

Benha Journal of Engineering Science and Technology (BJEST)

مجلة العلوم الهندسية والتكنولوجية بكلية الهندسة ببنها

2018; Vol. 1: 1-8 Journal Homepage: http://www.bu.edu.eg/bjest

The Re-use of Highly Rich Iron Oxide Wastes from Integrated DR Steel Companies in Egypt

Prof. Elsayed M. A. Rassoul and Assoc. Prof. Ahmed M. Galal

Faculty of Engineering – Mansoura University

Abstract: There are five integrated iron and steel companies in Egypt. One of them, Hadisolb in El-Tebbin, which adopts the sintering blast-furnace rought and is using local El-Bahareya iron ore. This ore after 40 years of exploitation does not meet any more the required specifications for neither the sintering nor the pig iron production in the blast furnaces. Its iron content became less than 50 % while its Cl and MnO contents became far beyond their upper limits. At the meantime, the other four integrated companies, which adopt the DR rought and use imported iron oxide pellets with iron content more than 67% to produce sponge iron, are producing wastes as by-products with iron content about 67% and with almost zero percent Cl and MnO. A representative sample (about 20 tons) of these wastes was transported by trucks from EZDK Company in Alexandria to the sintering plant of Hadisolb in El-Tebbin. Several experiments in the sintering pilot plant were performed to investigate the sinterability of these waste. The sinter produced was found to meet both the requirements of sintering and blast furnace plants. As a matter of fact, during the production of sponge iron, two important waste by-products, oxide fines and sludge with an iron content more than 67% are formed. It is expected that the annual production of such waste by-products from the four DR integrated steel companies will be about one million tons. This means that as long as the four companies are producing sponge iron according to their designed capacities and so far as natural gas is available, about one million tons of highly rich iron oxide wastes almost free from Cl and MnO will be annually available.

Keywords: Waste Material, Oxide Fines, Sludge, Blast Furnace Rought, DR Rought.

الملخص العربي:

هناك خمس شركات متكاملة للحديد والصلب في مصر. أحدهم بالتبين يستخدم خامات الحديد البحرية المحلية. لا تفي هذه المادة الخام بعد 40 عامًا من الاستغلال بالمواصفات المطلوبة لعدم إنتاج الحديد أو التلبيد في أفران الصهر. أصبح محتواه الحديدي أقل من 50 ٪. في غضون ذلك ، فإن الشركات الأربع الأخرى المتكاملة تستخدم كريات أكسيد الحديد المستوردة ذات المحتوى الحديدي بأكثر من 67 ٪ لإنتاج الحديد الإسفنجي ، وتقوم بإنتاج نفايات كمنتج ثانوي بمحتوى من الحديد يبلغ حوالي 67 ٪. تم إجراء العديد من التجارب في محطة تجميد التلبيد للتحقيق في تداخل هذه النفايات. تم العثور على الملبد المنتج لتلبية متطلبات كل من مصانع أفران التلبيد والصدمات. في الواقع ، أثناء إنتاج الحديد الإسفنجي ، يتم تشكيل نواتج ثانوية مهمة للنفايات وغرامات الأكسيد والحمأة التي تحتوي على نسبة حديد تزيد عن 67٪. من المتوقع أن يصل الإنتاج السنوي لمثل هذه المنتجات الثانوية من شركات الصلب الأربع المتكاملة إلى حوالي مليون طن من نفايات أكسيد الحديد الغنية جدًا ستكون متاحة سنويًا الإسفنجي وفقًا لقدراتها التصميمية وبقدر توفر الغاز الطبيعي ، فإن حوالي مليون طن من نفايات أكسيد الحديد الغنية جدًا ستكون متاحة سنويًا أيضًا.

1. Introduction

There are five integrated steel companies in Egypt; the Egyptian iron and steel company Hadisolb in El-Tebbin, EZDK company in Alexandria, Bishay steel company in El-Sadat city, EZ steel company in Suez and Suez company for steel production (El-Garhi MF) in El-Ain El-Sokhna.

Among these five integrated companies the Egyptian iron and steel company i.e. Hadisolb is the only one who adopts the blast furnace rought. It is also the only company in Egypt, which has a sintering plant and uses local iron ores to produce pig iron. The other four integrated companies adopt the DR rought and use highly reach imported iron oxide pellets to produce sponge iron. In the late march of 1977 the head of the iron and steel company Hadisolb, Dr. Abu_bakr Morad had submitted a memorandum [1] in which he stated:

- -The contract no. 7700 signed in 22nd of Sep. 1964 between the Soviets and the Egyptians aimed to increase the company's production of steel to reach 1,500,000 tons per year; i.e. to raise its production of big iron to be 1,750,000 tons.
- In 25th of Oct. 1965 the Soviets had submitted a techno-ecomic report in which they stated that El-Bahareya iron ore deposits contain some threatening impurities such as Cl and high MnO and the use of such ores require special treatment in order to get rid partially if not completely of such threatening impurities before using it in the sintering plant.
- The results of the experiments performed in the first stage of operation which took place in the 15th of Dec., 1973 proved that Hadisolb will never achieve its designed capacity stated in the previously signed contract in 1964, unless the company will find a way to get rid of the threatening impurities, such as Cl and high MnO contained in El-Bahareya iron ores.

Meanwhile, these four integrated companies produce highly rich iron oxide with almost 0.0 % Cl and MnO.

1-i Main Characteristics of Blast Furnace Rought:

The Egyptian iron and steel company –Hadisolb- was established in 1954 and was based on the exploitation of the iron ore deposits nearby Aswan. It started its production in 1958, but it did not take long time – less than ten years- to find out that Aswan iron ores does not any longer meet the blast furnace requirements and this was because of the selective mining techniques used in mining operation. Hadisolb needed a miracle to face this catastrophic situation and to find within a short period of time another iron ore with the same quality and price.

The discovery of El-Bahareya iron ore deposits in El-Gedida region in the early sixties was that miracle and since then it became the only iron ore used in Hadisolb Company. As a matter of fact the iron deposits in El-Gedida region is distributed among three locations plateau (39.6 tons \sim 58% Fe), west valley (60 tons \sim 50% Fe) and N.E valley (12mt \sim 48% Fe). The detailed composition of the iron ores in the three locations of El-Gedida region is given in table (1).

Table (1) – Chemical	Composition	of El-Gedida Iron	Ores I	21

Region	Fe%	Cl%	MnO%	SiO%	Al ₂ O ₃ %	Reserves
						Million Tons
Plateau	50.2	0.74	1.4	11.2	36.46	39.60
West Valley	50.2	0.47	3.76	8.1	37.47	60.00
North East and	48.82	0.22	1.54	12.2	37.22	11.98
East Valley						
Total Reserves						111.58

In order to avoid (the previously mentioned) selective mining mistakes committed in Aswan, a predetermined program for ore extraction from the three locations was established [3, 4, 5]. This program is supposed to guarantee the constancy of the chemical composition of the blend and the maximum utilization of the reverses in the three locations.

El-Bahareya oasis is about 350 km far from the Hadisolb stockyard and thus the iron ore after extraction is transported by trucks and then by train to Hadisolb in El-Tebbin for further preparation steps for agglomeration in the sintering plant. In Hadisolb sintering is considered to be an essential step in ore preparation for the blast furnace operation [6, 7, 8 and 9]. Sintering may be defined as the agglomeration of fine particles into strong porous mass. The sintering process is carried out by heating a mixture consists beside the iron ore the required quantities of coke and moisture and lime or any other useful additive to obtain sinter of a specific composition and quality. The temperature during the sintering process may reach the fusion temperature of the mixture. It approaches ~ 1350°C the chemical composition of sinter produced from El-Bahareya iron ores in Hadisolb is given in table 2 [3].

Table (2) - Chemical Composition of the Sinter from El-Gedida Iron Ore

Met. Fe %	FeO %	Fe ₂ O ₃ %	SiO ₂ %	Al ₂ O ₃ %	CaO %	MgO %	Basicity
0.2	27.12	50.59	8.89	1.9	8.13	0.76	1.000
0.24	21.54	43.41	9.00	2.48	10.17	0.74	1.200
0.40	23.49	48.83	9.51	2.00	11.79	0.84	1.400

As it was mentioned before, blending of ores from the three locations, should lead to the specifications previously agreed upon in which Fe% should be > 51%, Cl% should be < 0.6% and MnO% should be < 2.4%. However, after 40 years of exploitation, El-Bahareya mines became unable to fulfill such obligations. The iron content now is < 50% and the Cl % > 0.6% and MnO % > 2.4%. Nowadays Hadisolb is seriously looking for a solution taking into consideration the detrimental effect of alkalies in the sintering plant and the blast furnace beside the effect of high percentage of MnO in the converter process [10, 11, and 12].

1-ii Main Characteristics of the DR Rought:

The four previously mentioned DR companies in Egypt are importing highly rich iron oxide pellets to produce sponge iron and produce as well as by-product oxide fines and sludge in which the iron content is almost the same as in the iron oxide pellets, i.e. between 67 & 68%. The total amount of these highly rich iron oxide wastes produced as a by-product from the four previously mentioned companies is supposed to be in the range of one million tons per year. This highly rich in iron oxide wastes is almost free from alkalies and MnO. These two compounds are threatening Hadisolb from utilizing El-Bahareya iron ores, beside this amount of wastes which is estimated to be in the range of one million tons per year can be considered as an iron ore mine whose reserves are existing as long as these four companies are producing sponge.

1. MATERIAL AND EXPERIMENTS

The reuse of the highly rich iron oxide wastes of EZDK (oxide and sludge fines) became in 2015 one of the promising if not the best alternatives in front of Hadisolb who is searching for another iron bearing material of Cl and MnO to be used in the sintering and the blast furnaces charge. Several meetings were held in this respect to negotiate signing a protocol between the Egyptian iron and steel company - Hadisolb - and EZDK through which EZDK, the owner of the wastes gives these wastes to Hadisolb and gets instead an equivalent weight of pig iron from Hadisolb.

Both sides agreed upon the necessity of performing a set of experiments on the suitability of such highly rich iron oxide wastes for sintering, since the blast furnaces in Hadisolb use only sintered iron ores in the charge.

Accordingly, EZDK took the initiative and had send by trucks a representative sample of its highly rich iron oxide wastes. This representative sample (20 tons) was delivered to the sintering plant of Hadisolb in El-Tebbin on April 26^{th} , 2015.

2-i Material:

As it is was mentioned above the material used in this investigation is composed of the highly rich iron oxide wastes produced as by-products in EZDK Company in Alexandria. The chemical composition and the annual production of these wastes are given in table 3.

Table 3- Chemical Composition of the Highly Rich Iron Oxide By-products and their Annual Production in EZDK Company [13]

Material	Annual	Chemical Composition					
	Production 2015	Fe %	CaO %	SiO ₂ %	Al203%	MnO%	CI %
Oxide fines	200.000	67.8	0.8	1.1	0.36	0.10	niL
Sludge	150.000	68.1	5.2	1.8	1.16	0.20	niL

From table 3 it is evident that the contents of the two components i.e. MnO and Cl in these wastes are almost either traces or nil while in El-Bahareya ore their contents are far beyond the allowable limits previously stated by Hadisolb.

2-ii Experimental Work:

Hadisolb is the only company in Egypt, which has sintering plant. In this plant the iron bearing material goes through its final step of preparation since the blast furnaces, are fed by the iron bearing material in the form of sinter.

In accordance with this, the sinterability of the highly rich iron oxide wastes was the target of this investigation in order to decide the possibility of using it in Hadisolb. Several experiments using a blend of these wastes were performed in the sintering pilot plant in Hadisolb, Fig (1).

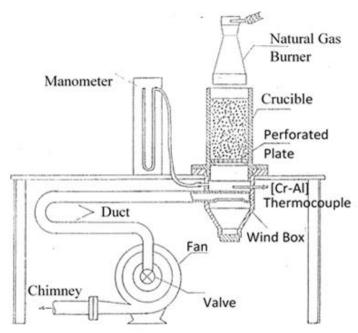


Figure (1) Sintering

The sintering process requires Coke, Limestone and Moisture beside the iron bearing material. Six sintering experiments for different burdens as given in table (4) were performed in the sintering pilot plant of Hadisolb. The chemical analysis of the produced sinter is given in table 5.

-								
Experiment	Oxide	fine	Sluc	lge	Coke	Limestone	Sinter	Total
No	kg	%	Kg	%	Breeze		return	[Kg]
1	8.0	5 0	8.0	50	2.5	3	6.2	27.7
2	11.0	52	10.0	48	0.8	1.0	5.0	27.8
3	12.0	64	7.0	36	0.6	0.7	5.0	25.3
4	12.0	55	10.0	45	0.6	0.7	5.0	28.3
5	8.0	50	8.0	50	0.7	1.0	5.0	22.7
6	9.0	60	6.0	40	0.7	1.0	5.0	21.7

Table (4) - Charge Composition of the Six Sintering Experiments

Table (5) - Chemical Analysis of Produced Sinter

Exp.	Chemical analysis %											
No	T.Fe	FeO	SiO_2	Al_2O_3	MgO	MnO	CaO	Cl	Basicity			
1	57.56	28.3	5.22	2.18	1.7	0.94	9.46	0.02	1.8			
2	63.1	15.69	2.7	1.55	1.78	0.32	4.73	0.01	1.8			
3	63.6	15.4	2.95	1.46	1.67	0.27	4.73	0.04	1.6			
4	62.95	15.47	2.87	1.27	1.72	0.35	5.3	0.04	1.8			
5	63.9	17.5	2.52	1.23	1.3	0.33	4.72	0.01	1.9			
6	63.6	23.68	3.58	1.09	1.28	0.31	4.95	0.01	1.4			

Physical analysis and mechanical properties of the six sinters produced, expressed in terms of sieve analysis and drum test were performed. The results of these tests are given in table 6.

Table (6) - Physical and mechanical properties of the produced sinters

Exp.		Weight % of different size fractions (mm)										
No.	+40	+20	+15	+10	+8	+6.8	+5	-5	Max	Drun	n Max	
									20%	Test	13%	
1	58.35	9.61	3.43	8.47	2.75	3.89	2.95	10.53	Accepted	7.0	Accepted	
2	31.63	14.23	5.1	19.53	7.43	6.37	2.97	12.71	Accepted	8.5	Accepted	
3	29.41	10.51	5.31	17.65	5.67	8.19	7.14	15.13	Accepted	9.5	Accepted	
4	41.49	11.49	5.53	15.53	4.04	8.51	2.77	10.84	Accepted	8.0	Accepted	
5	30.99	12.09	6.37	25.49	2.86	5.93	3.08	13.19	Accepted	11.5	Accepted	
6	42.38	14.13	3.81	16.82	3.36	5.83	1.35	12.32	Accepted	12	Accepted	

2. DISCUSSION OF THE RESULTS

The previously mentioned four DR companies are producing highly rich iron oxide wastes – oxide fines and sludge - as by-products during the production of sponge iron. The annual production of such wastes from these companies is expected to be about one million tons per year.

This waste material is accumulated in the back yard of EZDK Company in Alexandria, as shown in Fig. (2).



Figure (2) Highly rich iron oxide wastes in the back yard of EZDK Company

Nowadays EZDK is selling these by-products in either the local market or exporting it abroad. On the other hand and at the mean time the Egyptian iron and steel company - Hadisolb – in El-Tebbin is searching for another iron bearing material with higher iron and lower Cl, MnO content than that in El-Bahareya iron ores.

The illustrated results shown in tables 4, 5 and 6 proved that the highly rich iron oxide wastes generated as by-products during the production of sponge iron are sinterable. In addition, judging by the results of their sieve analysis and the drum test, it maybe confirmed that the sinter produced based on such waste materials can successfully be used in the blast furnaces of Hadisolb and thus, based on the results given in these tables, the following can be concluded:

Judging by the drum test results, Sinter no 1 has the best mechanical properties (-5 mm 7 %), at the same time the highest percentage of the large size fraction +40 is 56%, besides it has the highest percentage of FeO (~28%).

This indicates that the coke consumption will increase if such sinter is going to be used for pig iron production in the blast furnace.

- Sinters no. 2, 3 and 4 Judging by the results of the sieve analysis are having the best size distribution beside acceptable values for the drum test which lies between (8.0 & 9.5). At the same time they have the lowest FeO content, thus the coke consumption in the blast furnaces is expected to be the lowest, in case if one of these sinters will be used for the pig iron production.
- Sinters no. 5 and 6 compared with the above, have the highest values for the drum test i.e. the lowest index of the mechanical properties and relatively high FeO% (17.5 and 24%) and thus is not recommended for the blast furnaces operation.

3. CONCLUSIONS AND RECOMMENDATIONS

- 1-The performed experiments in the sintering pilot plant of Hadisolb company proved that the highly rich iron oxide waste produced as by-products during the production of sponge iron in EZDK company in Alexandria are sinterable, and the produced sinter meet the required specifications agreed upon for pig iron production in the blast furnaces in Hadisolb Company.
- 2- El-Bahareya iron ore mines will be sustained as long as the four integrated DR companies are producing sponge iron.
- 3-Further experiments should be made to achieve the minimum consumption of coke in the sintering process
- 4- Further experiments in which different ratios of El-Bahareya ores together with the highly rich iron oxide wastes should be performed

References

- [1] Dr Abu Bakr Morad, Chairman of Egyptian Iron and Steel Company, 'Memorandum submitted in 15th of March, 1977, on the contact no. 7700 signed in 22nd of Sep., 1964
- [2] Elsayed M.A. Rassoul, Egypt's Natural Resources Management, Published in the Proceedings of the Fifth International Symposium, 'Engineering Management for the 21st Century, Cairo, March 1996.
- [3] E. M.A. Rassoul, A.M. Etman, A. El-Saiedy, 'A Suggested Blending Routing for Iron Ore from El-Gedida Mines, MEJ Vol. 16, No.1, June 1991.
- [4] Himmelball, David 'Basic Principles and Calculations in Chemical Engineering', Prentice Hall 1974.
- [5] Mathematica, 'Wolfrem research, inc, 1991.
- [6] POKHFESNEF, A. N., RASSOUL, S. A. and VEGMAN, E. F., Isv. Vish. Uch. Chornia Metalurgia, 7, 30, 1962.
- [7] S.A. Rassoul, M. El-Nabawi and M.A. Doheim, 'Sintering of El-Bahareya Iron Ores', 7th Arab Sc Congress, Cairo, pp 379 394, 1973.
- [8] NYQUIST, O. Agglomeration. Edited by W. KNEPPER, Intersc. Publ., 809, 1962.
- [9] Rassoul, S. A. and Niazi, A. B., J. Mimes, Metals and Fuels, India, 1972.
- [10] Elsayed M.A. Rassoul and D. Wilder, Towards Better Utilization of Raw Materials and Energy in the Metallurgical Industry in Egypt', Annual Report, FRCU 1985.
- [11] A. A. Abdel-Hamid and S.M. A. Rassoul, 'Effect and Behavior of Alkalies in Blast Furnaces', PEAC, 89 Faculty of Engg., Alex. University, Dec. 27-29, 1989.
- [12] P.A. Botha, 'Iron Ore Sinter Produced From A Mix Containing Waste Materials, J.S. Afr. Inst. Min. Metall, Vol. 93, No. 1, pp 13-19, Jan. 1993.
- [13] EZDK iron and steel company in Alexandria.