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ON THE SECOND AND THIRD ORDER VANDERMONDE

DETERMINANTS FOR A SUBCLASS OF ANALYTIC

FUNCTIONS IN THE LIMAÇON DOMAIN

R. SATHISH SRINIVASAN, R. EZHILARASI, K. G. SUBRAMANIAN, T. V. SUDHARSAN

Abstract. A Limaçon curve is dened by ∂L(p) = a + ib ∈ C : [(a − 1)2 +

b2 − p4]2 = 4p2[(a− 1 + p2)2 + b2] where p ∈ [−1, 1] \ 0. A Limaçon curve

also known as Limaçon of Pascal has many applications in the eld of math-

ematics, physics, engineering and uid dynamics. Vandermonde determinants

are used in linear algebra, optimization and frequency analysis. Motivated by

this, in this paper we dene a new subclass of analytic functions related to

Limaçon domain. Let T Lp(α), 0 ≤ α ≤ 1, 0 < p ≤ 1√
2
, denote the subclass

of normalized analytic functions f(z) = z +
∞

r=2 arz
r in the open unit disk

U = z ∈ C : z < 1 satisfying the condition

2(αz2f ′′(z) + zf ′(z))
αz(f(z)− f(−z))′ + (1− α)(f(z)− f(−z))

≺ Lp(z) z ∈ U,

where Lp(z) = (1 + pz)2 is the Limaçon function and ≺ denotes the well

known subordination of functions in geometric function theory. In this paper,

we determine the sharp coecient bounds for the second order Vandermonde

determinants and upper bounds for the third order Vandermonde determinants

for functions in the subclass T Lp(α). Further, we obtain as corollaries the

results of already known classes.

1. Introduction

Let H(U) be the class of analytic functions in the open unit disk U = z ∈ C :
z < 1 and A be the subclass of H(U) consisting of functions f of the form

f(z) = z +

∞

r=2

arz
r, z ∈ U (1)
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subordination.

Submitted Jan. 28. Revised July 9, Accepted July 29, 2025.

1



2 R.SATHISH SRINIVASAN, R.EZHILARASI, K.G.SUBRAMANIAN, T.V.SUDHARSAN JFCA-2025/16(2)

Let S be the subclass of A consisting of univalent functions and W denote, the
class of Schwarz functions (analytic self-mappings) on U is given by

W = w ∈ H(U) : w(0) = 0, w(z) < 1, z ∈ U
Let g1 and g2 be two analytic functions inH(U) Then the function g1 is subordinate
to g2, (g1 ≺ g2) if there exists a Schwarz function w(z) ∈ W such that g1(z) =
g2(w(z)) Suppose g2 is univalent in U, then

g1(z) ≺ g2(z) ⇔ g1(0) = g2(0) and g1(U) ⊂ g2(U)

The following equation represents a Limaçon in polar coordinates.

r = v + u cosφ (u, v ∈ R, φ ∈ [0, 2π])

The conditions for the Limaçon to be convex and to have an indentation bounded
by two inection points are v ≥ 2u and 2u > v > u respectively. For dierent
values of v and u, we have dierent curves.

(i) If v = u, the Limaçon degenerates to a cardioid.
(ii) If v < u, the Limaçon has an inner loop and
(iii) when v = u2, it is a trisectrix.

The image of unit disk U under the function

Lp(z) = (1 + pz)2, (p ∈ [−1, 1] \ 0), (2)

is the region ∂L(p) = a+ ib ∈ C : [(a− 1)2 + b2 − p4]2 = 4p2[(a− 1 + p2)2 + b2]
bounded by the Limaçon [12].
In [12], Masih and Kanas established the following inclusion relation

w ∈ C : w − 1 < 1− (1− p)2 ⊂ Lp(U) ⊂ w ∈ C : w − 1 < (1 + p)2 − 1
Also, Lp(z) = (1 + pz)2, (p ∈ [−1, 1] \ 0) is starlike in U For 0 < p ≤ 1√

2
, the

function Lp(z) is a member of the class M of analytic univalent function ϕ in U
with the properties

(i) ℜ(ϕ) > 0
(ii) ϕ(U) starlike with respect to ϕ(0) = 1 and symmetric with respect to real

axis, and
(iii) ϕ′(0) > 0

The class M was introduced by Ma and Minda [10].
Denote by E(Lp) the class of function s(z) = 1 + s1z + s2z

2 +  analytic in U
with s(0) = 1 and s(z) ≺ Lp(z) for 0 < p ≤ 1√

2
 Clearly E(Lp) is a subclass of

Carathéodory class E .
A Vandermonde matrix [2, 11] is a square matrix in which the terms of each row
(or each column) is in geometric progression with the rst element being one. The
Vandermonde determinant is sometimes also known as a discriminant.
For f ∈ A, the qth order Vandermonde determinant Vq(r) is dened as

Vq(r) =



1 ar a2r  aq−1
r

1 ar+1 a2r+1  aq−1
r+1

1 ar+2 a2r+2  aq−1
r+2

...
...

...
. . .

...

1 ar+q−1 a2r+q−1  aq−1
r+q−1



, (a1 = 1, q, r ≥ 1)
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In particular,

V2(1) =


1 a1
1 a2

 = a2 − a1, V2(2) =


1 a2
1 a3

 = a3 − a2

and

V3(1) =



1 a1 a21
1 a2 a22
1 a3 a23


= (a3 − a2)(a3 − a1)(a2 − a1)

For further details on Vandermonde determinants and their applications refer to
articles [8, 9]. The second and third order Hankel determinants in geometric func-
tion theory have been extensively studied by many researchers [3, 4, 6, 13, 14, 15].
Recently, Vijayalakshmi et al. [16] introduced and studied the Vandermonde de-
terminant of order two and three for Sakaguchi type of function in Limaçon do-
main. Further, Anand et al. [1] and Wahid et al. [17] have investigated on the
upper bounds of Vandermonde determinants whose elements with coecients of
close-to-convex functions and logarithmic coecients of bounded turning functions
respectively.

Motivated by the works of Bucur et al. [4] and Vijayalakshmi et al. [16] , we
dene a new subclass T Lp(α) of analytic functions in Limaçon domain.

Dnition 1.1. Let T Lp(α) denote the subclass of A that consists of functions of
the form (1) satisfying the condition

T Lp(α) =


f ∈ A :

2(αz2f ′′(z) + zf ′(z))
αz(f(z)− f(−z))′ + (1− α)(f(z)− f(−z))

≺ Lp(z)


, (3)

where 0 ≤ α ≤ 1, and Lp(z), 0 < p ≤ 1√
2
is given by (2).

Rmark 1.1. The classes investigated in [4, 14] however do not apply subordination
principle.

Rmark 1.2. i) Consider the function ϑ1(z) = z + 1
5z

2 in A For 0 ≤ α ≤ 1, let

R1(α; z) =
2(αz2ϑ′′

1(z) + zϑ′
1(z))

αz(ϑ1(z)− ϑ1(−z))′ + (1− α)(ϑ1(z)− ϑ1(−z))
 We observe that the

images shown in Figures 1(a), 1(b) and 1(c) (in blue color) of U under transforma-
tions R1(α; z) = 1+ 2

5 (α+1)z at z = 09eiθ, 0 ≤ θ ≤ 2π for α = 0, 05, 1 respectively
lie in the images shown in Figures 1(a), 1(b) and 1(c) (in red color) of U under
Limaçon function L 1√

2
(09eiθ) drawn by Octave computer software.
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(a) The images of R1(0; 0.9e
iθ) (b) The images of R1(0.5; 0.9e

iθ)

(blue color) and L 1√
2
(0.9eiθ) (red color) (blue color) and L 1√

2
(0.9eiθ) (red color)

(c) The images of R1(1; 09e
iθ) d) The image of ϑ1(U)

(blue color) and L 1√
2
(09eiθ)(red color)

Figure 1 : Figures for the Remark 1.2 (i)

So we have R1(α; 0) = L 1√
2
(0) and R1(α;U) ⊂ Lp(U) By the univalence of

Lp(z), 0 < p ≤ 1√
2
, R1(α; z) ≺ Lp(z) for all α ∈ [0, 1] Thus, ϑ1 ∈ T Lp(α) Also,

the Figure 1(d) illustrates that the function ϑ1 is univalent in U

ii) Let ϑ2(z) = ze
z
5 be in A For 0 ≤ α ≤ 1, We have

R2(α; z) =
2(αz2ϑ′′

2(z) + zϑ′
2(z))

αz(ϑ2(z)− ϑ2(−z))′ + (1− α)(ϑ2(z)− ϑ2(−z))

=
e0.2z[1 + (2α+ 1)(02)z + α(004)z2]

cosh(02z) + αz sinh(02z)


We observe that the images shown in Figures 2(a), 2(b) and 2(c) (in blue color)
of U under transformations R2(α; z) at z = 09eiθ, 0 ≤ θ ≤ 2π for α = 0, 05, 1
respectively lie in the images shown in Figures 2(a), 2(b) and 2(c) (in red color) of
U under Limaçon function L 1√

2
(09eiθ) drawn by Octave computer software.
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(a) The images of R2(0; 0.9e
iθ) (b) The images of R2(0.5; 0.9e

iθ)

(blue color) and L 1√
2
(0.9eiθ) (red color) (blue color) and L 1√

2
(0.9eiθ) (red color)

(c) The images of R2(1; 09e
iθ) d) The image of ϑ2(U)

(blue color) and L 1√
2
(09eiθ) (red color)

Figure 2 : Figures for the Remark 1.2 (ii)

So we have R2(α; 0) = L 1√
2
(0) and R2(α;U) ⊂ Lp(U) By the univalence of

Lp(z), 0 < p ≤ 1√
2
, R2(α; z) ≺ Lp(z) for all α ∈ [0, 1] Thus, ϑ2 ∈ T Lp(α) Also,

the Figure 2(d) illustrates that the function ϑ2 is univalent in U

iii) From remarks 1.2 (i) and (ii), we conclude that the class T Lp(α) is non-empty
with the members ϑ1 and ϑ2 Further, we note that ϑ1 and ϑ2 are also in S This
implies that ϑ1,ϑ2 ∈ T Lp(α)∩S So the subclass T Lp(α)∩S of T Lp(α) is also non-
empty. The above examples and comments give the needed motivation to discuss
the properties of functions belong to the class T Lp(α) in the next section.

Rmark 1.3.

i) If α = 0, T Lp(0) = S∗(Lp), where S∗(Lp) is the class considered by Vijay-
alakshmi et al. [16].

ii) If α = 1, T Lp(1) = C(Lp), where C(Lp) is the class considered Vijayalak-
shmi et al. [16].
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We shall make use of the following lemmas to prove our main results in the next
section.

Lmma 1.1. [7] If the function w(z) ∈ W is of the form

w(z) =

∞

r=1

wrz
r, z ∈ U, (4)

then

w2 = x(1− w2
1),

w3 = (1− w2
1)(1− x2)t− w1(1− w2

1)x
2,

for some x, t with x ≤ 1 and t ≤ 1

Lmma 1.2. [5] If the function w ∈ W is of the form (4), then wr ≤ 1 for all
r = 1, 2, 3, 

In this paper, motivated by the works of [11] and [16], we obtain sharp bounds
for the Vandermonde determinants V2(1), V2(2) and upper bounds for the Vander-
monde determinant V3(1) for functions in the subclass T Lp(α).

2. Main results

In the next Theorem 2.1, we determine sharp bounds for the second order Van-
dermonde determinant V2(2) of the class T Lp(α).

Thorm 2.1. Let 0 < p ≤ 1√
2
, 0 ≤ α ≤ 1 If the function f ∈ T Lp(α) is dened

by (1), then

V2(2) ≤
p

(2α+ 1)2 + 2(1 + α)2(2− p)



2(1 + α)2(2− p)(2α+ 1)
 (5)

The inequality is sharp.

Proof. For 0 ≤ α ≤ 1 and 0 < p ≤ 1√
2
, let f ∈ T Lp(α) is dened by (1). Then

there exists a function w ∈ W of the form (4) such that

2(αz2f ′′(z) + zf ′(z))
αz(f(z)− f(−z))′ + (1− α)(f(z)− f(−z))

= (1 + pw(z))2 (6)

From (6), we have

z + 2(α+ 1)a2z
2+3(2α+ 1)a3z

3 + 

= z + 2pw1z
2 + (p2w2

1 + 2pw2)z
3 + (2α+ 1)a3z

3 + 

Equating corresponding coecients on both sides, we get

a2 =
pw1

α+ 1
, (7)

a3 =
pw2

2α+ 1
+

p2w2
1

2(2α+ 1)
 (8)
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Using Lemma 1.1, for some x such that x ≤ 1, we obtain

V2(2) = a3 − a2

=


pw2

2α+ 1
+

p2w2
1

2(2α+ 1)


− pw1

α+ 1

=


px(1− w2

1)

2α+ 1
+

p2w2
1

2(2α+ 1)


− pw1

α+ 1


As w1 ≤ 1, according to Lemma 1.2, we can assume without restriction that
w1 = w with 0 ≤ w ≤ 1 By implementation of the triangle inequality with τ = x,
we get

V2(2) ≤
pτ (1− w2)

2α+ 1
+

p2w2

2(2α+ 1)
+

pw

α+ 1
=: G(w, τ)

Since
∂G

∂τ
=

p(1− w2)

2α+ 1
≥ 0 for 0 ≤ τ ≤ 1,

G(w, τ) is an increasing function in closed region R = (w, τ) : 0 ≤ w ≤ 1 and 0 ≤
τ ≤ 1 It has no maximum value in an interior of R and the maximum value of
G(w, τ) occurs at τ = 1
For xed w ∈ [0, 1],

max
0≤τ≤1

G(w, τ) = G(w, 1) = − p(2− p)

2(2α+ 1)
w2 +

pw

1 + α
+

p

2α+ 1
=: h(w)

We can see that the maximum of h(w) occurs at w = w0 = (2α+1)
(1+α)(2−p) in [0, 1]

Hence, we have

V2(2) ≤ h(w0) =
p

(2α+ 1)2 + 2(1 + α)2(2− p)



2(1 + α)2(2− p)(2α+ 1)


This completes the proof. The equality holds for the function

f(z) = z − p

(2− p)(2α+ 1)
z2 +

p[4(2α+ 1)(α+ 1) + 1]− 2p(1 + α)2(p+ 1)

2(1 + α)2(2− p)(2α+ 1)
z3 − 

□
In the following two Corollaries 2.1 and 2.2, we obtain sharp bounds for the

second order Vandermonde determinant V2(2) of the classes S∗(Lp) and C(Lp),
when α takes the value 0 and 1 respectively.

Corollary 2.1. When α = 0 in (5), we get

V2(2) ≤
p(5− 2p)

2(2− p)


This result coincides with Theorem 1 in [16].

Corollary 2.2. When α = 1 in (5), we get

V2(2) ≤
p(25− 8p)

24(2− p)


This result coincides with Theorem 5 in [16].

We obtain sharp bounds for the second order Vandermonde determinant V2(1)
of the class T Lp(α) in the following Theorem 2.2.
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Thorm 2.2. Let 0 < p ≤ 1√
2
, 0 ≤ α ≤ 1 If the function f ∈ T Lp(α) is dened

by (1), then

V2(1) ≤
p

1 + α
+ 1 (9)

The inequality is sharp.

Proof. As per the proof of Theorem 2.1, we have

V2(1) =
pw1

1 + α
− 1

Using Lemma 1.1 and triangle inequality, we obtain

V2(1) ≤
pw

1 + α
+ 1 =: h(w)

But h′ = p
1+α > 0 implies that the maximum value of function h(w) occurs at

w = 1 Therefore, we get

V2(1) ≤ h(1) =
p

1 + α
+ 1

Hence, the proof of the theorem.
The inequality is sharp for the function

f(z) = z − p

1 + α
z2 + 

□

In the next two Corollaries 2.3 and 2.4, we obtain sharp bounds for the second
order Vandermonde determinant V2(1) of the classes S

∗(Lp) and C(Lp), when α = 0
and α = 1 respectively.

Corollary 2.3. When α = 0 in (9), we get

V2(1) ≤ p+ 1

This result coincides with Theorem 2 in [16].

Corollary 2.4. When α = 1 in (9), we get

V2(1) ≤
p+ 2

2


This result coincides with Theorem 6 in [16].

In the following Theorem 2.3, we obtain sharp bounds for the functional a3−a1
of the class T Lp(α).

Thorm 2.3. Let 0 < p ≤ 1√
2
, 0 ≤ α ≤ 1 If the function f ∈ T Lp(α) is dened

by (1), then

a3 − a1 ≤
p

2α+ 1
+ 1 (10)

The inequality is sharp.

Proof. As per the proof of Theorem 2.1, we have

a3 − a1 =
pw1

(2α+ 1)
+

p2w2
1

2(2α+ 1)
− 1
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With the help of Lemma 1.1 for some x such that x ≤ 1, we obtain

a3 − a1 =
px(1− w2

1)

(2α+ 1)
+

p2w2
1

2(2α+ 1)
− 1

As w1 ≤ 1, according to Lemma 1.2, we can assume without restriction that w1 = w
with 0 ≤ w ≤ 1 Using the triangle inequality with τ = x, we get

a3 − a1 ≤
pτ (1− w2)

2α+ 1
+

p2w2

2(2α+ 1)
+ 1 =: G(w, τ)

Since
∂G

∂τ
=

p(1− w2)

2(α+ 1)
≥ 0, for 0 ≤ τ ≤ 1,

G(w, τ) is an increasing function in closed region R = (w, τ) : 0 ≤ w ≤ 1 and 0 ≤
τ ≤ 1 It has no maximum value in an interior of R and the maximum value of
G(w, τ) occurs at τ = 1
For xed w with 0 ≤ w ≤ 1,

max
0≤τ≤1

G(w, τ) = G(w, 1) =
p

2α+ 1
− c2p(2− p)

2(2α+ 1)
+ 1 =: h(w)

The maximum of function h(w) occurs at w = 0 in [0, 1] Hence, we have

a3 − a1 ≤ h(0) =
p

2α+ 1
+ 1

Thus we get the desired result.
The inequality is sharp for the function

f(z) = z − p

2α+ 1
z3 + 

□

In the following two Corollaries 2.5 and 2.6, we determine sharp bounds for the
functional a3 − a1 of the classes S∗(Lp) and C(Lp), when α takes the value 0 and
1 respectively.

Corollary 2.5. When α = 0 in (10), we get

a3 − a1 ≤ p+ 1

This result coincides with Theorem 3 in [16].

Corollary 2.6. When α = 1 in (10), we get

a3 − a1 ≤
p+ 3

3


This result coincides with Theorem 7 in [16].

We obtain upper bounds for the third order Vandermonde determinant V3(1) of
the class T Lp(α) in the next Theorem 2.4.

Thorm 2.4. Let 0 < p ≤ 1√
2
, 0 ≤ α ≤ 1 If the function f ∈ T Lp(α) is dened

by (1), then

V3(1) ≤

p[(2α+ 1)2 + 2(1 + α)2(2− p)]

2(1 + α)2(2− p)(2α+ 1)


p

1 + α
+ 1


p

2α+ 1
+ 1


 (11)

Proof. The result follows upon using (5),(9) and (10). □
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The upper bounds for the third order Vandermonde determinant V3(1) of the
classes S∗(Lp) and C(Lp) are determined in the next two Corollaries 2.7 and 2.8,
when α = 0 and α = 1, respectively.

Corollary 2.7. When α = 0 in (11), we get

V3(1) ≤
p(5− 2p)(p+ 1)2

2(2− p)


This result coincides with Theorem 4 in [16].

Corollary 2.8. When α = 1 in (11), we get

V3(1) ≤
p(25− 8p)(p+ 3)(p+ 2)

144(2− p)


This result coincides with Theorem 8 in [16].

3. Conclusions

Limaçon domain is applied in various branches of mathematics, statistics, uid
dynamics, engineering and science.

In this article, a new subclass T Lp(α) of analytic functions related to Limaçon
domain is introduced. Sharp bounds for second order Vandermonde determinants
and upper bounds for third order Vandermonde determinants in Limaçon domain
are obtained for the subclass T Lp(α) The results of earlier well known work are
also presented as corollaries from our results.

We believe that our results will motivate researchers in the area of geometric
function theory to introduce and study new classes related to Limaçon domain.
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