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Abstract                                                                                 
        Integrated Inertial Navigation System (INS) and Global Navigation 

Satellite System (GNSS) architectures have become essential for modern 

autonomous and navigation applications, offering complementary strengths 

to address the limitations of standalone systems. However, the fusion of INS 

and GNSS data presents several challenges, including handling sensor drift, 

nonlinearity, GNSS signal outages, and system uncertainties. This review 

systematically explores the current state of INS/GNSS integration, 

emphasizing the classification of fusion architectures (loosely, tightly, and 

ultra-tightly coupled) and the diverse inertial sensor technologies 

employed, including Micro-Electromechanical Systems (MEMS), fiber optic 

gyroscopes (FOG), and ring laser gyroscopes (RLG). Special attention is 

given to data fusion techniques, highlighting both classical model-based 

filters (e.g., Kalman Filter and its variants) and emerging artificial 

intelligence (AI)-based methods such as deep learning and recurrent neural 

networks. The paper also examines AI’s role in replacing or augmenting 

traditional filters and the use of platform-specific motion constraints to 

improve localization accuracy. This review aims to guide researchers and 

engineers in designing robust, intelligent navigation systems suited for 

dynamic and GNSS-challenged environments by synthesising advancements 

in filtering algorithms, AI techniques, and sensor technologies. 

Keywords: Inertial and Satellite Navigation, INS/GNSS Integration, model-Based 

Navigation systems, AI-Based Navigation Systems, Autonomous Navigation. 
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1. Introduction 

    The rapid advancements in electronics technology significantly impact various engineering domains and 

industries, including aviation, maritime navigation, self-driving cars, military applications, surveying, mapping, 
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precision agriculture, search and rescue operations, smart home devices, and robotics. All these applications rely on 

a navigation system, which serves as their "sense of perception" to navigate safely. This growing reliance on 

navigation systems has been further accelerated by the widespread availability of low-cost sensors and 

microcontrollers (Grewal, 2007). 
    Navigation systems are sophisticated technological solutions that gather data from various onboard navigation 

sensors to determine precise localization, which is crucial for mission success and operational efficiency. Figure 1 

provides an overview of different types of navigation systems and highlights their diverse applications across multiple 

fields, emphasizing their significance and versatility. 

 
Figure 1: Various Navigation Systems and their diverse applications. 

The fundamental navigation solutions are Inertial Navigation Systems (INS), Global Navigation Satellite 

Systems (GNSS), and their integrated INS/GNSS systems. INS provides self-contained navigation through inertial 

sensors, while GNSS offers global positioning based on satellite signals. Integrating these systems enables enhanced 

accuracy, robustness, and continuity, especially when using low-cost sensors. 

The primary objective of this review is to explore recent research developments in INS, GNSS, and their 

integrated architectures. Emphasis is placed on system design methodologies, performance enhancement techniques, 

and practical applications. The review begins by categorizing inertial sensors such as mechanical gyroscopes, silicon 

and quartz Micro-Electromechanical Systems (MEMS), fiber optic gyroscopes (FOG), and ring laser gyroscopes 

(RLG) and analyzing their respective trade-offs in accuracy, size, cost, and environmental resilience. 

A classification of INS/GNSS integration architectures into loosely coupled, tightly coupled, and ultra-tightly 

coupled configurations. These architectures are compared based on their fusion strategies, GNSS dependency, 

complexity, and suitability for different operational scenarios. Furthermore, model-based filtering techniques, 

including the Kalman Filter (KF) and its variants, are evaluated for their ability to estimate navigation states under 

dynamic and nonlinear conditions. 

In Addition, the review addresses emerging artificial intelligence (AI)-based data fusion approaches that either 

replace or augment traditional filters. These include deep learning models, recurrent neural networks, and hybrid AI-

KF frameworks designed to improve adaptability and performance, particularly in challenging real-time 

environments. The role of platform-specific motion constraints, such as those found in aerial, land-based, and 

underwater systems is also examined for their ability to enhance estimation accuracy and filter observability. 

By synthesizing classical filtering methods, AI-driven strategies, and motion constraints, this review aims to provide 

a comprehensive resource for researchers and engineers developing robust and intelligent navigation systems for 

next-generation autonomous technologies. 

The remainder of this paper is structured as follows. Section 2 discusses inertial navigation technologies. 

 Section 3 reviews GNSS principles and challenges. Section 4 presents integrated INS/GNSS fusion techniques, 

including classical model-based methods and emerging AI-based approaches, and discusses platform-specific motion 

constraints. Finally, Section 5 concludes the paper and highlights future trends. 

2. Inertial Navigation System (INS) 

The operation of INS is fundamentally based on the principles of classical mechanics as formulated by Newton 

(Titterton, 2004). By measuring specific forces (linear acceleration) using accelerometers, it is possible to calculate 

changes in velocity and position through successive integration of acceleration over time. Additionally, by 
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accumulating the integrated part of the angular velocity, attitude can be estimated.  The INS device consists of inertial 

sensors (three accelerometers and three gyroscopes) and a computing unit. 

Modern inertial sensors have significant advancements for a wide range of applications across industries with 

varying requirements for accuracy, size, weight, power consumption, cost, and robustness. One of the most prominent 

developments is MEMS, which are miniaturized (compact) sensors fabricated using semiconductor manufacturing 

techniques. These sensors are lightweight, tiny, low-cost, and consume minimal power, making them highly suitable 

for cost-sensitive and size-constrained applications such as smartphones, drones, and wearable devices. However, 

their performance is limited by high noise levels, bias instability, and sensitivity to environmental conditions such as 

vibration and temperature fluctuations (El-Sheimy, 2008). 

For applications demanding higher precision and stability, FOG provide a robust solution. FOGs operate based 

on the Sagnac effect, where light propagating through optical fibers is used to detect rotation. They offer excellent 

bias stability, low drift, and high resolution, making them suitable for mission-critical applications such as aircraft 

navigation, space systems, and autonomous underwater vehicles. The trade-offs include their larger physical size, 

higher power consumption, and greater cost compared to MEMS sensors (Lefèvre, 2014). 

An even more precise technology is the RLG, which also exploits the Sagnac effect but uses a ring-shaped laser 

cavity. RLGs provide exceptional accuracy, extremely low drift, and long-term stability, making them the preferred 

choice in high-end military, aerospace, and strategic-grade navigation systems. Their complexity, bulkiness, and high 

manufacturing cost, however, limit their usage to platforms where top-tier performance justifies these drawbacks 

(Lawrence, 1998). 

Another important sensor technology is Quartz MEMS, which combines the miniaturization of MEMS with 

improved performance characteristics. Quartz MEMS sensors use piezoelectric quartz structures that offer better 

thermal stability, long-term reliability, and lower noise compared to silicon-based MEMS. These attributes make 

them ideal for demanding applications where space, weight, and power are constrained such as in satellites, precision 

agriculture drones, and compact guided munitions (Syed, 2007). 

A comparative summary of inertial sensor technologies is presented in Table 1, outlining their core 

characteristics and typical applications to guide engineers and researchers in choosing suitable solutions based on 

mission demands. 

Table 1: Inertial Sensor Technology Comparison 
Sensor Type Accuracy Size/Weight Cost Power Use Case 

Mechanical Gyro Low High Medium High Legacy systems (missiles, submarines) 

Silicon MEMS Low-Medium Very Small Low Low Drones, wearables, mobile and IoT 

devices. 

Quartz MEMS Medium Small Medium Low Aerospace, robotics, defense 

FOG (Fiber Optic) High Medium High Medium Aircraft, underwater, spacecraft 

RLG (Ring Laser) Very High Large Very High High Military, aerospace, precision nav 

Although largely phased out in modern systems, mechanical gyroscopes based on spinning rotors were 

foundational in early navigation systems. Due to their mechanical nature, they are highly resistant to electromagnetic 

interference, offering robustness and reliability in harsh conditions. For this reason, they are still occasionally used 

in specific applications such as submarines and legacy missile systems where ruggedness and independence from 

electronic components are valued (Britting, 2010). 

These varied sensor technologies enable the design of navigation systems that can be tailored to meet the specific 

tradeoff between cost, size, weight, power consumption, and performance, supporting a wide spectrum of 

applications from commercial to aviation-grade systems. The INS can be broadly categorized into two types: 

gimbaled and strap-down systems. Gimbaled INS employs gimbals with pivots to maintain the stability of the INS 

relative to the ground. However, this type of system is complex and rarely in use (mechanical gyroscopes, as 

mentioned before). In contrast, strap-down INS eliminates the need for gimbals, simplifying the motion analysis 

process. In strap-down systems (paul, 1991), the gyroscopes and accelerometers are directly mounted to the structure 

of the vehicle or body segment. new technologies rely on MEMS, and laser gyros use strap-down method. 

  The mechanization process in strap-down INS, also known as INS mechanization, involves determining the 

navigation state position, velocity, and attitude based on raw inertial measurements. This is achieved by solving the 

differential equations that describe the system's motion. These mechanization differential equations are typically 

framed in the local level coordinate system, allowing for accurate real-time navigation and orientation. The structure 

of the mechanization algorithm is given by scheme in Figure 2. This approach ensures that the INS provides precise 
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and reliable navigation states for various dynamic applications, ranging from aerospace to autonomous vehicles. 

Despite its self-contained nature and robustness, INS suffers from accumulating errors over time, primarily due to 

deterministic biases and stochastic noise inherent in inertial sensors. 

To address these limitations, numerous studies have proposed enhancement techniques for improving the 

accuracy of low-cost INS systems. For instance, Shin (Shin, 2001) introduced a field calibration method that 

significantly reduces positioning errors by compensating for accelerometer biases, enabling low-cost INS to operate 

independently during short GNSS outages. Nassar et al (Nassar, 2003) employed stochastic modeling and 

autoregressive techniques to better characterize sensor errors. Moreover, Chin (Chin, 2005) investigated the 

feasibility of a gyroscope-free INS, utilizing only accelerometer data and developing algorithms to mitigate errors 

associated with sensor placement and misalignment. Ding and Wang (Ding, 2007) leveraged vehicle dynamic 

constraints and integrated Kalman filtering (KF) to suppress sensor noise, achieving improved estimation stability. 

 

 
Figure 2: Schematic diagram of the Inertial Navigation System mechanization process. 

While INS offers self-contained navigation, it suffers from cumulative drift errors over time. To mitigate these 

limitations, satellite-based navigation systems, notably GNSS, provide an essential complementary solution, as 

discussed in the following section. 

3. Global Navigation Satellite System (GNSS) 

GNSS is a constellation of satellites stationed at the Medium Earth Orbit (MEO) that transmits positioning and 

timing data to GNSS receivers and multiple satellites are observed simultaneously. The satellites' positions are 

forecasted and broadcast to the user along with the GNSS signals from many navigation satellite systems (GPS, 

GLONASS, Galileo, and BeiDou), as shown in Figure 3. By using the known positions of the satellites and the 

measured distances between the receiver and the satellites, the receiver's position can be accurately determined. 

Additionally, the receiver's velocity can be calculated based on changes in position over time. GNSS consists of three 

segments: the Space Segment (which includes multiple satellites distributed across various orbital planes), the 

Control Segment (which monitors satellite operations and ensures system functionality), and the User Segment 

(which comprises GNSS receivers and user communities). Despite its advanced technology, GNSS is subject to errors 

from several sources, including satellite clock errors, ionospheric and tropospheric delays, multipath interference, 

and receiver-related measurement noise. These errors can significantly degrade positioning accuracy, especially in 

challenging environments such as urban canyons, dense forests, or under intentional signal jamming. 

Substantial research has been directed toward enhancing and mitigating these limitations and improving the 

reliability of GNSS as a standalone global navigation solution. The following literature review focuses on recent 

advancements in GNSS technologies and methodologies aimed at overcoming these challenges and using GNSS as 

a stand-alone navigation system. 
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Figure 3: Global Navigation Satellite Systems (iLab, 2025) 

Satellite positioning accuracy is susceptible to errors originating from satellite clock and ephemeris inaccuracies, 

ionospheric and tropospheric delays, multipath reflections, and receiver noise. Classical techniques have been widely 

adopted to counter these issues. Precise Point Positioning (PPP), which utilizes satellite clock and orbit corrections 

from the International GNSS Service (IGS), can achieve centimeter-level accuracy without a nearby base station 

(Zumberge et al., 1997). Satellite-Based Augmentation Systems (SBAS), such as WAAS and EGNOS, broadcast 

corrections to satellite ephemeris and clock errors (Kee et al., 2001). To mitigate ionospheric delays, dual-frequency 

receivers apply linear combinations of L1/L2 signals (Misra & Enge, 2006), while single-frequency systems rely on 

empirical models like Klobuchar and NeQuick. Tropospheric delay is addressed using models such as Saastamoinen 

(1972) or by estimating the delay as an unknown in high-precision solutions like PPP. Multipath interference is 

minimized through antenna design improvements such as choke ring antennas (Axelrad et al., 1996), and signal 

processing methods like Multipath Estimating Delay Lock Loops (MEDLL) (Van Dierendonck et al., 1992). Receiver 

noise is reduced using carrier-phase measurements (Leick, 2004), and through Kalman filtering when GNSS is 

integrated with Inertial Navigation Systems (INS) (Grewal et al., 2007; Titterton & Weston, 2004). 

In recent years, advanced statistical and machine learning-based techniques have emerged to handle GNSS 

limitations more effectively in complex environments. Urban GNSS applications, especially those in signal-degraded 

areas, benefit from environmental modeling using ray tracing and heuristic estimations (Groves, 2013). Recent 

developments include enhancements to Real-Time Kinematic (RTK) systems. For instance, improved RTK 

algorithms exploit unused satellites to detect and reject incorrect integer ambiguities, resulting in improved 

positioning reliability in urban environments (MDPI, 2024). Similarly, ambiguity resolution has seen progress with 

the introduction of Laplacian Best Integer Equivariant (LBIE) estimation. LBIE integrates Laplacian distributions to 

outperform conventional estimators such as GBIE and ILS-PAR, reducing horizontal errors to below 0.5 meters in 

urban tests (Tech Xplore, 2024). 

The newest frontier in GNSS enhancement involves deep learning and artificial intelligence. In 2024, researchers 

at Wuhan University and Baidu developed a Light Gradient Boosting Machine (LightGBM) model for detecting 

Non-Line-of-Sight (NLOS) signals by analyzing signal features like SNR and satellite elevation, achieving over 92% 

classification accuracy in urban environments (Highways Today, 2024). Additionally, a novel Graph Neural Network 

(GNN) approach replaced heuristic error mitigation in urban GNSS with a data-driven model, improving positioning 

accuracy by up to 80% (arXiv, 2024). On another front, a plug-in module incorporating Multipath Mitigation 

Technology (MMT) into Direct Position Estimation (DPE) frameworks was introduced to eliminate the intermediate 

step of measurement correction entirely, instead solving for position and time directly. This approach shows robust 

resistance to multipath and NLOS in urban environments (arXiv, 2024). These advancements represent a paradigm 

shift from traditional correction models to intelligent systems capable of learning and adapting to complex signal 

environments. 

Despite offering global coverage, GNSS systems are vulnerable to signal degradation and outages. Therefore, 

integrating INS and GNSS provides a robust navigation solution, which will be explored in the next section. 

4. INS/GNSS Integration 

In INS/GNSS integration, the nominal trajectory is often unknown in advance. Therefore, the current best 

estimate of the actual trajectory is used as the nominal trajectory. When KF is applied to a system that has been 

linearized around this estimate, it is known as the Extended Kalman Filter (EKF). INS/GNSS integration can be 

performed in two modes: direct (state model) and indirect (error state model). In direct integration, the KF directly 

estimates states such as position, velocity, and attitude. In indirect integration, the KF is used to estimate the errors 

of the state vector of the inertial navigation algorithm. While direct mode offers higher accuracy and stability under 

dynamic conditions, indirect mode is preferred for static or low-speed scenarios due to its lower computational burden 
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(Li, 2014). Additionally, two types of error feedback mechanisms are employed: open-loop and closed-loop. In the 

open-loop configuration, corrections to position, velocity, and attitude are applied externally to the INS, with the 

estimated errors subtracted from the INS solution at each iteration. In contrast, the closed-loop configuration feeds 

the EKF error estimates back into the system, continuously correcting the INS solution. This feedback keeps the INS 

errors small, ensuring that the linearity assumption required for the EKF technique is maintained throughout the 

process (Groves, 2013). 

4.1 Integration Architectures 

Various INS/GNSS integration architectures have been developed to optimize performance based on specific 

applications and the balance between simplicity and robustness. The three primary integration architectures at 

(Noureldin, 2013) are Loosely Coupled Integration, Tightly Coupled Integration, and Ultra-Tightly Coupled 

Integration. 

4.1.1 Loosely Coupled INS/GPS Integration 

In this architecture, which is known as a decentralized integration, the GNSS and INS function independently 

and provide separate solutions for navigation states. To get the best of both solutions, this information is fused 

together by an optimal estimator to obtain a third and much-improved solution. This arrangement is shown  

in Figure 4. Although this approach was conceptually simple and easy to implement, it required a complete GNSS 

position solution to function effectively. This dependence on GNSS solution performance made loosely coupled 

systems unreliable in environments with degraded GNSS availability, such as urban canyons, high buildings or dense 

forests. Despite this limitation, loosely coupled systems were widely adopted in many applications, where GNSS 

signals were generally available (G. Lei, 2024). 

  
Figure 4: Basic diagram of loosely coupled INS/GNSS integration. 

4.1.2 Tightly Coupled INS/GPS Integration 

In this architecture, which is known as centralized integration, unlike the loosely coupled approach, tightly 

coupled systems fused raw GNSS pseudorange and Doppler measurements with INS data in a single estimation 

process as illustrated in Figure 5. This approach enhanced system robustness, enabling reliable navigation even with 

intermittent GNSS signals. Tightly coupled systems proved particularly effective in challenging environments, such 

as urban canyons and forested areas. The improved accuracy and reliability of tightly coupled architectures led to 

their widespread adoption in civil aviation, marine navigation, and advanced military applications (U. Muhammad, 

2024). 

  
Figure 5: Basic diagram of tightly coupled INS/GNSS integration. 
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4.1.3 Ultra-Tightly Coupled Integration 

Ultra-Tightly coupled integration provides an increased symbiosis between the INS and GNSS because the 

integration is at the tracking loop level. The main advantage of this is that the dynamics of the framework are 

estimated and compensated in the GNSS. tracking loops by using Doppler information. Various configurations of 

ultra-tight integration exist, and Figure 6 shows a basic one. The estimator combines either the pseudo-

ranges/Doppler or I (in-phase) and Q (quadrature) measurements from the GNSS with the INS navigation parameters 

to render the estimated Doppler (D. Jwo, 2012). The estimated Doppler is used to remove the dynamics from the 

GNSS satellite signal entering the tracking loops, thereby reducing the carrier tracking loop bandwidth. Although 

this integration is more complex and requires access to the GNSS hardware, it can improve the quality of the raw 

measurements and also the anti-jamming performance of the signals (A. Elmezayen, 2021). 

This integration is clearly at a deep level and requires access to the receiver’s firmware, and so is usually 

implemented by receiver manufacturers or software receivers (C. Cristodaro, 2018). This makes the loosely and 

tightly coupled strategies the more common integration techniques. Also, this approach integrated GNSS and INS at 

the signal processing level, allowing for enhanced resistance to jamming and improved sensitivity in GNSS-denied 

environments. This period also marked a shift toward the use of low-cost MEMS sensors. Ultra-tightly coupled 

systems rise in applications in autonomous vehicles, UAVs, and portable navigation devices (H. Li, 2022). 

Table 2 presents a structured comparison of INS/GNSS integration architectures, highlighting key differences in 

data fusion levels, dependency on GNSS signals, robustness against signal degradation, system complexity, and 

representative application domains. 

  
Figure 6: basic block diagram of an ultra-tightly coupled of INS/GNSS integration 

 

Table 2: Comparison of INS/GNSS Integration Architectures 
Integration Type Data Fusion Level GNSS 

Dependency 

Signal 

Robustness 

Complexity Use Case 

Loosely Coupled Navigation solution 

level 
High Low Low 

Open environments, 

GNSS available 

Tightly Coupled Raw GNSS + INS 

data 
Medium Medium-High Medium 

Urban, obstructed 

GNSS 

Ultra-Tightly 

Coupled 
Signal tracking 

loop 
Low Very High High 

GNSS-denied, anti-

jamming needed 

Having classified the primary architectures, it is crucial to understand the estimation techniques that underpin 

their performance. The following section reviews model-based and AI-based filtering methods applied to INS/GNSS 

integration. 

4.2 Filtering Techniques 

INS/GNSS navigation systems rely on multi-sensor data fusion algorithms to achieve accurate and reliable 

localization. These algorithms can be broadly categorized into two approaches: Model-based methods and AI-based 

methods. Model-based methods, such as KF, use mathematical models to estimate and correct errors in the system, 

while AI-based methods leverage machine learning and deep learning techniques to learn patterns from data and 

enhance performance. Figure 7 illustrates the classification of INS/GNSS navigation algorithms into model-based 

and AI-based methods, highlighting the most commonly used techniques within each category. The following section 

will provide a detailed discussion of these two approaches, and their applications in INS/GNSS integration. 
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Figure 7: Model-based and AI-based estimation methods. 

4.2.1 Model-based methods 

The focus of research expanded beyond traditional INS/GNSS integration and fusion to include advanced multi-

sensor fusion techniques. The standard KF is designed for linear systems and effectively integrates INS and fuses 

with GNSS measurements by combining high-rate, low-accuracy INS data with low-rate, high-accuracy GNSS data 

(M. Tarek, 2023), (Y. Yin, 2023). However, its performance relies on the assumptions of linear dynamics and 

Gaussian noise, which are frequently violated in practical navigation scenarios (J. Adalberto, 2024), (G. Gonggang, 

2024), (Grewal, 2001). To overcome these limitations, the EKF, an extension of the KF, is widely employed in 

navigation systems to address non-linear system dynamics and measurement models. it linearizes the nonlinear 

function around the current estimate and truncates the first-order linearization of the Taylor expansion of the 

nonlinear function, thereby enhancing accuracy and robustness (X. Wang, 2022), (N. Allan, 2019). 

  Adaptive Kalman Filters dynamically adjust the process and measurement noise covariance matrices based on 

real-time data, improving accuracy in changing environments (A. H. Mohamed, 1999). Furthermore, Quaternion-

based Kalman Filters use quaternions for attitude estimation, which avoids the singularities and inefficiencies 

associated with Euler angles. Quaternion-based methods are particularly useful for high-precision applications 

involving large rotations (Y. Yang, 2012). The EKF still has drawbacks where it does not guarantee convergence in 

general, as in the linear case (A. J. Krener, 2003). Also, it does not respect the geometry when the state space is a 

manifold, because it is designed in Cartesian coordinates (Y. Ge, 2023).  

The Unscented Kalman Filter (UKF) improves upon the EKF by employing a deterministic sampling technique, 

which eliminates the linearization errors associated with the EKF. This makes the UKF more suitable for highly non-

linear systems. However, its performance diminishes in high-dimensional cases due to reduced accuracy and 

increased computational complexity (Xuhua, Z, 2012), (M. N. Cahyadi, 2024). 

The cubature Kalman filter (CKF) that is based on the spherical radial volume criterion is applied to data fusion, 

which can effectively approximate the Gaussian density function with higher accuracy, convenient parameter 

selection, and good convergence effect (I. Arasaratnam, 2009). In order to improve the fusion accuracy in complex 

measurement environments, robust Kalman algorithms have also started to attract the attention of researchers (J. Wu, 

2024). To solve the problem of error model caused by measurement anomalies. (Taghizadeh, 2023) proposed a new 

cardinal maximum correlation entropy KF, which uses the robust maximum correlation entropy criterion (MCC) as 

the optimality criterion to solve the state estimation problem under outlier interference by maximising the correlation 

entropy between states and measurements. Yun et al. (B. Gao, 2023) proposed a variational Bayesian-based state 

estimation algorithm to improve the CKF accuracy under dynamic model mismatch and outlier disturbance. 

The particle Kalman filter (PKF) offers even greater capabilities in managing highly non-linear dynamics and 

non-Gaussian noise, but it remains computationally intensive and sensitive to parameter selection (V. Khanaa, 2014), 

(F. Gustafsson, 2001). Despite these advancements, the EKF continues to be the preferred choice for INS/GNSS 

integration and sensor fusion due to its robustness, simplicity, computational efficiency, and established track record 

(A. Giremus, 2006). It strikes a balance between performance and complexity, making it a widely adopted algorithm 

in both industry and practical applications (H. Li, 2017), (Y. Kubo, 2008), (D. Bernal, 2008). 

Integrating Lie group mathematics into navigation systems improves system accuracy by providing a mathematical 

framework to address non-linear manifold systems, especially rotational dynamics. The IEKF utilizes this approach 

for INS/GNSS integration, estimating rigid body orientation directly on the manifold of rotations (A. Barrau , 2018). 

This method avoids the linearization on traditional EKF, enhancing both accuracy and robustness, which is essential 

for high-update-rate navigation systems. The IEKF iteratively updates orientation estimates based on INS and GNSS 
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data, ensuring consistency and validity in complex maneuvering scenarios and challenging environments (J. N. 

Maidens, 2017).  

Bonnabel (S. Bonnabel, 2007) introduced the concept of left-invariant estimation errors, independent of the 

system trajectory, which was demonstrated in attitude estimation. This concept forms the foundation for applying 

these principles to various non-linear systems, such as non-holonomic land vehicles, chemical reactors, and aerial 

vehicle navigation (S. Bonnabel, 2008). The IEKF has been validated as a stable observer in these applications, 

demonstrating its effectiveness for inertial navigation (S. Bonnabel, 2009). Merging left-invariant dynamic systems 

with right-equivariant outputs ensures local convergence, and a federated structure of the IEKF has been proposed to 

enhance sensor fusion performance in complex scenarios (Barrau and Bonnabel, 2017), (N. Y. Ko, 2018). Table 3 

provides a comparative overview of commonly used model-based filtering techniques in INS/GNSS integration, 

emphasizing their capabilities in handling nonlinearity, computational demands, robustness to outliers, and 

performance during GNSS outages. 

Table 3: Model-Based Filtering Techniques 
Filter 

Type 

Handles 

Nonlinearity 

Computational 

Cost 

Robust to 

Outliers 

GNSS Outage 

Handling 

Remarks 

KF No Low No Poor Basic, linear systems 

EKF First-order approx. Medium No Moderate Widely used 

UKF Yes (via sampling) Medium-High Moderate Moderate 
Better than EKF for 

nonlinearity 

CKF 
Yes (cubature 

points) 
High Moderate High Accurate but complex 

PKF Yes (particles) Very High High Very High 
Best for non-Gaussian, 

nonlinear 

IEKF Yes (on manifold) Medium Moderate High 
Best for attitude and high 

dynamics 

4.2.2 Artificial Intelligence-Based Methods 

AI has been receiving more attention in the development of future technology, especially with the evolution of 

modern computer technology in hardware and software. AI has been verified as a successful and effective tool for 

solving certain engineering and science problems that cannot be solved properly using conventional techniques 

(Saifullah, 2023). The goal of AI technologies, which include artificial neural networks (ANNs) (M. Ünal,2013), 

Neuro-Fuzzy systems (R. Kruse, 2013), evolutionary computing (A. Hajian, 2018), expert systems (Goser, 1996), 

and genetic algorithms (GA) (L. Vanneschi, 2023), etc., is to provide some intelligence and robustness in the complex 

and uncertain systems similar to those seen in natural biological species (W. H. Hsu, 2009). 

Many researches have been conducted to investigate the use of AI techniques in the field of INS/GNSS 

integration. The researchers have utilized various approaches for combining the AI module(s)with the rest of the 

INS/GNSS system. In fact, almost all architectures fall into two main categories: 

(1) INS/GNSS integration using AI only in which the AI module is used as replacement of KF. 

(2) INS/GNSS integration using AI and KF in which the AI module is combined with KF for improving the overall 

navigation accuracy.  

Each of these two categories is also divided into subcategories according to the type of AI module or according to 

inputs/outputs(I/O) of AI module. The first category uses the separately scheme for integrating INS and GNSS while 

the second category uses loosely coupled integration scheme. 

4.2.2.1 AI Only Replacing KF in INS/GNSS Integration 

Several studies have investigated the use of AI as a standalone replacement for KF in INS/GNSS integration. 

(Uche Onyekpe et al, 2021) utilized artificial neural networks (ANNs) to directly estimate navigation states by 

learning the error characteristics of INS during GNSS signal outages, achieving better performance in highly dynamic 

environments compared to traditional KFs. Similarly, Zhang et al. (Alan Zhang, 2020) proposed a genetic algorithm 

(GA)-based model to optimize navigation parameters, showing its effectiveness in real-time applications with non-

stationary noise conditions.  Shuo Li et al (Shuo Li, 2023) developed a deep learning framework that integrated 

GNSS and INS data, demonstrating improved accuracy in nonlinear and uncertain environments where conventional 

KF methods struggle. While these approaches have proven the potential of AI in handling complex patterns and 
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dynamics, their reliance on extensive training datasets and limited generalization capabilities remain challenges 

highlighted by researchers like  Dah-Jing Jwo (Dah-Jing Jwo, 2023) and Nadav Cohen (Nadav Cohen, 2024). 

4.2.2.2 AI Combined with KF in INS/GNSS Integration 

When the GNSS signals are unavailable, model-based algorithms such as KF operates in predictive mode and 

corrects INS measurements according to the system error model. Currently, the accuracy of data fusion that relies 

only on the KF is not effective and navigation performance deteriorates rapidly. To improve the integrated navigation 

accuracy during GNSS outage, machine learning has started to be applied to integrated navigation systems. (Ning, 

2019) proposed an optimal radial basis function (RBF)-based neural network that can improve the overall positioning 

accuracy during short-term GNSS signal outages. (Hang, 2020) proposed a new hybrid intelligence algorithm 

combining a discrete gray predictor (DGP) and a multilayer perceptron (MLP) neural network that provides pseudo-

range positions during GNSS failures and uses GNSS position information from the last few moments to predict 

positions for future moments. Compared with traditional artificial neural networks, recurrent neural networks are 

more advantageous in combined navigation systems and can make full use of historical information (Jianguo Wang, 

2020), (Ma Haibo ,2007). Liu et al. (Liu, 2021)  proposed a multi-channel long-short term memory (LSTM) network 

to predict the increments of vehicle position, which reduces the navigation error in case of GNSS outages by an order 

of magnitude. In practical applications, a large amount of historical data before the GNSS outage needs to be trained 

when the GNSS outage occurs, so the training efficiency of neural networks also has high requirements. Tang et al. 

(Tang, 2022) proposed a hybrid algorithm that was based on the gated recurrent unit (GRU) and adaptive Kalman 

filter (AKF), and the experimental results showed that GRU outperformed LSTM in terms of prediction accuracy 

and training efficiency. Zhi et al. (Zhi, 2023) proposed a convolutional neural network-long short-term memory 

(CNN-LSTM) model, which uses convolutional neural network (CNN) to quickly extract the features of the input 

and LSTM network to output the pseudo-GPS signal, further improving the training efficiency. However, most of 

the current articles use the offline simulation, assuming that the GNSS failure time is known and do not consider the 

time that is required to train the model online. Al Bitar et al. (Al Bitar, 2023) proposed a novel real-time training 

strategy for regular training on the past one-minute data, with the disadvantage that only short historical data are used 

and the accuracy is poor when the time of GNSS outage is long. 

 

Table 4: AI-Based Fusion Classification 
Strategy AI Role Example Methods Strength 

AI-only 

Replacement 

Replaces KF 

entirely 

ANN, GA, DL models (Onyekpe, 

Zhang, Li) 

Learns patterns during GNSS 

outage 

AI + KF Hybrid Assists the KF RBF-NN, GRU-AKF, CNN-LSTM, 

LSTM (Tang, Zhi) 

Improves accuracy during 

outages 

Real-time AI 

Strategy 

Online learning LightGBM, GNN, Real-time LSTM (Al 

Bitar et al.) 

Enhanced during unknown 

outages 

 

Table 5 highlights the key distinctions between model-based filtering methods, such as the KF, and AI-based 

approaches, emphasizing differences in modeling requirements, adaptability, prior knowledge, and their ability to 

handle system nonlinearities. 

Table 5 Model-Based vs AI-Based Approaches 

property Model-Based Approach AI-Based Approach 

Model dependency 
Mathematical model: deterministic + 

stochastic 
Empirical and adaptive model 

Prior knowledge 
Mainly require prior measurements, state 

vector and covariance matrices 

No prior knowledge is required but requires 

prior training 

Sensor dependency 
System-specific; requires redesign or 

parameter tuning for different sensors 

System independent algorithm (generalized 

algorithms can adapt to different platform) 

Linearity 
Relies on explicit system modeling to manage 

system nonlinearity 
Naturally handles nonlinearities 
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Beyond filtering methods, leveraging the motion constraints inherent to specific platforms offers further 

opportunities to enhance navigation accuracy, which will be discussed in the next section. 

4.3 Platform-Specific Considerations and Motion Constraints 

Motion constraints play a critical role in shaping the performance and accuracy of INS/GNSS navigation 

systems, particularly when tailored to the specific dynamics of different platforms. By understanding and leveraging 

these constraints, especially nonholonomic ones, navigation systems can achieve enhanced robustness and precision 

in challenging environments. Nonholonomic constraints refer to constraints in a system that cannot be expressed as 

a direct function of the system's state variables and their derivatives. In navigation systems, these constraints arise 

when certain degrees of freedom (such as velocity) are restricted by the system's geometry and motion limitations. 

For example, in land vehicles, nonholonomic constraints prevent the vehicle from moving sideways without turning 

its wheels. These constraints are crucial for improving the accuracy and performance of INS/GNSS systems by 

leveraging platform-specific motion characteristics. 

The classification of INS/GNSS frameworks into aerial, maritime, and land vehicle platforms reflects the 

different motion dynamics and constraints each platform experiences. In each of these platforms, nonholonomic 

constraints can enhance the INS/GNSS system as follows: 

4.3.1 Aerial Platforms 

Aircraft and UAVs are typically free from nonholonomic constraints. However, they are influenced by aerodynamic 

forces and require accurate models of attitude and dynamics for stable navigation. Nonholonomic constraints might 

be used in specific scenarios, such as for fixed-wing aircraft, which can't move sideways without turning or changing 

orientation. KF, EKF, and complementary filtering are often employed to integrate IMU and GNSS data with these 

dynamics, improving accuracy during flight. 

4.3.2 Maritime Platforms:  

Maritime vehicles (ships, boats, etc.) experience nonholonomic constraints in the form of limited sideways motion. 

Their motion is often constrained to forward or backward movement, with limited lateral motion due to the 

hydrodynamic forces and hull design. These constraints can be used to improve the navigation performance by 

reducing errors associated with lateral movement. Fusion techniques like KF and inertial navigation can benefit from 

incorporating these constraints, enhancing the fusion between IMU and GNSS data. 

 

4.3.3 Land Vehicles:  

Land vehicles are typically subject to more explicit nonholonomic constraints, such as the inability to move sideways 

without turning. These constraints are often modeled as part of the motion equations, allowing the INS/GNSS system 

to reduce lateral error growth. For example, odometry data can be used to enhance INS performance by imposing 

constraints that limit the vehicle's motion. Specialized filters like the UKF or the MEKF are often applied to take 

advantage of these constraints, improving both position and velocity estimates in urban or rural environments where 

GNSS signals may be weak or obstructed. 

5. Conclusion 

This review presents a comprehensive overview of integrated INS/GNSS navigation systems with a focus on sensor 

technologies, fusion architectures, and state estimation techniques. It classifies inertial sensors based on performance, 

size, and cost, and evaluates the trade-offs among different integration strategies, including loosely coupled, tightly 

coupled, and ultra-tightly coupled frameworks. The paper compares model-based filtering approaches such as EKF, 

UKF, CKF, PKF, and IEKF with recent advances in AI-based methods. It highlights the increasing potential of AI 

to either replace or enhance traditional filtering through data-driven learning, especially in environments with GNSS 

outages or high dynamics. Furthermore, the integration of platform-specific motion constraints is shown to improve 

estimation accuracy by leveraging domain knowledge. Collectively, the findings underscore that combining classical 

estimation theory with AI and domain-specific modeling enables the development of highly robust and intelligent 

navigation systems for next-generation applications. 
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