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Viral hepatitis remains a major public 

health challenge globally, especially 

hepatitis B and C. This puts millions of 

people at risk of various forms of chronic 

liver diseases, such as liver cirrhosis, 

hepatocellular carcinoma, liver failure, 

etc. Vaccines have been confirmed to be 

effective in reducing the burden of certain 

infectious agents, including many of the 

hepatitis viruses. This article evaluates the 

molecular mechanisms involved in the 

design of the available hepatitis viruses, 

their efficacy, and how to improve them. 

HAV vaccines are designed around the 

formalin-inactivated virus or genetically 

attenuated live viruses, and their 

molecular design emphasizes robust 

immunogenicity and safety. Current HBV 

vaccines are primarily recombinant 

subunit vaccines using the HBV surface 

antigen (HBsAg) and are produced by 

expressing HBsAg in yeast or mammalian 

cell systems, eliciting strong immune 

responses. HCV lacks an approved 

vaccine despite significant research 

efforts.  

 

Its high genetic variability and immune 

evasion mechanisms make it complex in 

the development of vaccines. However, 

most HCV vaccine candidates focus on 

conserved epitopes within the viral 

envelope glycoproteins E1 and E2, which 

are critical for viral entry. Currently, there 

are no standalone vaccines for Hepatitis 

D, although the infection can be 

prevented by hepatitis B immunization. 

Moreover, efforts to develop HDV-

specific vaccines focus on the large HDV 

antigen (HDAg), which is essential for 

viral assembly. The first licensed HEV 

vaccine, Hecolin®, is a recombinant 

subunit vaccine based on the ORF2 

protein of HEV genotype 1 and is 

produced in Escherichia coli, where the 

ORF2 protein self-assembles into VLPs, 

mimicking the native virus's 

immunogenicity. DNA recombinant 

technology, protein engineering, 

structural biology applications, the use of 

virus-like particles, mRNA and 

nanoparticle-based platforms, etc, have all 

increased the efficacy of the available 

vaccines. 

 

 

 

 

 

 

 

 

 

 

 

1.0. INTRODUCTION  

Viral hepatitis is the inflammation of 

the liver following an infection by any 

of the major hepatitis viruses A, B, C, 

D, and E. Other viruses implicated 

include cytomegalo virus, Herpes 

simplex virus, Epstein Barr virus, 

Rubella virus, Adenovirus, Mumps 

virus, Yellow fever virus, etc. When 

the inflammation does not resolve in 

six months, the name changes from 

acute to chronic hepatitis. Some of the 

common risk factors for viral hepatitis 

include intravenous drug use, 

unprotected sexual intercourse, food 

and water contamination, blood 

transfusion, being a healthcare 

worker, being born to a hepatitis B or 

C-infected mother, etc.
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For instance, the Hepatitis B virus (HBV) is a 

major public health challenge globally, with 

more than 30% of the global population having 

serological evidence of ongoing or previous 

infection. Chronic HBV accounts significantly 

for the global mortality rate, with almost a billion 

individuals dying annually from HBV-related 

hepatic diseases [1]. 

Vaccines are effective means of preventing and 

controlling many communicable diseases. The 

World Health Organization (WHO)'s 

Immunization Agenda 2030 (IA2030) 

emphasizes the need for global strategies to 

ensure everyone gets vaccinated [2]. The IA2030 

highlights the ongoing challenges of infectious 

diseases and focuses on approaches to promote 

vaccine development, manufacturing, and 

uptake, to ensure global coverage, through the 

efforts of researchers, healthcare providers, 

manufacturers, policymakers, and governmental 

and non-governmental organizations [2]. 

Research has shown that vaccines are effective in 

significantly reducing worldwide HBV infection 

prevalence, primarily via childhood HBV 

vaccination which reduced the prevalence from 

4.9% in the prevaccination period to 0.9% in 

2019 [1]. This review explores the molecular 

mechanisms involved in the design of hepatitis 

virus vaccines, evaluating their efficacy and 

potential areas of improvement. The overall goal 

is to contribute to the understanding of the design 

of more effective vaccines to reduce the burden 

of hepatitis globally . 

2.0.Molecular Basis of Hepatitis Virus 

Infection and Pathogenesis  

Hepatitis virus invades the host through diverse 

molecular interactions which are peculiar to each 

type of virus due to their unique molecular 

makeup. In Hepatitis A infection, transmission is 

by by fecal-oral route [2]. The HAV genome (7.5 

kb) codes for only one polyprotein, which is 

usually cleaved into structural proteins (VP4, 

VP2, VP3, and VP1pX capsid antigens) and non-

structural proteins, such as 2B, 2C, 3A, 3B (the 

genome-linked protein, VPg), 3Cpro (a cysteine 

protease), and 3Dpol (RNA-dependent RNA 

polymerase). These proteins are integral to viral 

replication and assembly [3]. Through this 

means, HAV causes acute inflammation of the 

liver that generally resolves without leading to 

chronic conditions, followed by life-long 

immunity, which is unlike other hepatotropic 

viruses [4]. 

Hepatitis B virus transmission occurs through 

contact with contaminated blood or body fluids, 

as well as vertical transmission after birth [5] [6]. 

The viral genome has a partially double-stranded 

relaxed circular DNA (rcDNA), that replicates 

via an RNA intermediate [7]. It codes for key 

proteins including the viral DNA polymerase 

(reverse transcriptase), hepatitis B core antigen 

(HBcAg), HBsAg, hepatitis B e antigen 

(HBeAg), and the hepatitis B x protein (HBxAg). 

The survival of HBV is facilitated by the 

integration of viral DNA into the host genome as 

covalently closed circular DNA (cccDNA) 

during chronic infection, which also raises the 

risk of serious liver disorders such as cirrhosis, 

liver failure, and HCC [6] [8]. HBsAg envelops 

circulating HBV virions, sometimes referred to 

as "Dane particles," which are made up of three 

virus-coded surface proteins: large (L), middle 

(M), and small (S). Despite its poor affinity, the 

HBV virion attaches itself to the surface of 

hepatocytes by interacting with heparan sulfate 

proteoglycans (HSPGs). This is followed by 

interaction with the sodium taurocholate co-

transporting polypeptide (NTCP) receptor, which 

has a high affinity for the pre-S1 domain of L-

HBsAg. This contact could cause HBV to 

internalize into hepatic cells by endocytosis [6]. 

As a satellite virus, the Hepatitis D virus requires 

co-infection (simultaneous infection with HBV 

and HDV) or superinfection (HDV infection in a 

person with chronic HBV) for its propagation 

within humans, leading to the most severe form 

of viral hepatitis. The virus mediates its de novo 

entrance into hepatocytes and facilitates the 

release of its progeny by using HBsAg. Much 

like HBV, it is predominantly transmitted 

through parenteral exposure to contaminated 

body fluids, intravenous drug use, and, less 

commonly, through vertical transmission [9]. 

The HDV RNA genome is very heterogeneous, 

with eight different genotypes that differ in how 

the disease progresses and responds to therapy 

[10]. 

In hepatitis C infection, the viral lifecycle 

includes viral entrance, uncoating, and release of 

the genome into the cytoplasm, which is 

followed by RNA translation and replication, 

particle assembly, and egress [11]. Human 
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hepatocytes are the primary target cell of HCV 

infection in vivo, and the virus may effectively 

infect human hepatoma cell lines in vitro [12]. 

The attachment and internalization of HCV 

require four essential cellular components: 

occludin (OCLN), claudin-1 (CLDN), scavenger 

receptor class B type I (SR-BI), and CD81. Of 

these, the primary target for antibody-mediated 

neutralization is the interaction between E2 and 

CD81 [13]. Overall, Several host cell factors are 

required for virus translation, replication, and 

production. These include liver-specific 

microRNA-122 (miR-122) [14], autophagy 

proteins (i.e. Beclin-1, Atg4B, Atg5 and Atg12) 

[15], cyclophilin A (CypA) [16], lipid droplets 

(LDs), and the VLDL (very low-density 

lipoprotein) export pathway, utilizing 

apolipoprotein B and E (ApoB and ApoE) as 

cofactors [17] amongst others . 

Hepatitis E Virus is the final major Hepatitis 

virus. Our knowledge of HEV's reproduction 

cycle, host cell contacts, and entrance pathways 

into hepatic cells has only recently improved, 

despite evidence that suggests outbreaks have 

occurred since ancient times. Unlike traditional 

enclosed viruses, the eHEV are infectious but do 

not have virus-encoded proteins on their surface 

[18]. Findings support the idea that the 

biogenesis of eHEV viral particles includes the 

highly selective sorting of viral capsids into 

multivesicular endosomes (MVEs) in a process 

that is dependent on endosomal sorting 

complexes required for transport (ESCRT), 

which is similar to how exosomes are produced 

[19]. HEV virions most likely are involved in 

non-specific interactions with clathrin during 

their initial attachment and endocytosis. Like 

nHEV, they are trafficked to endolysosomes by 

the GTPase Ras-related protein Rab-5A 

(RAB5A) and RAB7A [20].  

Cellular enzymes in lysosomes mediate the 

breakdown of eHEV membrane lipids [21]. The 

compartment and mechanism of eHEV capsid 

uncoating are still unclear. The endolysosome 

may serve just as a transitory space when the 

virus sheds its quasi-envelope. It is known that 

the endoplasmic reticulum-associated 

degradation pathway allows overexpressed 

ORF2 proteins to go into the cytoplasm [22 .] 

3.0. Current Hepatitis Virus Vaccines: 

Molecular Design and Properties  

Hepatitis virus vaccines utilize advanced 

molecular designs to prevent infections 

effectively. Hepatitis A vaccines are usually 

inactivated virus formulations inducing strong, 

long-lasting immunity [23], while hepatitis B 

vaccines are recombinant protein vaccines using 

the hepatitis B surface antigen (HBsAg) 

produced in yeast or mammalian cells, ensuring 

robust immunogenicity [24]. Furthermore, 

hepatitis C lacks an approved vaccine due to its 

genetic diversity, though novel candidates, like 

recombinant protein and mRNA-based vaccines 

[25] [26] [27]. Hepatitis D prevention relies on 

the hepatitis B vaccine, as HDV requires HBV 

for replication. Hepatitis E vaccines, such as the 

recombinant HEV239, target the viral capsid 

protein, providing protection primarily in 

endemic regions [28]. An overview of the 

hepatitis virus vaccine, its molecular design, and 

other properties are depicted in Table 1 below. 

Table 1: Table highlighting the molecular designs and properties of the hepatitis virus vaccines. 

S/N Vaccine Molecular Design       Other Properties References 

1.  Hepatitis A Virus Vaccine 

- Primarily 

based on 

inactivated 

viral particles 

or live 

attenuated 

strains, with 

the molecular 

- Stable under standard 

refrigeration 

conditions and often 

adjuvanted with 

aluminum hydroxide 

to enhance immune 

response. 

- Induces protective 

[23] [29] 
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design 

emphasizing 

robust 

immunogenici

ty and safety. 

- Designed 

around the 

formalin-

inactivated 

virus or 

genetically 

attenuated live 

viruses.  

antibodies (anti-HAV 

IgG) in over 95% of 

vaccinated individuals 

after two doses 

2.  Hepatitis B Virus Vaccine 

- Primarily 

recombinant 

subunit 

vaccines using 

the HBV 

surface 

antigen 

(HBsAg) 

- Produced by 

expressing 

HBsAg in 

yeast or 

mammalian 

cell systems 

- Elicits a robust 

immune response, with 

seroprotection rates 

exceeding 90% in 

healthy individuals 

after the standard 

three-dose regimen 

- Adjuvants such as 

aluminum hydroxide 

enhance the immune 

response. 

[30] [31] 

3.  Hepatitis C Virus Vaccine - Lacks an 

approved 
vaccine, but 

most 

candidates 
focus on 

conserved 

epitopes 
within the 

viral envelope 

glycoproteins 
E1 and E2, 

which are 
critical for 

viral entry.  

- Other 
strategies 

include 

recombinant 
VLPs, 

adenoviral 

vectors, and 
mRNA 

vaccines 

encoding 

- The variability of 

HCV strains remains a 

barrier to universal 

vaccine efficacy. 

[27] [32] 
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HCV 
antigens. 

4.  Hepatitis D Virus Vaccine 

- There are no 

standalone 

vaccines for 

Hepatitis D, 

but it can be 

prevented by 

HBV 

immunization. 

  

5.  Hepatitis E Virus Vaccine 

- A recombinant 

subunit vaccine 

based on the 

ORF2 protein 

of HEV 

genotype 1  

- Produced in 

Escherichia 

coli, where the 

ORF2 protein 

self-assembles 

into VLPs, 

mimicking the 

native virus's 

immunogenicit

y.  

- Safe, stable, and induces 

long-lasting immunity. 

[33] 

 

 

   

4.0. Technological Advances in Hepatitis 

Vaccine Development  

4.41. Role of DNA Recombinant Technology 

The advent of recombinant DNA technology 

marked a transformative era in hepatitis vaccine 

development, enabling the creation of safer, 

more effective, and scalable solutions. Early 

breakthroughs in this field laid the groundwork 

for addressing the global burden of hepatitis B 

and E through innovative genetic engineering 

techniques. In the 1980s, recombinant DNA 

technology revolutionized hepatitis B vaccine 

production by enabling the synthesis of hepatitis 

B surface antigens (HBsAg) in yeast cells or 

other expression systems [34]. These vaccines 

offered significant advantages over traditional 

plasma-derived options, demonstrating superior 

immunogenicity, enhanced safety, and 

scalability, which were crucial for widespread 

immunization efforts [34] [35]. Building on these 

early successes, researchers harnessed 

recombinant DNA technology to refine and 

optimize vaccine design. By constructing 

synthetic vaccines that predict viral epitopes, 

they improved the precision of immune 

responses, enhancing the vaccines’ ability to 

target the virus effectively [36]. 

Similarly, the application of recombinant DNA 

technology to hepatitis E vaccine development 

has been instrumental in producing virus-like 

particles (VLPs). These VLPs mimic the virus's 

structure without carrying its genetic material, 

ensuring safety while achieving high efficacy 

[37]. More recently, DNA-based vaccines have 

https://aeji.journals.ekb.eg/
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emerged as a promising platform. These vaccines 

introduce genetic material encoding viral 

antigens into host cells, eliciting robust immune 

responses. With advancements in vector design 

and delivery mechanisms, DNA vaccines are 

poised for further innovation, particularly in 

preclinical evaluations [38] [39]. The global 

rollout of recombinant hepatitis B vaccines has 

led to a dramatic reduction in the prevalence of 

hepatitis B, particularly among children under 

five [40] [41]. Compared to emerging platforms 

like mRNA vaccines, recombinant approaches 

remain highly profitable and manufacturing-

friendly, particularly in addressing diseases like 

hepatitis [42]. Innovations in peptide-based 

vaccines further illustrate the utility of this 

technology. By deleting infection-causing 

components, peptide vaccines act as antigens to 

stimulate effective immune responses, enhancing 

both vaccine stability and specificity. The 

integration of nucleic acid-based platforms with 

recombinant DNA methodologies has opened 

new avenues for addressing viral infections. 

These combined approaches enhance vaccine 

efficacy, delivery, and adaptability, making them 

valuable tools for hepatitis management [43]. 

4.2. Role of Protein Engineering 

A pivotal application of protein engineering is 

the development of recombinant hepatitis B 

vaccines, which incorporate engineered surface 

antigens to enhance immunogenicity. These 

antigens can then be precisely folded and 

modified, resulting in vaccines with improved 

efficacy and safety [44]. Key innovations include 

modifications to the pre-S region of the hepatitis 

B virus envelope protein, which significantly 

enhance its immunogenic potential. These 

engineered vaccines have shown superiority over 

traditional formulations in both preventing 

hepatitis B infection and treating chronic 

hepatitis B [45]. Furthermore, incorporating 

hepatitis C virus epitopes into engineered 

chimeric proteins has demonstrated promise for 

developing multivalent vaccines targeting both 

hepatitis B and C [46.] 

Advances in expression systems such as Pichia 

pastoris yeast have further bolstered vaccine 

development. This system has been used to 

produce glycosylated recombinant proteins like 

CoreE1E2, which induce neutralizing antibodies 

against the hepatitis C virus, highlighting the role 

of protein engineering in optimizing antigen 

production for stronger immune responses [47]. 

Additionally, computational tools and 

immunoinformatics have been integrated into 

protein engineering to design multiepitope 

peptide vaccines. Techniques such as protein 

docking and molecular dynamics simulations 

allow for the identification and optimization of 

antigenic regions, expanding the scope of 

engineered proteins in vaccine design [48]. 

Innovative approaches such as engineering 

fusion proteins that combine immunogenic 

components from different hepatitis viruses 

further expand the potential for broader immune 

coverage. This strategy holds promise for the 

development of universal hepatitis vaccines [49]. 

Protein engineering and recombinant DNA 

technology are intricately linked. Recombinant 

DNA technology provides the foundational tools 

for protein engineering by enabling the cloning, 

expression, and genetic modification of genes 

encoding specific viral proteins. The synergy 

between these technologies is particularly 

evident in the engineering of pre-S regions of 

HBsAg, which have been modified using 

recombinant DNA technology to enhance their 

ability to elicit neutralizing antibodies [45]. 

Similarly, recombinant DNA techniques 

facilitate the production of fusion proteins that 

combine epitopes from multiple viruses, such as 

hepatitis B and C. These fusion proteins, 

optimized through protein engineering, offer a 

novel approach to creating multivalent vaccines 

[49]. In addition, recombinant DNA technology 

enables the synthesis of multi-epitope genes that 

serve as templates for protein engineering [48]. 

Their complementary roles enable the creation of 

safe, effective, and cutting-edge vaccines. This 

integration continues to expand the possibilities 

for combating hepatitis and other infectious 

diseases through advanced vaccine technology. 

4.3. Use of Virus-like Particles (VLPs) in 

Hepatitis Vaccine Design 

Virus-like particles (VLPs) are highly promising 

platforms in hepatitis vaccine design due to their 

ability to mimic the structural properties of 

natural viruses while remaining non-infectious. 

VLPs are self-assembled from viral structural 

proteins, enabling the preservation of native 

antigenic conformations, which is crucial for 

eliciting strong immune responses [50]. Their 
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non-replicating nature ensures a high safety 

profile, making them ideal candidates for 

developing vaccines against hepatitis B, C, and E 

viruses [51]. In hepatitis B vaccine development, 

VLPs derived from the hepatitis B surface 

antigen (HBsAg) have become the cornerstone of 

preventive strategies. These VLPs not only elicit 

robust antibody responses but also maintain a 

high degree of purity and immunogenicity 

through advanced expression systems such as 

CHO cells [52 .] 

For hepatitis C, VLPs incorporating oligomeric 

forms of envelope protein E2 (sE2) have shown 

potential in eliciting broadly neutralizing 

antibodies. These VLPs, produced using self-

assembling platforms, represent a significant step 

toward effective HCV vaccine development, 

overcoming challenges associated with 

traditional subunit vaccines [53]. Hepatitis E 

vaccines have also leveraged VLP technology, 

utilizing ORF2-derived particles that mimic the 

natural virus structure while ensuring safety by 

eliminating viral replication. These VLPs have 

demonstrated high immunogenicity, marking 

progress in addressing the public health burden 

of hepatitis E [51]. VLPs are further enhanced by 

their ability to incorporate multiple antigens or 

be chemically modified for improved stability 

and immune targeting. This versatility extends 

their application beyond hepatitis vaccines to 

other infectious diseases, underscoring their 

transformative potential in vaccine design [54]. 

4.4.Role of Structural Biology 

The structural characterization of hepatitis B 

surface antigens (HBsAg) has also played a key 

role in developing vaccines with high purity and 

safety. Structural biology, combined with 

recombinant DNA technology, has enabled 

precise biochemical characterization and 

enhanced antigen folding. This synergy has led 

to the development of synthetic polypeptide 

vaccines with improved stability and efficacy. 

For example, mammalian expression systems 

have been utilized to produce structurally faithful 

hepatitis B surface antigens, critical for effective 

vaccine formulations [44] [55]. Recent 

breakthroughs in structural biology include the 

glyco-engineered production of HBV antigens to 

enhance immunogenicity. By leveraging N-

glycosylation, researchers have improved antigen 

folding and immune recognition, contributing to 

more effective vaccine designs [56]. 

Additionally, computational tools such as 

immunoinformatics have enabled the 

identification of immunogenic epitopes on HCV 

proteins, facilitating the design of multi-epitope 

vaccines with enhanced immune responses [48.] 

Advancements in 3D cell culture models have 

provided valuable platforms for studying 

hepatitis pathology and antigen behavior in 

environments that mimic in vivo conditions. 

These models have been pivotal in exploring 

antigen-antibody interactions and improving 

vaccine efficacy [57]. Structural analyses of 

HCV-neutralizing antibodies have further 

revealed vulnerabilities in the virus's envelope 

proteins, guiding the rational design of effective 

antigens [58]. Today, cryo-electron microscopy 

(cryo-EM) and X-ray crystallography are often 

integrated to maximize their complementary 

strengths. Cryo-EM offers detailed views of 

antigenic surfaces and antibody-binding sites, 

while crystallography confirms the atomic 

structures of antigen-antibody complexes. For 

example, this approach has been used to study 

HCV envelope glycoprotein E1E2, defining 

neutralizing epitopes critical for vaccine design 

[59]. Recent innovations combine cryo-EM with 

machine learning to map epitopes and optimize 

antigens, advancing structure-based vaccine 

development [60]. Together, these structural 

biology techniques continue to drive innovations 

in hepatitis vaccine development, offering 

comprehensive insights into viral antigens and 

immune interactions . 

4.5. Role of mRNA and nanoparticle-based 

platforms in next-generation vaccines 

mRNA and nanoparticle-based platforms are 

revolutionizing next-generation hepatitis vaccine 

development by combining the specificity and 

adaptability of mRNA technology with the 

protective and delivery capabilities of 

nanoparticles. mRNA vaccines rely on lipid 

nanoparticles (LNPs) to shield the mRNA from 

degradation and enhance its uptake by antigen-

presenting cells, which not only facilitates 

antigen expression but also acts as an adjuvant to 

boost immune responses [61]. The versatility of 

nanoparticles extends beyond LNPs, with 

chitosan and gold nanoparticles offering 

additional avenues for targeted delivery. For 

example, chitosan nanoparticles have been 

https://aeji.journals.ekb.eg/
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explored for nasal delivery of the hepatitis B 

surface antigen (HBsAg), effectively eliciting 

both mucosal and systemic immune responses 

[62]. Gold nanoparticles, meanwhile, serve as 

nano-adjuvants in hepatitis E vaccines, 

enhancing immune responses and stabilizing 

vaccine components [63].  

Advancements in nucleoside-modified mRNA 

and LNP delivery systems have further enhanced 

the stability and immunogenicity of mRNA 

vaccines. These innovations became globally 

recognized during the COVID-19 pandemic, 

proving the platform's capability to produce 

highly effective vaccines rapidly [61]. This 

success has renewed interest in using mRNA 

technology to combat other infectious diseases, 

including hepatitis. Therapeutic mRNA vaccines 

for chronic hepatitis B virus (HBV) infections 

have shown promising preclinical results, 

demonstrating their ability to elicit robust 

memory T and B cell responses crucial for long-

term immunity and virological suppression [64]. 

Furthermore, self-amplifying mRNA vaccines, 

which enhance antigen expression and 

immunogenicity, are being explored for hepatitis 

vaccine development [65]. 

The integration of nanoparticle-based delivery 

systems has significantly enhanced the efficacy 

of mRNA vaccines against hepatitis. LNPs 

protect mRNA, facilitate targeted delivery to 

antigen-presenting cells, and address challenges 

such as hepatic immune evasion [61]. Emerging 

innovations, including circular mRNA and non-

viral delivery platforms, are being developed to 

overcome remaining challenges, such as the need 

for repeat doses and potential reactogenicity 

[66]. 

5.0. Challenges and Future Directions in 

Hepatitis Vaccine Development  

5.1. Challenges and Limitations in Hepatitis 

Vaccine Development 

Current vaccines for hepatitis viruses, while 

effective in many cases, face significant 

challenges and limitations that hinder their 

universal success. For hepatitis B virus (HBV), 

vaccine efficacy is notably limited in certain 

populations. Up to 10% of healthy individuals 

and as many as 50% of immunocompromised 

individuals, such as those undergoing 

hemodialysis, fail to generate protective antibody 

levels following vaccination [67]. Furthermore, 

the emergence of HBV escape mutants has 

compromised vaccine effectiveness in regions 

with high endemicity [68]. These challenges 

underscore the need for improved formulations, 

booster strategies, and alternative approaches. 

Logistical barriers also affect HBV vaccine 

distribution. Current vaccines require a robust 

cold chain for stability, a challenge in rural and 

resource-limited settings that restrict coverage. 

Moreover, while current HBV vaccines 

effectively prevent chronic infections in many 

cases, they fail to eradicate the virus in chronic 

carriers due to its ability to integrate into the host 

genome and evade immune responses. This 

limitation makes complete viral control 

challenging, even with therapeutic interventions 

[69]. 

For hepatitis C virus (HCV), no effective vaccine 

currently exists, largely due to the virus's high 

genetic variability and rapid mutation rates, 

which enable immune evasion. The lack of 

optimal animal models and an incomplete 

understanding of protective immune responses 

further complicate vaccine development [70]. 

Additionally, the asymptomatic nature of many 

HCV infections and high vaccine development 

costs pose significant hurdles to awareness and 

prevention efforts [71]. While DNA-based 

vaccine approaches have shown promise, they 

often fail to elicit long-lasting immune 

responses, highlighting the need for further 

optimization [26]. 

HDV vaccine development, in particular, is 

fraught with unique challenges. The virus’s 

dependence on HBV for replication complicates 

the identification of specific vaccine targets. 

Prophylactic HBV vaccination indirectly 

prevents HDV co-infection, but it does not 

address existing HDV infections in chronic HBV 

carriers, leaving a significant gap in prevention 

strategies [72]. Moreover, the lack of robust 

animal models and optimized preclinical 

platforms hampers HDV vaccine research [39]. 

Virus-like particle (VLP) vaccines have shown 

potential for HDV, but their development faces 

hurdles in ensuring immunogenicity, scalability, 

and the selection of effective adjuvants [73]. 

5.2. Addressing the Limitations and Hurdles 
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Efforts to address the challenges and limitations 

of hepatitis vaccine development and efficacy 

have focused on advancing vaccine technologies, 

optimizing adjuvants, and improving delivery 

systems. Targeted strategies, such as booster 

vaccinations and the incorporation of potent 

adjuvants, have shown promise in enhancing 

vaccine effectiveness. For instance, lipid 

nanoparticle-based adjuvants significantly 

improve immunogenicity, addressing low 

response rates in specific populations, including 

individuals with obesity or genetic 

polymorphisms [74]. 

The emergence of mRNA-based vaccines offers 

a transformative approach to combating the 

hepatitis B virus (HBV). Preclinical studies show 

that mRNA vaccines, formulated with lipid 

nanoparticles and administered in prime/boost 

regimens, elicit robust immune responses and 

improve antigen presentation [75]. Similarly, 

recombinant viral vectors and virus-like particles 

(VLPs) are being developed as platforms to 

enhance immune responses and tackle the 

genetic variability and immune evasion tactics of 

hepatitis viruses [27]. Improving vaccine 

accessibility and coverage is another critical 

focus area. Addressing vaccine hesitancy through 

culturally sensitive communication and 

community engagement strategies is essential for 

increasing vaccination rates in underrepresented 

populations [76]. Additionally, expanding 

vaccination coverage at birth and targeting 

unvaccinated adults are vital steps toward 

meeting global hepatitis control targets [77]. 

To address the limitations in vaccine testing 

models, innovative outbred animal models, such 

as rodent hepacivirus systems, have been 

developed. These models provide valuable 

platforms for testing immunization strategies, 

particularly for hepatitis C virus (HCV) vaccines, 

and enhance their clinical relevance [78]. Gene-

based vaccines and physiologically based 

pharmacokinetic models are also being employed 

to optimize vaccine safety and efficacy, 

especially in vulnerable populations such as 

pregnant women, while adhering to stringent 

regulatory and safety protocols [79]. 

HCV vaccine development faces significant 

challenges due to the virus's extensive genetic 

diversity, which includes seven major genotypes 

and numerous subtypes [80]. Structure-based 

vaccine design, leveraging insights into the E1E2 

glycoprotein complex, aims to optimize antigens 

capable of eliciting broadly neutralizing 

antibodies [59]. Additionally, lipid-based nano 

vaccines have demonstrated enhanced 

neutralizing antibody responses, while polymer-

based nanoparticles are being explored for their 

ability to stabilize antigens and improve 

immunogenicity, paving the way for more 

effective vaccines [81]. 

Hepatitis D virus (HDV) vaccine development 

presents unique challenges due to the virus's 

dependence on HBV for replication and its 

limited genome size, which restricts potential 

vaccine targets. Current strategies focus on 

experimental approaches, such as targeting 

HDV’s farnesyltransferase pathway to inhibit 

replication [72]. Virus-like particles (VLPs) are 

also being investigated for their potential to elicit 

strong immune responses while overcoming the 

limited antigenic diversity of HDV [73]. 

Advancing preclinical models is critical to 

overcoming barriers in HCV and HDV vaccine 

research. The development of humanized mouse 

models and liver organoids provides more 

accurate simulations of human infection 

dynamics, improving the evaluation of vaccine 

efficacy and safety [78].                                                                

 

6.0.CONCLUSION 

The spread of many infectious agents, including 

the hepatitis viruses, can be controlled by 

vaccination. However, there is a need to clearly 

understand the molecular perspectives of the 

design of these vaccines and they can be 

improved. While viruses like HAV, HBV, and 

HEV have approved vaccines already, HCV and 

HDV still lack approved vaccines because of the 

molecular complexities of the viruses. Future 

research should focus on further understanding 

these complexities and how they can be 

addressed. The development of universal 

hepatitis virus vaccines should also receive more 

attention among researchers. With continuous 

focus on not just the public approaches, but the 

molecular approaches as well, the goal of 

reducing the global burden of hepatitis will be 

achieved in the next few years.   
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HIGHLIGHTS 

 While viruses like HAV, HBV, 

and HEV have approved vaccines 

already, HCV and HDV still lack 

approved vaccines because of the 

molecular complexities of the 

viruses. 

 The development of universal 

hepatitis virus vaccines should 

also receive more attention among 

researchers.  

 With continuous focus on not just 

the public approaches, but the 

molecular approaches as well, the 

goal of reducing the global burden 

of hepatitis will be achieved in the 

next few years. 
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