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HOMOTOPY ANALYSIS INTEGRAL TRANSFORM METHOD
FOR THE SOLUTIONS OF FRACTIONAL ORDER

INTEGRO-DIFFERENTIAL EQUATIONS

B. M. YISA, B. S. AMOSA, L. O. ASELEBE

Abstract. The main thrust of this research is to propose a reliable method
for the solution of a class of fractional order integro-dierential equations with
dierence kernel. The integro-dierential equations considered are both linear
and nonlinear type with the fractional order derivative interpreted in Caputo
sense. The proposed method combined Shehu transform with the Homotopy
Analysis Method. The essence of the HAM is to overcome any nonlinearity
that may be encountered in the problem with the aid of Homotopy derivative,
while Shehu transform is chosen as result of the unique advantage that it
handles bothe constant and variable coecients problems, unlike the Laplace
transform. The Homotopy Analysis Integral Transform Method (HAITM)
developed is applied to some problems in the literature and the results are
either the exact solution (when such exits) or at the minimum in truncated
series which in all cases agree with those in the literature. The results are
presented in tabular form, as well as in 2D graphs. The computations are
implemented in Mathematica 13.3.

1. Introduction

Mathematical modeling is essential for understanding and predicting real-world
phenomena across various disciplines, including physics, astronomy, chemistry, bi-
ology, economics, and engineering. These models help researchers analyze complex
systems, explore theoretical concepts, and develop practical applications. Tradi-
tionally, integer-order ordinary and partial dierential equations have been the foun-
dation for modeling dynamic processes in these elds, providing well-established
methodologies for problem-solving and analysis [1]. However, many natural and
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engineered systems exhibit complexities that integer-order models cannot fully cap-
ture. These complexities often arise from memory eects, non-local interactions,
and anomalous diusion, which require more advanced mathematical tools for ac-
curate characterization. To address these limitations, researchers have increasingly
adopted fractional dierential equations, which extend classical models by incorpo-
rating derivatives of non-integer order. Unlike integer-order equations, fractional
dierential equations account for hereditary properties and long-range dependen-
cies, making them particularly useful for modeling complex systems and control
processes [2].
Fractional calculus has recently gained signicant attention for its eectiveness in
modeling anomalous diusion, viscoelastic behavior, control systems, and diverse
biological and economic phenomena, surpassing the capabilities of traditional meth-
ods [3, 4, 5, 6]. The development of fractional calculus is credited to several key
mathematicians, including Gottfried Wilhelm Leibniz, Joseph Liouville, and Bern-
hard Riemann. Initially viewed as a theoretical extension of classical calculus [7, 8],
its practical applications have only recently been explored extensively. Studies have
demonstrated the growing signicance of fractional calculus in modeling complex
physical phenomena. For example, Meng [9] used fractional calculus to study the
nonlinear viscoelastic and dielectric properties of ferroelectric polymer composites,
demonstrating its ability to capture detailed material characteristics. Similarly,
Chauhan, Bansal, and Sircar [10] applied a fractional framework to analyze the
stability of viscoelastic subdiusive channel ows, providing deeper insights into
ow behavior. Additionally, Di Paola, Reddy, and Ruocco [11] explored its role in
formulating the viscoelastic Reddy beam. These studies showcase the adaptability
and eectiveness of fractional calculus in solving problems across various scientic
and engineering elds. Despite its broad applications, researchers such as Oloniju
et al.[12], Mohammed [13], and Maitama and Zhao [14] have noted that solving
fractional dierential equations analytically remains challenging due to their non-
local properties. Consequently, various analytical and semi-analytical techniques
have been developed to overcome the said challenges.
Integral transforms, such as Laplace, Fourier, Elzaki, Sumudu, Shehu transforms,
etc, have also been widely applied to simplify and solve linear integral equations.
Recently, the Homotopy Analysis Integral TransformMethod (HAITM) has emerged
as an eective approach, combining the strengths of homotopy analysis and inte-
gral transforms to provide accurate and ecient solutions to nonlinear integral
equations. This study explores the HAITM for solving fractional-order integro-
dierential equations. Unlike perturbation-based methods, HAITM does not re-
quire small parameters, making it a more exible and robust framework for handling
nonlinear problems.
This paper is organized in such a way that Section 2 discusses the literature review,
brief discussion on Shehu transform and homotopy analysis method. In Section 3,
we present the statement of problem for the linear Volterra integro-dierential equa-
tions (VIDEs), the methodology and numerical examples for the class of problem
considered there. The statement of problem for the nonlinear VIDEs, methodology
and numerical examples are presented in Section 4. The results that are presented
in both tabular and graphical forms, discussion of results, conclusion and future
research are in Sections 5.
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2. Literature Review

Researchers have proposed various approaches to solving problems in fractional cal-
culus. Recent studies have highlighted the eectiveness of integral transform tech-
niques, such as Fourier and Laplace transforms, in solving fractional order dieren-
tial equations (FDEs) in some domains. For example, Rahimkhani and Ordokhani
[16] combined the Hahn wavelets collocation method with the Laplace transform
to address fractional integro-dierential equations, demonstrating the practicality
of this approach. Similarly, Uchenna (2024) applied the Fourier transform method
to complex variables in non-homogeneous FDEs, providing explicit solutions and
showcasing the method’s eectiveness. Additionally, Boiti and Franceschi (2024)
explored generalizations of the Fourier transform to extend its applicability to frac-
tional models, oering a broader framework for solving such equations.
These methods oer ecient alternatives to exact analytical solutions, producing
rapidly convergent series solutions with reduced computational complexity, making
them valuable tools in fractional calculus. Similarly, Yang and Wang [20] developed
an improved version of HPM, which was shown through various test examples to be
a powerful approach for solving local fractional dierential equations while avoiding
cumbersome computations. Ishag et al. [21] applied HPM to nonlinear fractional
reaction-diusion systems, demonstrating its rapid convergence to exact solutions
and its ability to eectively handle multi-dimensional problems.
In this present work, the advantage in the applications of integral transform, espe-
cially the Shehu transform which has a unique property of solving both constant
and variable coecients problems together with the fact that it generalizes the
earlier transforms such as Laplace and Sumudu, is incorporated into Homotopy
Analysis method to handle Volterra Integro-dierential Equations (VIDEs). The
method proposed in this work is Homotopy Analysis Integral Transform Method
(HAITM), and it has been successfully applied to the nonlinear as well as linear
VIDEs seamlessly with solutions that compared favourably with results in the ex-
isting literature.

2.1. The Shehu Transform. Definition [27, 33]
The Shehu transform of a function g(x) which is of an exponential order is dened
as

S [g(t)] =
∫ ∞

0

exp

−s

u
t


g(t)dt = G(s, u).

S [g(t)] = lim
η→∞

∫ η

0

exp

−s

u
t


g(t)dt; s > 0, u > 0.

(1)

If the limit of the integral in (1) exists, it converges, otherwise it diverges.
The inverse of Shehu transform is given by

S−1 [G(s, u)] = g(t), for t ≥ 0. (2)

Which can as well be stated as

v(x) = S−1 [G(s, u)] =
1

2πi

∫ η+i∞

η−i∞

1

u
exp


st

u


G(s, u)ds, (3)

where s and u are the Shehu transform variables, and η is a real constant and the
integral in (1) is taken along s = η in the complex plane s = x+ iy.
The present study explored the advantage of Shehu transform over some other
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transforms such as Laplse, due to the fact that it does not have restriction in
application to constant coecients problems. For examples on the applications of
Shehu transform to variable coecient problems see [33]. Another superiority of
the transform adopted in this work is that it generalizes both Laplace and Sumudu
transforms [14, 33].

2.2. Homotopy Analysis Method. Homotopy Analysis Method (HAM) intro-
duced by Liao [26] is an essential tool for solving both linear and nonlinear, ordinary
and partial dierential dierential equations. Since the introduction of the method,
its scope of application has been expanded to cover linear and nonlinear fractional
order problems, including systems of dierential equations [34]. HAM has two de-
formation equations referred to as zeroth and nth order deformation equations. The
advantage in the use of latter is the reduction in volume of computation. HAM has
a parameter, h which is referred to as the convergence control parameter. This pa-
rameter takes the value of −1 or 1 depending on which gives quick convergence. For
details on the algorithm of HAM and its implementation, interested reader should
consult [5, 26, 34]. The present work leveraged on the use of homotopy derivatives
in overcoming the nonlinear terms encountered in the problems considered.

3. Linear Fractional Order Integro-differential Equations

In this section, the statement of problem for the class of linear problem, the
methodology and numerical examples presented. Discussions on the nonlinear
Volterra integro-dierential equations are reserved for Section 4 of the work.

3.1. Statement of the Problem. Consider the general linear fractional Volterra
integro-dierential equation

Dξu(t) = q(t) + λ

∫ t

0

G (t− τ)u (τ ) dτ, (4)

where, Dξ is the non-integer order operator, q(t) represents inhomogeneous param-
eter, λ is the langrange multiplier, G(t − τ) is the nucleus of the equation, which
is a smooth function of two variables, and u(t) is the unknown function. Here, the
Kernel being considered is a dierence kernel.

3.2. The Methodology. The method proposed in the present work is explained
in the sequel. The Shehu transform of all the terms in (4) are taken as follows

S

Dξu(t)


= S {q(t)}+ S

∫ t

0

G (t− τ)u (τ ) dt

}
. (5)

 s

u

ξ

U(s, u)−
ξ−1∑

i=0

 s

u

ξ−(i+1)

u(i)(0) = Q(s, u) + S {G(t− τ)} ∗ S {u (t)} . (6)

Dividing (3) through by

s
u

ξ we have

U(s, u)−
u
s

ξ
ξ−1∑

i=0

 s

u

ξ−(i+1)

u(i)(0) =
u
s

ξ

Q(s, u)+
u
s

ξ

S {G(t− τ) ∗ S {u(t)}} .

(7)
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U(s, u)−
u
s

ξ
ξ−1∑

i=0

 s

u

ξ−(i+1)

u(i)(0)−
u
s

ξ

Q(s, u)−
u
s

ξ

S {G(t− τ)}∗S {u(t)} = 0.

(8)
The result above shall be implemented in the kth order deformation equation

L [Uk ((s, u); q)− ζkUk−1 ((s, u); q)] = hDk−1 [N (U ((s, u)) ; q)] . (9)

The auxiliary linear term is

L [Uk ((s, u); q)] = Uk(s, u). (10)

Likewise, the general nonlinear term N (U ((s, u)) ; q) is obtained from (5) as

N (U ((s, u)) ; q) = U(s, u)−
u
s

ξ
(

ξ−1∑

i=0

 s

u

ξ−(i+1)

u(i)(0)−Q(s, u)− S {G(t− τ)} ∗ S {u(t)}
)

(11)
Using (7) and (8) in (6), we have

Uk(s, u)−ζkUk−1(s, u) = hDk−1

[
U(s, u)−

u
s

ξ
ξ−1∑

i=0

 s

u

ξ−(i+1)

u(i)(0)−
u
s

ξ

F (s, u)

−
u
s

ξ

S {u(x)} ∗ S {u(t)}
]

(12)

With the application of Homotopy Derivative Dk−1 on the right hand side of (9),
we have

Uk(s, u) = ζkUk−1(s, u)+h

[
Uk−1(s, u)− (1− ζk−1)

u
s

ξ
ξ−1∑

i=0

 s

u

ξ−(i+1)

u(i)(0)

+Dk−1

 s

u

ξ

F (s, u)−
u
s

ξ

S {u(x)} ∗ S {u(t)}
]]

(13)

where

ζk =

{
0, k ≤ 1

1 k > 1
, ζk−1 =

{
0, k − 1 < 1

1 k − 1 ≥ 1
(14)

The expected solution of (4) is nally obtained as

u(x) = u0 + u1 + u2 + ... (15)

3.3. Numerical Examples. The algorithm presented in Section 3.1 is applied to
the following problems, all of which are taken from the existing literature.
Problem 3.1 [24]
Solve the system of linear integro-dierential equations

Dξu(x)− 3x2ξΓ (3ξ)

Γ (1 + 2ξ)
−

∫ x

0

(x− t)u (t) dt−
∫ x

0

(x− t) v (t) dt = 0 (17a)

Dξv(x) +
2x2+3ξξΓ (3ξ)

2 + 9ξ + 9ξ2
+

3x2ξξΓ (3ξ)

Γ (1 + 2ξ)
−

∫ x

0

(x− t)u (t) dt−
∫ x

0

(x− t) v (t) dt = 0

(17b)

Subject to conditions u(0) = v(0) = 0.
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Solution. The Shehu transform is applied to equation (17a) as follows:

S

Dξu(x)


−S


3x2ξΓ (3ξ)

Γ (1 + 2ξ)

}
−S

∫ x

0

(x− t)u (t) dt

}
−S

∫ x

0

(x− t) v (t) dt

}
= S {0}
(18)

When the Shehu transform of derivative is implemented on the rst term of (18) it
gives

S

Dξu(x)


=

 s

u

ξ

U(s, u)−
ξ−1∑

i=0

 s

u

ξ−(i+1)

u(i)(0) = 0 (19)

Using the initial condition, u(0) = 0 (19) reduced to

S

Dξu(x)


=

 s

u

ξ

U(s, u) (20)

Using (20) in (17a) , gives
 s

u

ξ
U(s, u)− 3ξΓ (3ξ)

Γ(1 + 2ξ)
S
{
x2ξ

}
− S

∫ x

0
(x− t)u (t) dt


− S

∫ x

0
(x− t) v (t) dt


= S {0}

(21)
 s

u

ξ
U(s, u)− 3ξΓ (3ξ)Γ (1 + 2ξ)

Γ(1 + 2ξ)

u

s

1+2ξ
− S(x) ∗ S {u(x)}− S {x} ∗ S {v(x)} = 0 (22)

 s

u

ξ
U(s, u)− Γ (1 + 3ξ)

u

s

2ξ+1
−

u

s

2
U(s, u)−

u

s

2
V (s, u) = 0 (21)

Dividing (21) through by

s
u

ξ yields

U(s, u)− Γ (1 + 3ξ)
u
s

1+3ξ

−
u
s

2+ξ

U(s, u)−
u
s

2+ξ

V (s, u) = 0 (22)

Thus, we write the kth order deformation as

L [Uk ((s, u); q)− ζkUk−1 ((s, u); q)] = hDk−1 [N (U(s, u); q)] (23)

Uk(s, u)− ζkUk−1(s, u) = hDk−1


U(s, u)− Γ (1 + 3ξ)

u
s

1+3ξ

−
u
s

2+ξ

U(s, u)−
u
s

2+ξ

V (s, u)

]
(24)

Uk(s, u) = ζkUk−1(s, u)+hDk−1


U(s, u)− Γ (1 + 3ξ)

u
s

1+3ξ

−
u
s

2+ξ

U(s, u)

−
u
s

2+ξ

V (s, u)

]
(25)

Simplifying terms in the bracket, and taking the convergence control parameter
h = −1, gives

Uk(s, u) = ζkUk−1(s, u)− Uk−1(s, u) + (1− ζk−1)


Γ (1 + 3ξ)

u
s

1+3ξ
]

+
u
s

2ξ

Uk−1(s, u) +
u
s

2ξ

Vk−1(s, u) (26)

Recall that u(0) = v(0) = 0, when k = 1 :

U1(s, u) = Γ (1 + 3ξ)
u
s

1+3ξ

(27)



JFCA-2025/16(2) HOMOTOPY ANALYSIS INTEGRAL TRANSFORM METHOD 7

The inverse Shehu transform of (27) as

S−1 {U1(s, u)} = Γ (1 + 3ξ)S−1

u
s

1+3ξ
}

(28)

gives
u1(x) = x3ξ. (29)

We shall repeat the procedure followed in (18) to (29) for v(x) in (17b) as follows:

S

Dξv(x)


+

2

(3ξ + 1) (2 + 3ξ)
S

x3ξ+2


+

3ξΓ (3ξ)

Γ (2ξ + 1)
S

x2


− S {x} ∗ S {u(x)}

− S {x} ∗ S {v(x)} = S {0} (30)
which gives

 s

u

ξ

V (s, u) +
2Γ (3ξ + 3)

(3ξ + 1) (3ξ + 2)

u
s

3ξ+3

+
3ξΓ (3ξ)Γ (2ξ + 1)

Γ (2ξ + 1)

u
s

2ξ+1

−
u
s

2

U(s, u)−
u
s

2

V (s, u) (31)

V (s, u)+
2Γ (3ξ + 2)

(3ξ + 1)

u
s

4ξ+3

+Γ (3ξ + 1)
u
s

3ξ+1

−
u
s

2+ξ

U(s, u)−
u
s

2+ξ

V (s, u)

(32)

Then, the kth order deformation is written as
L [Vk ((s, u); q)− ζkVk−1 ((s, u); q)] = hDk−1 [N (V (s, u); q)]

Vk(s, u)− ζkVk−1(s, u) = hDk−1

[
V (s, u) + 2Γ(1 + 3ξ)

u

s

3+4ξ
+ Γ (1 + 3ξ)

u

s

1+3ξ

−
u

s

2+ξ
U(s, u) +

u

s

2+ξ
V (s, u)

]
(33)

Taking h = −1,

Vk(s, u) = ζkVk−1(s, u)−Dk−1

[
V (s, u) + 2Γ (1 + 3ξ)

u

s

3+4ξ
+ Γ (1 + 3ξ)

u

s

1+3ξ

−
u

s

2+ξ
U(s, u) +

u

s

2+ξ
V (s, u)

]
(34)

Vk(s, u) = ζkVk−1(s, u)−Vk−1(s, u)−(1− ζk−1)

[
2Γ (1 + 3ξ)

u

s

3+4ξ
+ Γ (1 + 3ξ)

u

s

1+3ξ
]

−
u

s

2+ξ
Uk−1 +

u

s

2+ξ
Vk−1 (35)

Then,

Vk(s, u) = − (1− ζk)Vk−1 − (1− ζk−1)

[
2Γ (1 + 3ξ)

u

s

3+4ξ
+ Γ (1 + 3ξ)

u

s

1+3ξ
]

−
u

s

2+ξ
Uk−1 +

u

s

2+ξ
Vk−1 (36)

Using the values of ζk and ζk−1 as given in (11) and with (k = 1), (36) reduces to

V1(s, u) = −V0(s, u)−2Γ (1 + 3ξ)
u

s

4ξ+3
−Γ (1 + 3ξ)

u

s

3ξ+1
+
u

s

2+ξ
Uk−1−

u

s

2+ξ
Vk−1

(37)
But V0(s, u) = 0, thus we have

V1(s, u) = −2Γ (1 + 3ξ)
u

s

4ξ+3
− Γ (1 + 3ξ)

u

s

3ξ+1
(38)
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Taking the Inverse Shehu transform

S−1 {V1(s, u)} = −2Γ (1 + 3ξ)S−1

u

s

3+4ξ


− Γ (1 + 3ξ)S−1

u

s

1+3ξ


(39)

v1(x) = −2Γ (1 + 3ξ)x2+4ξ

Γ (3 + 4ξ)
− Γ (1 + 3ξ)x3ξ

Γ (1 + 3ξ)
. (40)

When k = 2 :

U2(s, u) =
u

s

2+ξ
U1(s, u) +

u

s

2+ξ
V1(s, u) (41)

U2(s, u) =
u

s

2+ξ
Γ (1 + 3ξ)

u

s

1+3ξ
+
u

s

2+ξ
[
−2Γ (1 + 3ξ)

u

s

4ξ+3
− Γ (1 + 3ξ)

u

s

3ξ+1
]

(42)
U2(s, u) =

u

s

3+4ξ
Γ (1 + 3ξ)− 2

u

s

5+5ξ
Γ (1 + 3ξ)−

u

s

3+4ξ
Γ (1 + 3ξ) (43)

U2(s, u) = −2
u

s

5+5ξ
Γ (1 + 3ξ) . (44)

Taking the inverse Shehu transform of (44),

u2(x) = −2Γ (1 + 3ξ)x4+5ξ

Γ (5 + 5ξ)
. (45)

Also,
V2(s, u) =

u

s

2+ξ
U1(s, u)−

u

s

2+ξ
V1(s, u) (46)

V2(s, u) =
u

s

2+ξ
Γ (1 + 3ξ)

u

s

1+3ξ
−
u

s

2+ξ
[
−2Γ (1 + 3ξ)

u

s

4ξ+3
− Γ (1 + 3ξ)

u

s

3ξ+1
]

(47)
V2(s, u) =

u

s

3+4ξ
Γ (1 + 3ξ) + 2

u

s

5+5ξ
Γ (1 + 3ξ) +

u

s

3+4ξ
Γ (1 + 3ξ) (48)

V2(s, u) = 2
u

s

5+5ξ
Γ (1 + 3ξ) + 2

u

s

3+4ξ
Γ (1 + 3ξ) . (49)

Taking the inverse Shehu transform yields

S−1 {V2(s, u)} = 2Γ (1 + 3ξ)S−1

u

s

5+5ξ


+ 2Γ (1 + 3ξ)S−1

u

s

3+4ξ

. (50)

v2(x) =
2Γ (1 + 3ξ)x2+4ξ

Γ (3 + 4ξ)
+

2Γ (1 + 3ξ)x4+5ξ

Γ (5 + 5ξ)
. (51)

When k = 3 :

U3(s, u) =
u

s

2+ξ
U2(s, u) +

u

s

2+ξ
V2(s, u). (52)

U3(s, u) =
u

s

2+ξ
[
2Γ (1 + 3ξ)

u

s

5+5ξ
]
+
u

s

2+ξ
[
2Γ (3 + 4ξ)

u

s

3+4ξ
+ 2Γ (1 + 3ξ)

u

s

5+5ξ
]

(53)

u3(s, u) = −2Γ(1 + 3ξ)
u

s

6+7ξ
+ 2Γ(1 + 3ξ)

u

s

5+5ξ
+ 2Γ(1 + 3ξ)

u

s

6+7ξ
(54)

Simplifying, gives

U3(s, u) = 2Γ (1 + 3ξ)
u

s

5+5ξ
(16)

u3(x) =
2Γ (1 + 3ξ)x4+5ξ

Γ (5 + 5ξ)
(55)

Also,
V3(s, u) =

u

s

2+ξ
U2(s, u)−

u

s

2+ξ
V2(s, u).

Substituting values of U2(s, u) and V2(s, u) gives:

V3(s, u) =
u

s

2+ξ
[
−2Γ (1 + 3ξ)

u

s

5+5ξ
]
−

u

s

2+ξ
[
−2Γ (3 + 4ξ)

u

s

3+4ξ

+2Γ (1 + 3ξ)
u

s

5+5ξ
]
. (56)
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V3(s, u) = −2Γ (1 + 3ξ)
u

s

6+7ξ
− 2Γ (1 + 3ξ)

u

s

5+5ξ
− 2Γ (1 + 3ξ)

u

s

6+7ξ
. (57)

V3(s, u) = −4Γ (1 + 3ξ)
u

s

6+7ξ
− 2Γ (1 + 3ξ)

u

s

5+5ξ
. (58)

Taking the inverse Shehu transform to obtain

v3(x) =
−4Γ (1 + 3ξ)x6+6ξ

Γ (5 + 5ξ)
− 2Γ (1 + 3ξ)x4+5ξ

Γ (4 + 5ξ)
. (59)

Conclusively,

u(x) =

∞∑

i=0

ui(x) (60)

u(x) = x3ξ − 2Γ (1 + 3ξ)x4+5ξ

Γ (5 + 5ξ)
− 2Γ (1 + 3ξ)x8+7ξ

Γ (9 + 7ξ)
+

2Γ (1 + 3ξ)x4+5ξ

Γ (5 + 5ξ)
+ ... (61)

u(x) = x3ξ. (62)
Also v(x) becomes

v(x) = −2Γ(1 + 3ξ)x2+4ξ

Γ (3 + 4ξ)
− Γ (1 + 3ξ)x3ξ

Γ (1 + 3ξ)
+

2Γ (1 + 3ξ)x4+5ξ

Γ (4 + 5ξ)
+

2Γ (1 + 3ξ)x2+4ξ

Γ (3 + 4ξ)

− 4Γ(1 + 3ξ)x6+6ξ

Γ (5 + 5ξ)
− 2Γ(1 + 3ξ)x4+5ξ

Γ(4 + 5ξ)
(63)

v(x) = −x3ξ − 4Γ(1 + 3ξ)x6+6ξ

Γ (5 + 5ξ)
... (64)

The results for both u(x) and v(x) coincide with the exact solution, and this validates the algo-
rithm.
Problem 3.2 [30]
Consider the following system of linear fractional order integro-dierential equations

Dξy1(t) = 1 + t− t3

3
+

∫ t

0
[(t− s)y1(s) + (t− s)y2(s)]ds (65a)

Dξy2(t) = 1− t− t4

12
+

∫ t

0
[(t− s)y1(s)− (t− s)y2(s)]ds (65b)

Subject to the initial conditions y1(0) = 0 and y2(0) = 0. The exact solutions are y1(t) = t+ t2

2

and y2(t) = t− t2

2
.

When the procedure described in problem (3.1) is followed, the following results are arrived at

y1(t) =
tξ

Γ(1 + ξ)
+

t1+ξ

Γ(2 + ξ)
− 2t3+ξ

Γ(4 + ξ)
+

2t2+2ξ

Γ(3 + 2ξ)
− 2t5+2ξ

Γ(6 + 2ξ)
− 2t6+2ξ

Γ(7 + 2ξ)
. (66)

y2(t) =
tξ

Γ(1 + ξ)
− t1+ξ

Γ(2 + ξ)
− 2t4+ξ

Γ(5 + ξ)
− 2t2+2ξ

Γ(3 + 2ξ)
+

2t5+2ξ

Γ(6 + 2ξ)
+

2t6+2ξ

Γ(7 + 2ξ)
. (67)

Problem 3.3 [30]
Consider the following nonlinear Volterra integro-dierential equation.

Dξy1(t)− 2t2 −
∫ t

0
[(t− s)y1 + (t− s)y2] ds = 0. (68)

Dξy2(t) + 3t2 +
t5

5
−

∫ t

0
[(t− s)y1 − (t− s)y2] ds = 0. (69)

Subject to the initial conditions: y1(0) = y2(0) = 1. The exact solutions of are y1(t) = 1+ t3 and
y2(t) = 1− t3.
When the algorithm in Section 3.1 is implemented, the results obtained are:

y1(t) = 1 +
6tξ+2

Γ(ξ + 3)
− 24t2ξ+7

Γ(2ξ + 8)
− 48t3ξ+9

Γ(3ξ + 10)
... (70)

y2(t) = 1− 6tξ+2

Γ(ξ + 3)
− 24tξ+5

Γ(ξ + 6)
− 24t2ξ+7

Γ(2ξ + 8)
... (71)
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4. Nonlinear Volterra Integro-differential Equations

For the sake of completeness, this section of our work is dedicated to the solution of nonlinear
Volterra integro-dierential equations (NVIDEs).

4.1. Statement of the Problem. Consider the nonlinear Volterra integro-dierential equation

Dξy(x) = f(x) + λ

∫ x

0
K (x− t)N (y (t)) dt, (72)

where N(y(t)) represents the nonlinear term, f(x) denotes the inhomogeneous source term and
K (x− t) is the kernel (nucleus) of integral equation. The parameter λ is taken as 1 throughout
this work (Yisa & Adelabu, 2018).

4.2. Method of Solution. We shall take the Shehu transform of both sides of (72) to have

S
{
Dξy(x)

}
= S {f(x)}+ S

∫ x

0
K (x− t)N (y (t)) dt


(73)

 s

u

ξ
Y (s, u)−

ξ−1∑

i=0

 s

u

ξ−(i+1)
y(i)(0) = F (s, u) + S {K (x− t)} ∗ S {N (y (t))} (74)

Dividing through by

s
u

ξ gives

Y (s, u)−
 s

u

ξ




ξ−1∑

i=0

 s

u

ξ−(i+1)
y(i)(0)


−

 s

u

ξ
F (s, u)−

 s

u

ξ
S {K (x− t)}∗S {N (y (t))} = 0

(75)
In order to eectively handle the nonlinear term in (72) above, that is N (y (t)), the homotopy
derivative shall be applied. The kth order deformation equation is,

L [Yk ((s, u); q)− ζkYk−1 ((s, u); q)] = hDk−1 [N ((s, u); q)] , (76)

where q ∈ [0, 1] is an embedding parameter. But

L [Yk ((s, u); q)] = Yi(s, u) (77)

Thus, (4.4) becomes

Yk(s, u) = ζkYk−1(s, u)+hDk−1


Y (s, u)−

 s

u

ξ




ξ−1∑

i=0

 s

u

ξ−(i+1)
y(i)(0)


−

 s

u

ξ
F (s, u)

−
 s

u

ξ
S {K (x− t)} ∗ S {N (y (t))}

]
(78)

Making use of Homotopy Derivative Dk−1, and taking h = −1, the result gives

Yk(s, u) = ζkYk−1(s, u)− Yk−1(s, u)− (1− ζk−1)
 s

u

ξ




ξ−1∑

i=0

 s

u

ξ−(i+1)
y(i)(0)




+Dk−1

[ s

u

ξ
S {K (x− t)} ∗ S {N (y (t))}

]
(79)

Then the series solution of (72) is

y(x) = y0 + y1 + y2 + ... (80)

4.3. Numerical Examples on Nonlinear Volterra Integro-differential Equations. The
algorithm presented in Section 4.2 is applied in the solution of following nonlinear Volterra integro-
dierential equation.
Problem 4.1 [31]
Solve the following non-linear NVIDE

Dξy(x)−
∫ x

0
exp−t[y(t)]2dt = 1, 0 ≤ x ≤ 1, 3 < ξ ≤ 4 (81)
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Subject to the initial conditions: y(0) = y′(0) = y′′(0) = y′′′(0) = 1.
Solution
Taking the Shehu transform of (81) to have

S{Dξ y(x)}− S
∫ x

0
exp−t[y(t)]2dt


= S{1} (82)

But

S{Dξy(x)} =
 s

u

ξ
Y (s, u)−

ξ−1∑

i=0

 s

u

ξ−(i+1)
y(i)(0) (83)

Implementing the given conditions, we have

S{Dξy(x)} =
 s

u

ξ
Y (s, u)−

 s

u

ξ−1
y(0)−

 s

u

ξ−2
y′(0)−

 s

u

ξ−3
y′′(0)−

 s

u

ξ−4
y′′′(0) (84)

S{Dξy(x)} =
 s

u

ξ
Y (s, u)−

 s

u

ξ−1
−

 s

u

ξ−2
−

 s

u

ξ−3
−

 s

u

ξ−4
(85)

Putting (85) in (81), to obtain
 s

u

ξ
Y (s, u)−

 s

u

ξ−1
−

 s

u

ξ−2
−

 s

u

ξ−3
−

 s

u

ξ−4
− S {1} ∗ S


y(x)2


=

u

s


(86)

Rearranging and dividing through by

s
u

ξ gives:

Y (s, u)−
u

s


−

u

s

2
−

u

s

3
−

u

s

4
− (

u

s
)1+ξS{[y(x)2]}−

u

s

1+ξ
= 0 (87)

The kth order deformation equation is
L [Yk ((s, u); q)− ζkYk−1 ((s, u); q)] = hDk−1 [N ((s, u); q)] (88)

Yk(s, u)−ζkYk−1(s, u) = hDk−1

[
Y (s, u)−

u

s


−

u

s

2
−

u

s

3
−

u

s

4
− (

u

s
)1+ξ


S{[y(x)2]}+ 1

]
.

(89)
Let h = −1 and implement the operator Dk−1

Yk(s, u) = ζkYk−1(s, u)− Yk−1(s, u) + (1− ζk−1)

[u

s


+

u

s

2
+

u

s

3
+

u

s

4
+

u

s

1+ξ
]

+
u

s

1+ξ
S


k−1∑

i=o

yk−1−iyi


. (90)

Upon simplication, we get

Yk(s, u) = −(1− ζk)Yk−1(s, u) + (1− ζk−1)

[u

s


+

u

s

2
+

u

s

3
+

u

s

4
+

u

s

1+ξ
]

+
u

s

1+ξ
S


k−1∑

i=o

yk−1−i yi


. (91)

The initial approximation is obtained using the initial conditions as

y0(x) = y(0) + xy′(0) +
x2

2!
y′′(0) +

x3

3!
y′′′(0). (92)

y0(x) = 1 + x+
x2

2!
+

x3

3!
. (93)

Taking the inverse Shehu transform, we have

Y0(s, u) = +
u

s

2
+

u

s

3
+

u

s

4
. (94)

When k = 1 :

Y1(s, u) = −Y0(s, u)+
u

s


+
u

s

2
+
u

s

3
+
u

s

4
+
u

s

1+ξ
+
u

s

1+ξ
S{

1−1∑

i=o

y1−1−i yi} (95)

Y1(s, u) = −
[u

s


+

u

s

2
+

u

s

3
+

u

s

4
]
+
u

s


+
u

s

2
+
u

s

3
+
u

s

4
+
u

s

1+ξ
+
u

s

1+ξ
S{y0y0}

(96)
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Which simplies to give

Y1(s, u) =
u

s

1+ξ
+

u

s

1+ξ
S{y20}. (97)

But

[y20(x)] =

(
1 + x+

x2

2!
+

x3

3!

)(
1 + x+

x2

2!
+

x3

3!

)
,

That is

y20(x) = 1 + 2x+ 2x2 +
3x3

2!
+

7x4

3!
+

x5

3!
+

x6

3!3!
(99)

Thus,

Y1(s, u) =
u

s

1+ξ
+

u

s

1+ξ
S

1 + 2x+ 2x2 +

3x3

2!
+

7x4

3!
+

x5

3!
+

x6

3!3!


(100)

Y1(s, u) =
u

s

1+ξ
+

u

s

2+ξ
+2

u

s

3+ξ
+4

u

s

4+ξ
+9

u

s

5+ξ
+28

u

s

6+ξ
+20

u

s

7+ξ

+ 20
u

s

8+ξ
(101)

Taking the inverse Shehu transform, gives

y1(x) =
xξ

Γ(1 + ξ)
+

x1+ξ

Γ(2 + ξ)
+

2x2+ξ

Γ(3 + ξ)
+

4x3+ξ

Γ(4 + ξ)
+

9x4+ξ

Γ(5 + ξ)
+

28x5+ξ

Γ(6 + ξ)
+

20x6+ξ

Γ(7 + ξ)
+

20x7+ξ

Γ(8 + ξ)
(102)

When k = 2 :

Y2(s, u) =
u

s

1+ξ
S{

2−1∑

i=o

y2−1−i yi} (103)

Simplifying the terms, gives

Y2(s, u) = 2
u

s

2+2ξ
+ 2

u

s

3+2ξ
+ 4

u

s

4+2ξ
+ 8

u

s

5+2ξ
+ 18

u

s

6+2ξ
+ 56

u

s

7+2ξ

+ 40
u

s

8+2ξ
+ 40

u

s

9+2ξ
+

2Γ(2 + ξ)

u
s

3+2ξ

Γ(1 + ξ)
+

2Γ(3 + ξ)

u
s

5+2ξ

Γ(2 + ξ)
+

4Γ(4 + ξ)

u
s

5+2ξ

Γ(3 + ξ)

+
8Γ(5 + ξ)


u
s

6+2ξ

Γ(4 + ξ)
+

18Γ(6 + ξ)

u
s

7+2ξ

Γ(5 + ξ)
+

56Γ(7 + ξ)

u
s

8+2ξ

Γ(6 + ξ)
+

40Γ(8 + ξ)

u
s

9+2ξ

Γ(7 + ξ)

+
40Γ(9 + ξ)


u
s

10+2ξ

Γ(8 + ξ)
+

Γ(3 + ξ)

u
s

4+2ξ

Γ(1 + ξ)
+

Γ(4 + ξ)

u
s

5+2ξ

Γ(2 + ξ)
+

4Γ(5 + ξ)

u
s

6+2ξ

Γ(3 + ξ)

+
4Γ(6 + ξ)


u
s

7+2ξ

2!Γ(4 + ξ)
+
9Γ(7 + ξ)


u
s

8+2ξ

Γ(5 + ξ)
+
56Γ(8 + ξ)


u
s

9+2ξ

Γ(6 + ξ)
+
20Γ(9 + ξ)


u
s

10+2ξ

Γ(7 + ξ)
+
20Γ(10 + ξ)


u
s

11+2ξ

Γ(8 + ξ)

+
2Γ(4 + ξ)


u
s

5+2ξ

3!Γ(1 + ξ)
+

2Γ(5 + ξ)

u
s

6+2ξ

3!Γ(2 + ξ)
+

4Γ(6 + ξ)

u
s

7+2ξ

3!Γ(3 + ξ)
+

8Γ(7 + ξ)

u
s

8+2ξ

3!Γ(4 + ξ)

+
18Γ(8 + ξ)


u
s

9+2ξ

3!Γ(5 + ξ)
+

56Γ(9 + ξ)

u
s

10+2ξ

3!Γ(6 + ξ)
+

40Γ(10 + ξ)

u
s

11+2ξ

3!Γ(7 + ξ)
+

40Γ(11 + ξ)

u
s

12+2ξ

3!Γ(8 + ξ)
(104)
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Taking the inverse Shehu transform of (104), we have

y2(x) =
2x1+2ξ

Γ(2 + 2ξ)
+

2x2+2ξ

Γ(3 + 2ξ)
+

4x3+2ξ

Γ(4 + 2ξ)
+

8x4+2ξ

Γ(5 + 2ξ)
+

18x5+2ξ

Γ(6 + 2ξ)

56x6+2ξ

Γ(7 + 2ξ)
+

40x7+2ξ

Γ(8 + 2ξ)
+

40x8+2ξ

Γ(9 + 2ξ)
+

2x2+2ξΓ(2 + ξ)

Γ(3 + 2ξ)Γ(1 + ξ)
+

2x3+2ξΓ(3 + ξ)

Γ(4 + 2ξ)Γ(2 + ξ)

4x4+2ξ

Γ(4 + 2ξ)Γ(3 + ξ)
+

8x5+2ξΓ(5 + ξ)

Γ(6 + 2ξ)Γ(4 + ξ)
+

18x6+2ξΓ(6 + 2ξ)

Γ(5 + ξ)Γ(7 + 2ξ)
+

56x7+2ξΓ(7 + ξ)

Γ(8 + 2ξ)Γ(6 + ξ)

40x8+2ξΓ(8 + ξ)

Γ(7 + 2ξ)Γ(9 + ξ)
+

40x9+2ξΓ(9 + ξ)

Γ(8 + ξ)Γ(10 + 2ξ)
+

x3+2ξΓ(3 + ξ)

Γ(4 + 2ξ)Γ(1 + 2ξ)
+

x4+2ξΓ(4 + ξ)

Γ(5 + 2ξ)Γ(2 + 2ξ)

+
2x5+ξΓ(5 + 2ξ)

Γ(6 + 2ξ)Γ(3 + ξ)
+

4x6+2ξΓ(6 + ξ)

Γ(4 + ξ)Γ(7 + 2ξ)
+

9x7+2ξΓ(7 + ξ)

Γ(5 + ξ)Γ(8 + 2ξ)
+

28x8+2ξΓ(8 + ξ)

Γ(6 + 2ξ)Γ(9 + 2ξ)

20x9+2ξΓ(9 + ξ)

Γ(10 + 2ξ)Γ(7 + ξ)
+

20x10+2ξΓ(10 + ξ)

Γ(8 + ξ)Γ(11 + 2ξ)
+

2x4+2ξΓ(4 + 2ξ)

3!Γ(1 + ξ)Γ(5 + 2ξ)
+

2x5+2ξΓ(5 + ξ)

3!Γ(2 + ξ)Γ(6 + 2ξ)

+
4x6+2ξΓ(6 + ξ)

3!Γ(3 + ξ)Γ(7 + 2ξ)
+

8x7+2ξΓ(7 + ξ)

3!Γ(4 + ξ)Γ(8 + 2ξ)
+

18x8+2ξΓ(8 + ξ)

3!Γ(5 + ξ)Γ(9 + 2ξ)
+

56x9+2ξΓ(9 + ξ)

3!Γ(6 + ξ)Γ(10 + 2ξ)

+
40x10+2ξΓ(10 + ξ)

3!Γ(7 + ξ)Γ(11 + 2ξ)
+

40x11+2ξΓ(11 + ξ)

3!Γ(8 + ξ)Γ(12 + 2ξ)
(105)

Therefore, the general solution is given as

y(x) = 1 + x+
x2

2!
+

x3

3!
+

xξ

Γ(1 + ξ)
+

x1+ξ

Γ(2 + ξ)
+

2x2+ξ

Γ(3 + ξ)
+

4x3+ξ

Γ(4 + ξ)
+

9x4+ξ

Γ(5 + ξ)

+
28x5+ξ

Γ(6 + ξ)
+

20x6+ξ

Γ(7 + ξ)
+

20x7+ξ

Γ(8 + ξ)
+

2x1+2ξ

Γ(2 + 2ξ)
+

2x2+2ξ

Γ(3 + 2ξ)
+

4x3+2ξ

Γ(4 + 2ξ)
+ ...

Problem 4.2 [31]
Solve the Volterra integro-dierential equation below using

Dξy(x)−
∫ x

0
[y(x)]2dt = −1, (106)

subject to the initial condition y(0) = 0.
When the procedure described in Section 4.1 is followed, the solution to the problem is obtained
as

y(x) =
Γ(1 + 2ξ)x1+3ξ

Γ2(1 + ξ)Γ(2 + 3ξ)
− xξ

Γ(1 + ξ)
+ ...

5. Results and Discussion

In this section, the results obtained through our proposed method and the results from selected
literatures are presented in tabular form for ease of comparison.

Table 1: Comparison between Exact solution and HAITM for Problem 3.1
x Exact u (x) Exact v (x) HAITM u (x) HAITM v (x)

0.0 0.000 0.000 0.000 0.000
0.1 0.001 -0.001 0.001 -0.001
0.2 0.008 -0.008 0.008 -0.008
0.3 0.027 -0.027 0.027 -0.027
0.4 0.064 -0.064 0.064 -0.064
0.5 0.125 -0.125 0.125 -0.125
0.6 0.216 -0.216 0.216 -0.216
0.7 0.343 -0.343 0.343 -0.343
0.8 0.512 -0.512 0.512 -0.512
0.9 0.729 -0.729 0.729 -0.729
1.0 1.000 -1.000 1.000 -1.000
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Comparison between HAITM and the method in the literature PSM

Table 2: Comparison of Solution y1(t) and y2(t) at ξ = 1 by PSM and HAITM for Problem 3.2
t Exact y1(t) Exact y2(t) HAITM y1(t) HAITM y2(t) PSM y1(t) PSM y2(t)

0.0000 0.000 0.000 0.00000 0.000 0.000 0.000
0.1000 0.105 0.095 0.10500 0.0949915 0.105 0.095
0.2000 0.220 0.180 0.22000 0.179861 0.220 0.180
0.3000 0.345 0.255 0.34500 0.254285 0.345 0.255
0.4000 0.480 0.320 0.479999 0.317697 0.480 0.320
0.5000 0.625 0.375 0.624997 0.369274 0.625 0.375
0.6000 0.780 0.420 0.779988 0.407916 0.780 0.420
0.7000 0.945 0.455 0.944964 0.432226 0.945 0.455
0.8000 1.120 0.480 1.11991 0.440497 1.120 0.480
0.9000 1.305 0.495 1.30479 0.430695 1.305 0.495
1.000 1.500 0.500 1.49955 0.400446 1.500 0.5

Table 3: Comparison of Solution y1(t) and y2(t) at ξ = 1 by PSM and HAITM for Problem 3.3
t Exact y1(t) Exact y2(t) HAITM y1(t) HAITM y2(t) PSM y1(t) PSM y2(t)

0.0000 1.000 1.000 1.000 1.000 1.000 1.000
0.1000 1.001 0.999 1.001 0.999 1.001 0.999
0.2000 1.008 0.992 1.008 0.992 1.008 0.992
0.3000 1.027 0.973 1.027 0.973 1.027 0.973
0.4000 1.064 0.936 1.064 0.936 1.064 0.936
0.5000 1.125 0.875 1.125 0.875 1.125 0.875
0.6000 1.216 0.784 1.216 0.784 1.216 0.784
0.7000 1.343 0.657 1.343 0.657 1.343 0.657
0.8000 1.541 0.488 1.541 0.488 1.512 0.488
0.9000 1.748 0.271 1.748 0.271 1.729 0.271
1.0000 2.000 0.033 1.999 0.033 2.000 0.000

Table 4: Comparison between CAS solution and HAITM for Problem 4.1
x CAS (ξ = 3.25) CAS (ξ = 3.75) HAITM (ξ = 3.25) HAITM (ξ = 3.75)

0.000 1.0000 1.0000 1.0000 1.0000
0.1000 1.1053 1.1052 1.1052 1.1052
0.2000 1.2219 1.2216 1.2220 1.2215
0.3000 1.3523 1.3510 1.3521 1.3502
0.4000 1.4968 1.4941 1.4974 1.4928
0.5000 1.6635 1.8334 1.6600 1.6508
0.7000 2.0444 2.0293 2.0463 2.0203
0.8000 2.2776 2.2537 2.2748 2.2358
0.9000 2.5265 2.4949 2.5304 2.4748
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Table 5: Comparison between BPM solution and HAITM for Problem 4.2
x BPM (ξ = 1) BPM (ξ = 0.9) HAITM (ξ = 1) HAITM (ξ = 0.9)

0.0000 0.0000 0.0000 0.0000 0.0000
0.0625 -0.06250 -0.08576 -0.06250 -0.08576
0.1250 -0.12498 -0.15997 -0.12498 -0.15997
0.1825 -0.18740 -0.23025 -0.18740 -0.23025
0.2500 0.24968 -0.29791 0.24968 -0.29791
0.3125 -0.31171 -0.36344 -0.31171 -0.36344
0.3750 -0.37336 -0.42702 -0.37336 -0.42702
0.4375 -0.43446 -0.48866 -0.43446 -0.48866
0.5000 -0.49482 -0.54829 -0.49482 -0.54829
0.5625 -0.55423 -0.60576 -0.55423 -0.60576
0.6250 -0.61243 -0.66089 -0.61243 -0.66089
0.6875 -0.66917 -0.71347 -0.66917 -0.71347
0.7500 -0.72115 -0.76325 -0.72115 -0.76325
0.8125 -0.7709 -0.81007 -0.7709 -0.81007
0.8750 -0.82767 -0.85360 -0.82767 -0.85360
0.9375 -0.87557 -0.89363 -0.87557 -0.89363

Figure 1. Graph of u(x) for Problem 3.1
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Figure 2. Graph of v(x) for Problem 3.1

Figure 3. Graph of y1(t) for Problem 3.2
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Figure 4. Graph of y2(t) for Problem 3.2

Figure 5. Graph of y1(t) for Problem 3.3
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Figure 6. Graph of y2(t) for Problem 3.3

Figure 7. Graph of y(t) for Problem 4.1
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Figure 8. Graph of y(t) for Problem 4.2

5.1. Discussion of Results. The results obtained for systems of equations in Problems 3.1 and
3.3 in Section 3 using HAITM are similar to results in the cited literature where Optima Homotopy
Analysis Method (OHAM) and Power series method were used [25] and [30] respectively as well
as the exact solution, while the solutions obtained for Problem 3.2 for y2(t) have slight deviation
from the exact solution, but y2(t) are the same when the required degree of approximation is
maintained. Also, in Section 4, the proposed method produced similar results as obtained in [31]
where Euler wavelet operational matrix method was used. In addition, the results for Problems 3.1
and 3.2 by HAITM are in total agreement with those in literature, [30] where Optimal Homotopy
Analysis Method (OHAM) was used. For ease of visualization, the results obtained are presented
in 2D graphs.

5.2. Conclusion. HAITM has been successfully applied to linear and nonlinear fractional order
integro-dierential equations. The results obtained for the selected problems from the literature
agree perfectly with the solutions obtained through other methods in the literature, at reduced
computational time and space. Conclusively, HAITM is an excellent mathematical tool for solving
both linear and nonlinear integro-dierential equations with dierence kernel.

5.3. Recommendation. The HAITM proposed in this paper can as well be expanded in scope
to cover the linear and nonlinear fractional order partial Volterra integro-dierential equations.
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