk jk-*

Under the given anisotropic transformation, the
transformed Landsberg tensor is given by

. . _L
i —i *

From (2.16) and Proposition 4.5 we get

—i , 1
Ljp = Ly + 72 [((eP + Py — 2Q
+eIP,) €' + (2ePy + €Q + Q.2
—£7,Q —€7Q,) mi)mjmk
P2

—(F* ¢, Z +F2¢,,—(1+¢ 2.2

+e ¢;2 ';_'pz)(gp + Q;Z — & «7Q))flm]mk
p,
—(eF* ¢ — eF? 2—;— (eT+ ¢,

—S—Z)(SP +Q.; — £9Q))m'm;my].

Proposition 4.7 Let (M, E).be a conic
pseudo-Finsler metric and (2:9) be the proper
anisotropic conformal transformation,
provided that the _conformal factor s
horizontally constant. Then the property of
being Landsbergian is preserved if and‘only if
({b;z,z =0.

Proof. As, if the conformal factor is
horizontally constant (¢, = ¢, =0), that is
P =Q =0 [Youssef et al., 2024; Theorem
4.11]. From Proposition 4.6, we have

—1

i 1 P2
— 2 )
L = Ly + 7z [—(F* ¢,z 2

+F2 5 5)8imimy, + eF? Pz

2p
Consequently the Landsbergian property is
preserved under “the »anisotropic conformal
transformation if and only»if
b.2 Z_; +¢.22 =0, g—; =
Since (2.9) is proper ie. ¢., # 0, then the
Landsbergian property is preserved if and only
if ¢;2,2 = 0

mimjmy].

0.
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cartan connection of a conic pseudo-finsler
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