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Abstract  

This paper investigates the chaotic dynamics of an in-plane electrodynamic tethered satellite system 

(EDTSS) influenced by Earth's oblateness. The system is modelled using the dumbbell model, and 

the equations of motion are derived via the Lagrangian approach, accounting for the Lorentz force 

and the perturbation caused by the J2 zonal harmonic. The onset of chaos is analytically examined 

using Melnikov’s method, which provides a necessary condition for the emergence of chaotic 

behavior in the system. To address this instability, a novel control strategy based on sliding mode 

control (SMC) is proposed, with the tether length serving as the control input. The controller is 

designed to suppress chaotic motion and guide the system toward either a desired oscillatory 

behavior or a predefined equilibrium point. Numerical simulations are carried out to verify the 

analytical condition for chaos and to evaluate the effectiveness of the proposed SMC-based tether 

length control. The results confirm the controller’s capability to stabilize the system and eliminate 

undesired chaotic responses. 

Keywords: Chaos, Earth's oblateness, Electromagnetic Force, Melnikov Analysis, Sliding Mode 

Control, Tethered Satellite System. 

 

Introduction 

Space debris represents one of the most pressing 

challenges facing the global space community 

today. It is defined as all man-made objects in 

orbit or re-entering the Earth's atmosphere 

including defunct satellites, spent rocket stages, 

and fragments from disintegration, erosion, and 

collisions that no longer serve any useful 

function, Unoosa (2010). As of 05 May 2025, 

the European Space Agency (ESA), using the 

MASTER-8 model, estimates that 

approximately 54,000 objects larger than 10 cm 

are currently orbiting Earth, including around 

9,300 active payloads. In addition, nearly 1.2 

million debris fragments range in size from 1 

cm to 10 cm, while an estimated 140 million 

fragments measure between 1 mm and 1 cm. To 

address this growing threat, researchers and 

engineers have been actively developing 

https://www.ekb.eg/ar/home#portalMenu
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innovative technologies for debris mitigation 

and removal. Among these, electrodynamic 

tethered satellite systems have emerged as a 

promising solution for enabling highly efficient 

and cost-effective space operations.(Ma X and 

Wen H (2023); Razzaghi P et al. (2021); 

Svotina V and Cherkasova М (2023)) 

As a result, the tethered satellite system (TSS) 

has become one of the most prominent and 

actively explored topics in space science 

research (Modi V et al. (1990); Kumar K 

(2006); Sanmartin JR et al. (2010); Huang P et 

al. (2018); Sánchez-Arriaga G et al. (2024)). 

A typical TSS consists of two or more satellites 

connected by a tether. Extensive research has 

been dedicated to the modelling, dynamic 

analysis, and control of such systems (Hong 

AaT et al. (2024); Andrievsky B et al. (2022)). 

To derive the equations of motion, both 

Newtonian and Lagrangian mechanics are 

commonly employed, and the system states are 

usually described using either orbital elements 

or libration angles. The tether itself is modelled 

in different forms either as massless or with 

mass, and either rigid or flexible depending on 

the specific objectives and assumptions of each 

study (Aslanov V and Ledkov A (2012); Troger 

H et al. (2010)). 

The dynamics of tethered satellite missions are 

highly sensitive to various environmental 

disturbances, which must be carefully 

addressed during the modelling and control 

design phases. Key perturbative forces include 

aerodynamic drag, particularly significant in 

low Earth orbit, solar radiation pressure, which 

exerts continuous but subtle variations in force, 

and Earth's oblateness, characterized by the J2 

zonal harmonic, which distorts the gravitational 

field and influences orbital stability. 

Additionally, other disturbances such as third-

body gravitational effects and magnetic torques 

may also affect the system, depending on the 

specific mission parameters. Properly 

accounting for these perturbations is critical for 

accurately predicting system behavior and 

ensuring the effectiveness and long-term 

reliability of tethered satellite operations. 

Due to the significant influence of Earth's 

oblateness which is represented by the J2 

coefficient, numerous studies have investigated 

its effects on the dynamics of orbital and 

tethered satellite systems. Zheng P et al. (2008) 

developed a mathematical model using 

Lagrangian mechanics and performed 

numerical simulations to analyze the 

deployment of a tether-assisted deorbit system 

under the influence of J2 perturbation. Their 

findings revealed that the J2 effect 

predominantly influences in-plane motion 

during deployment, without causing out-of-

plane motion when the initial out-of-plane angle 

is zero. Yu B and Jin D (2010) examined a 

viscoelastic tethered satellite system, assessing 

the combined effects of J2 and thermal 

perturbations. Their results showed that J2 has a 

notable impact on deployment—especially in 

the presence of friction—while thermal 

perturbations mainly affect retrieval, leading to 

distinct motion profiles. In a subsequent study, 

Yu B et al. (2016) extended the analysis to a 

flexible tethered satellite system subjected to 

additional disturbances, including atmospheric 

drag, solar radiation pressure, and orbital 

eccentricity. Using a simplified two-degree-of-

freedom model, their simulations revealed the 

emergence of bifurcations, quasi-periodic 

oscillations, and chaotic dynamics. They 

concluded that J2 and thermal effects 

significantly affect pitch motion and must be 

considered in system design, whereas the 

impact of drag and solar pressure depends on 

orbital altitude. Later, Yu B et al. (2020) 

employed Melnikov analysis to identify 

conditions under which chaos emerges in a 

tethered satellite system in a circular orbit. 

Their study showed that the combined influence 

of J2 and aerodynamic drag could trigger 

chaotic motion even in systems with rigid 

tethers. Yuan W et al. (2024) further 

investigated the chaotic dynamics of a tether-

sail system in polar orbits, demonstrating 

through Lagrangian modelling and Melnikov 

analysis that both J2 perturbation and orbital 

eccentricity contribute to enhanced chaotic 

behavior. 

Electrodynamic tethers (EDTs) offer significant 

advantages over traditional tether systems by 

enabling propellant-free generation of Lorentz 

forces, which can be harnessed for efficient 

orbit control and power generation. Several 

studies have explored the influence of Earth’s J2 

perturbation on the dynamics and control of 

EDT systems. Hallaj MaA and Assadian N 

(2016) modelled a tethered satellite formation 

as a massless rigid dumbbell system subjected 

to both electrodynamic forces and J2 

perturbation. Their results demonstrated that 

precise and fuel-free formation control is 

achievable using electromagnetic actuation in 

combination with sliding mode control. 
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Tikhonov A et al. (2017) investigated an 

electrodynamic control system’s ability to 

counteract gravity gradient torques induced by 

the J2 effect in near-Earth orbits, confirming its 

effectiveness in stabilizing satellite attitude. 

Razzaghi P et al. (2019) developed a 

viscoelastic tether model for space debris 

deorbiting, incorporating both J2 perturbation 

and atmospheric drag. They compared the 

performance of sliding mode control (SMC) 

and state-dependent Riccati equation (SDRE) 

controllers, finding that while both approaches 

stabilized librational motion and reduced orbital 

altitude, SMC achieved faster responses and 

exhibited greater robustness to system 

uncertainties. More recently, Liu J et al. (2021) 

proposed a fuzzy logic controller for managing 

continuous current flow in an EDT system 

under the influence of J2 and drag forces. Their 

approach outperformed traditional on-off 

control strategies by improving orbital boost 

efficiency and enhancing libration suppression 

across a range of orbital inclinations. 

In this paper, a control strategy based on sliding 

mode control is proposed to supress the chaotic 

motion of the system, either by guiding it 

toward a desired periodic trajectory or 

stabilizing it at a predefined equilibrium state. 

The structure of the paper is as follows: Section 

2 presents the system modelling, where a 

dumbbell representation with a non-negligible 

tether mass is adopted, and the equations of 

motion are derived using the Lagrangian 

method. Section 3 applies the analytical 

Melnikov technique to determine the conditions 

under which chaotic motion may arise. In 

Section 4, a sliding mode controller is 

developed to mitigate chaotic behavior by 

adjusting the tether length. Section 5 provides 

numerical simulations that confirm the 

analytical findings and illustrate the 

performance of the proposed control scheme. 

Finally, Section 6 offers concluding remarks. 

Mathematical Model 

A tethered satellite system (TSS) in a circular 

orbit around Earth is considered, as depicted in 

Fig. 1. The system is represented by a dumbbell 

model, comprising a mother satellite connected 

to a subsatellite through a tether. The 

corresponding masses of the mother satellite, 

subsatellite, and tether are denoted by 1,m 2 ,m

and tm , respectively. 

 

Fig. 1 Tethered Satellite System 

An inertial coordinate frame ( , , ),X Y Z is 

defined with its origin at the center of the Earth. 

The X -axis points toward the vernal equinox, 

the Z -axis is aligned with Earth's rotational 

axis, and theY -axis lies in the equatorial plane, 

forming a right-handed coordinate system. 

A rotating reference frame, ( , , ),r ne e e centered 

at the system’s center of mass, is defined with a 

relative position vector cr with respect to the 

inertial frame. The three unit vectors ( , , )r ne e e

point radially outward away from Earth's center 

of mass, align with the direction of velocity, and 

complete a right-handed coordinate system, 

respectively. 

The position vectors of the mother satellite and 

the subsatellite relative to the system’s center of 

mass are denoted by
1ρ and ,2ρ respectively. 

The variable represents the in-plane angle, 

while l indicates the tether length at any given 

time. 

To construct the system's Lagrangian, 

appropriate expressions for both kinetic and 

potential energies are required. The total kinetic 

energy ,T can be obtained by integrating the 

kinetic energy along the tether and summing it 

with the kinetic energies of the mother satellite 

and the subsatellite, as described by Aslanov V 

and Ledkov A (2012). 

2 2 21 1
. ( ( ) ,

2 2
c c eT m l l     r r  (1) 

where
1 2 t

m m m m   is a total mass, the dot 

represents the derivative with respect to time,

  1 2 1 2/ 2 / 2 ) / 6/ (
e t t t tm m m m m m m m     

is a reduced mass, and is the true anomaly. 

By summing the potential energies of all system 

components, and by considering that the tether 

length is negligible compared to the distance 

from the system's mass center to Earth, the total 

potential energy of the system, ,W can be 
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expressed as follows: 

 
2

2

3
3cos 1 ,

2

e

C C

lm
W

r r


     (2) 

where  is Earth's gravitational strength 

constant. 

Based on Eqs. (1) and (2), the Lagrangian, , is 

formulated as the difference between the total 

kinetic and potential energies, i.e., .T W   

The corresponding equations of motion derived 

from the Lagrangian take the following form: 

,i

i i

d
Q

dt q q

 
 

 
 (3) 

here, the generalized coordinates are ,
i

q l

and
i

Q represent non-conservative generalized 

forces. 

By applying the following nondimensional 

transformation: 

( ) ( )
, ,

r

d d l
L

dt d l



   

the equations of motion can be reformulated in 

nondimensional form as follows: 

2 2
2( 1) 3cos sin ,

e

QL

L l

   
 


      (4) 

2 2

2
( 1) 3cos 1 ,l

e

Q
L L  

 
         (5) 

here, the prime symbol denotes differentiation 

with respect to the variable and 2 3./ cr   

The system is influenced by the Lorentz force 

generated from the interaction between the 

electric current flowing through the tether and 

the surrounding magnetic field, along with the 

J2 perturbation caused by Earth’s oblateness. A 

non-tilted dipole model is used to represent the 

magnetic field, and its components in the orbital 

frame ,  ,
r

B B
and ,

n
B are defined as follows 

Stevens RE (2008): 

3
2 sin sin ,m

r

c

B v i
r


   (6) 

3
cos sin ,m

c

B i
r




  (7) 

3
cos ,m

n

c

B i
r


  (8) 

here, i represents the orbital inclination, and
15 2

7.8510 ,/
m

N Am  denotes the magnetic 

dipole moment of Earth. It is assumed that a 

constant current ,I flows along the tether, and 

the magnetic field remains uniform along its 

length. This assumption is justified by the 

relatively short tether length compared to the 

characteristic radius of the system. According 

to the principle of virtual work, the generalized 

electromagnetic torques ,eQ and ,leQ can be 

expressed as: 

 

,

2
2 1

,

1 2

(

2

)
,

0.
l e

e n

t

Q

Il m m
Q B

m m m
  

 





 (9) 

The influence of Earth’s oblateness on the 

dynamics of the tethered satellite system can be 

assessed through its non-uniform gravitational 

potential, denoted by ,U as described by 

Kéchichian JA (2021). This potential is given 

by: 

2

1 (sin( )) ,

n

n n

c cn

R
U J P

r r








  
    
   
  (10) 

where nJ represents the zonal harmonic 

coefficient of order ,n R is Earth’s equatorial 

radius, and is the declination of the system’s 

center of mass relative to the equatorial plane. 

The term (sin( ))nP  denotes the Legendre 

polynomial of degree n evaluated at sin( ).  By 

disregarding higher-order terms such as
3J and 

above, substituting sin( ) with / cz r , and 

applying the transformation matrix to the 

rotating reference frame, the radial component 

of the perturbation acceleration can be derived 

as: 

 22

5

2
23

1 3sin sin .
2

c
ob

c

J R
i

r


  

r
a  (11) 

According to Zhong R and Zhu Z (2013), the 

torque acting on the satellites due to Earth’s 

oblateness-induced acceleration can be 

expressed as: 

, sin( ) sin( )cos(2 ),obQ        (12) 

where 

 2

22 2 2
2

2 2

1

5

3sin 3sin
. 1 , . ,

2 2

3
,

1

2 c

m mR l m

i

r

m

i

M MJ

   




 

   
     

   

 
 
















 (13) 

where 1( / 2) / .m tM m m m   

In this study, we focus on analysing the 

nonlinear behavior of pitch motion during the 

station-keeping phase, where the tether length is 

held constant. By substituting Eqs. (9), (12) into 

Eq. (4), assuming 0,L  and considering that 
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the total torque Q is the sum of the 

electromagnetic and oblateness contributions, 

i.e., ,, ,obeQ Q Q   we obtain: 

1 2 33cos sin sin sin cos2 ,              

 (14) 

where 

 

2

22

2

2

2
* *

1

2
*

2

3

2 1

2 1

1

( cos
.

3sin 3sin
. 1 , . ,

2 2

3
,

2

)

2

m

m

e

e

c

mR m M m M

I m m

m

i i

r

i

J

  




 






  
 

   
     

 



 

 
 







 
 



 (15) 

It is evident from Eq. (14) that the 

electrodynamic tethered satellite system, when 

influenced by Earth's oblateness, exhibits the 

characteristics of a nonlinear and 

nonautonomous system. 

1 Analysis of Chaotic Motion 

In this section, the Melnikov method is utilized 

to establish the necessary condition under 

which chaotic behaviour may appear in the 

dynamics of the system. 

By defining the state vector as

   1 2, , ,
TT

   θ = the state-space 

representation of Eq. (14) can be written as: 

   , , θ f θ g θ  (16) 

where 

1 2

2 1 1

( ) ,
3sin cos

f

f



 

   
    

   
f θ  (17) 

 

1

1 1 2 1 32

( , ) .
sin sin cos2

0g

g


     

  
    

    
g θ  

 (18) 

The perturbation vector, ( , ) ( , ),p  g gθ θ is 

periodic of period .p   

When ( , ) 0, g θ the system reduces to the 

unperturbed Hamiltonian form. In this case, the 

first integral of motion is expressed as: 

2 2
2 1

1 3
sin ,

2 2
E    (19) 

where E is a constant that denotes the total 

kinetic energy of the system. 

 

Fig. 2 Phase portrait of unperturbed system 

 

Fig. 3 Heteroclinic orbits 

Fig. 2 and Fig. 3 illustrate the phase portrait of 

the unperturbed system, along with the 

heteroclinic orbits that connect two distinct 

saddle points given by ( / 2,0), 1,2.ip i 

The analytical expressions for these 

heteroclinic orbits are provided in Yu B et al. 

(2020) 

    

 
10 20

1

,

sin (tanh( 3 )), 3sech( 3 ) .

v v

v v

  

  

 (20) 

For the perturbed system, when ( , ) 0, g θ near 

the equilibrium points, the heteroclinic orbits 

may divide into unstable and stable manifolds. 

Chaotic behavior is likely to occur if these 

manifolds intersect transversely. Based on 

Melnikov’s theory, such a transverse 

intersection takes place when the Melnikov 

function has a simple zero (Yu B et al. (2022); 

Aslanov V (2017)). 

The Melnikov function is defined as stated by 

Aslanov VS (2024) 

     0 0 0 0, ,M v v v dv 


 



   f g  (21) 

with  0 0, .v p  

By substituting the expressions from Eq. (17) 

and Eq. (18) into Eq. (21) and performing the 

necessary integration steps, the resulting 
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expression for  0M v reveals terms involving 

products of even and odd functions over 

symmetric intervals. Notably, the integrals of 

odd functions over symmetric bounds cancel 

out, yielding zero. Based on this analysis and 

under the condition 0 [ 1,1],sin2   the 

Melnikov function possesses simple zeros if the 

following inequality holds: 

3

2

0.2881.



  (22) 

This condition, though necessary, is not 

sufficient on its own to guarantee chaos. It 

indicates that the system may exhibit chaotic 

dynamics near the saddle points when satisfied. 

Tether Length Control 

In this section, the sliding mode control method 

is applied to suppress the chaotic motion 

observed in the electrodynamic tethered 

satellite system by designing a controller that 

acts through tether length modulation. 

With the state vector defined as

1 2, )( ( , ) ,T T   θ using Eq. (9) and Eq. 

(12), Eq. (4) can be rewritten in the state-space 

form 

1 2

2 1 2 3

2

sin sin cos2

2( 1) 3cos sin ,

,

u

 

      

  

 

   

  

 (23) 

where /u L L represents the control input, 

which can be adjusted by actuating the reel 

mechanism on the mother satellite. 

The sliding surface for the controlled system is 

defined by 
T
errs  Ae  (24) 

where  ,a aA ₁ ₂ is a constant vector with

1a ₂ and   0,a ₁ (Hurwitz condition). 

The tracking error state vector is defined as: 

1 11

2 22

err dT
err

err d

e e

e e

 

 

    
           

e  (25) 

where 1d and 2d denote the desired states or 

trajectories, depending on the control objective. 

To proceed with controller design, the 

derivative of the sliding surface is computed as 

follows 

1 1 1 2 2

2

1 1 2

1

1

1

2 ,

( ) ( )

'

( ) ( , )

'

2( 1)

'

d d

d d

e

a

a F v

e

u

s a

   

   

      

      







θ

 (26) 

where 

1 2 3( , ) sin sin cos2 3cos sin .F v           θ  

By using the constant rate reaching law

sign( ), 0,s k s k    and substituting into Eq. 

(26), the control input u can be obtained as 





1 1 1 2

2

1
( ) ( , )

2( 1)

sign( ) .

d du a F v

k s

  


     




θ
 (27) 

The selection of the gain k is a critical aspect of 

controller design. As noted in Liu J (2017), a 

small value of k can result in an excessively 

long reaching time, thereby diminishing the 

controller's effectiveness. Conversely, a large 

value may induce chattering, which is 

undesirable in practical implementations. 

To verify the stability of the controlled system, 

a positive definite Lyapunov function is 

selected as
21
.

2
V s Taking its derivative 

yields: 

( sign( )) | | 0.

 = s s'

s k s

V

k s



    
 (28) 

From Eq. (28), it is evident that the Lyapunov 

function is negative definite. Hence, the 

controlled system described in Eq. (23) is 

asymptotically stable. 

Numerical Results 

This section presents numerical simulations to 

verify the necessary condition for the onset of 

chaotic motion, as given by Eq. (22). This 

condition indicates that for certain values of 3

(representing the Lorentz effect) and 2

(representing the oblateness effect), the system 

may exhibit chaotic behavior if the condition is 

satisfied. In addition to validating this analytical 

condition, the effectiveness of the proposed 

sliding mode controller based on tether length 

control is also evaluated for its ability to guide 

the system toward either a desired state or a 

desired trajectory. 

The system parameters used in the simulation 

are as follows. The mother satellite mass,

1 1020 ,m Kg the subsatellite mass,

2 70 ,m Kg and the tether mass, 3.4 .tm Kg  

The system is assumed to orbit the Earth in a 

circular orbit at an altitude of 600 ,Km and an 

inclination of 63 .  
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The initial conditions of the system are given by

( , ) ( / 2 /100,0),       where / 100

represents a small perturbation angle that places 

the system close to the unstable saddle point at

( / 2,0).  

It can be observed that 2 and 3 are functions 

of the electric current I flowing through the 

tether, the orbital inclination i ,and the orbital 

altitude .H  

For a system orbit with an inclination of / 6 , a 

current of 1 mA flowing through the tether, and 

an altitude of 600 km, the necessary condition 

provided by Eq. (22) is satisfied, indicating that 

the system may exhibit chaotic behavior. 

Fig. 4 confirms the presence of chaotic behavior 

in the system, as the Poincaré section displays 

discrete points clustered near the saddle point. 

Fig. 5 illustrates that the pitch angle exhibits 

irregular oscillations, further confirming the 

chaotic behavior of the system. 

 

Fig. 4 Poincaré section 

 

Fig. 5 Pitch angle versus   

When the system's inclination is / 60, and a 

current of 1 mA flows through the tether at an 

altitude of 900 km, the necessary condition 

given by Eq. (22) is satisfied. The Poincaré 

section shown in Fig. 6, corresponding to this 

state, indicates that the system exhibits chaotic 

motion. Additionally, Fig. 7 shows that the 

pitch angle behaves as an irregular oscillator, 

further confirming the presence of chaos. 

 

Fig. 6 Poincaré section 

 

Fig. 7 Pitch angle versus   

Another case is considered when the system has 

an inclination of / 30, with a current of
40.3 10 (A) flowing through the tether at an 

altitude of 600 km. In this scenario, the 

necessary condition given by Eq. (22) is also 

satisfied. Fig. 8 and Fig. 9 confirm this result, 

demonstrating that the system exhibits chaotic 

behavior. 

 
Fig. 8  Poincaré section 

The following numerical simulations evaluate 

the effectiveness of tether length control using 

a sliding mode controller. This controller is 

designed to suppress the chaotic motion 

illustrated in Fig. 4 and Fig. 5, allowing the 

system to either follow a desired oscillatory 

behavior or steer the chaotic motion toward a 

predefined pitch angle through the proposed 
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control law. 

 

Fig. 9 Pitch angle versus   

Fig. 10 and Error! Reference source not found. 

demonstrate the controller's ability to stabilize 

the system into a desired oscillatory state. As 

illustrated, the controlled system exhibits 

periodic behavior similar to that of the 

unperturbed system, with a period of 11.2155. 

Fig. 12 and 

 
Fig. 13 demonstrate that the controller 

effectively drives the chaotic motion toward the 

desired equilibrium point from the initial 

condition ( / 3,0).  

Fig. 12 presents the Poincaré section, which 

clearly illustrates the system’s convergence 

toward the desired equilibrium point. This is 

further supported by 

 
Fig. 13, which shows the variation of the pitch 

angle with respect to the true anomaly, 

confirming the system's tendency to settle at the 

target equilibrium. 

 

Fig. 10 Poincaré section  

 

Fig. 11 Pitch angle versus   

 

Fig. 12 Poincaré section 

 

Fig. 13 Pitch angle versus   

Conclusions 
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This study presented a control strategy based on 

sliding mode control (SMC) to regulate the 

pitch motion of an electrodynamic tethered 

satellite system (EDTSS) in a circular orbit 

around Earth. The system was modelled using a 

dumbbell configuration, taking into account 

perturbations from both the Lorentz force, 

generated by the interaction between the current 

flowing through the tether and Earth's magnetic 

field, and the Earth's oblateness (J2 effect). The 

equations of motion were derived using the 

Lagrangian approach. 

Melnikov analysis was applied to determine the 

necessary condition under which the system 

may exhibit chaotic behavior. Numerical 

simulations were conducted to validate the 

analytical findings and to demonstrate the 

existence of chaos under certain conditions. 

Furthermore, the effectiveness of the proposed 

SMC-based controller, which utilizes tether 

length as the control input, was verified. The 

controller successfully suppressed chaotic 

motion and steered the system either toward a 

desired periodic trajectory or a predefined 

equilibrium point. 

The results confirm the robustness and 

efficiency of the proposed control strategy in 

stabilizing the chaotic behavior of the EDTSS. 

However, further experimental validation is 

recommended to support the theoretical and 

numerical findings. This research offers 

valuable insights into the dynamic behavior and 

control of tethered satellite systems and 

contributes to the development of reliable 

methods for their real-world implementation 
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 الملخص العربي

قمع الفوضى في نظام قمر صناعي كهروديناميكي مربوط باستخدام التحكم بأسلوب الانزلاق تحت تأثير عنوان البحث: 

 2Jاضطراب معامل 

 ، يحيى أحمد عبد العزيز1، عبد الحكيم أبو الفتوح عبد النبي2مجدي عبد العزيزأحمد  ،1*يوسفأحمد 

 .، دمياط، مصردمياطالعلوم، جامعة  كليةقسم الرياضيات، 1
 ، القاهرة، مصر.(NRIAGلبحوث الفلك والجيوفيزياء ) المركز القومي 2

كهروديناميكي مربوط يتحرك داخل مستوٍ مداري دائري حول  صناعييتناول هذا البحث دراسة السلوك الفوضوي لنظام قمر 

 .2Jمل الأرض تحت تأثير تفلطح الأرض المُمثل بمعا

تم نمذجة النظام باستخدام نموذج الدمبل، حيث تم اشتقاق معادلات الحركة باستخدام منهج لاغرانج مع أخذ تأثير كل من القوة 

التيار المار في الحبل مع المجال المغناطيسي الأرضي، بالإضافة إلى تأثير التفلطح الأرضي الكهرومغناطيسية الناتجة عن تفاعل 

 .في الحسبان

تم استخدام تحليل ميلنيكوف لاشتقاق شرط ضروري لظهور السلوك الفوضوي في النظام. ولمعالجة هذه الفوضى، تم اقتراح 

، حيث يسُتخدم طول الحبل كإشارة تحكم. يهدف المتحكم إلى (SMC) قاستراتيجية تحكم جديدة تعتمد على التحكم بأسلوب الانزلا

 .كبح السلوك الفوضوي وتوجيه النظام إما نحو حالة تذبذب منتظمة أو نحو نقطة توازن محددة مسبقاً

لمتحكم على تثبيت أجُريت محاكاة عددية للتحقق من صحة الشروط التحليلية ولتقييم فعالية المتحكم المقترح. أظهرت النتائج قدرة ا

النظام والقضاء على السلوك الفوضوي غير المرغوب فيه، مما يدل على قوة وفعالية الطريقة المقترحة. ومع ذلك، توصي الدراسة 

بإجراء تجارب عملية مستقبلًً للتحقق من فعالية هذا المتحكم على أرض الواقع. وتعُد هذه الدراسة مساهمة مهمة في فهم ديناميكا 

 .الأقمار الصناعية المربوطة وتطوير طرق تحكم موثوقة لتطبيقات الفضاء الفعلية أنظمة
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