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CCURATE evapotranspiration (ET) estimation is crucial for effective irrigation management, 
particularly in water-stressed agricultural regions. This study evaluates and compares three ET 

models, SEBAL, Penman-Monteith, and Priestley-Taylor, in estimating ET for sugar beet (Beta 

vulgaris L.) under center-pivot irrigation. The results of Penman-Monteith generated the highest 
cumulative ET (875 mm), reflecting its sensitivity to meteorological inputs but risking overestimation 
in data-limited contexts. SEBAL estimated a moderate ET of 759.6 mm, closely matching expected 
water demands due to its use of satellite-derived energy balance data. Priestley-Taylor yielded the 
lowest ET (633.2 mm), underestimating peak water needs, risking water stress and yield reduction. 
Model accuracy metrics confirmed SEBAL’s reliability, with a Mean Absolute Error (MAE) of 0.437 
mm/day and Root Mean Square Error (RMSE) of 0.541 mm/day. In comparison, Priestley-Taylor 
showed higher errors (MAE: 0.721 mm/day, RMSE: 0.856 mm/day). The spatial analysis highlighted 

SEBAL’s ability to detect dynamic ET variations, with peak demands of 4.0–5.0 mm/day during the 
late midseason. Regression analysis further supported SEBAL’s predictive accuracy, achieving an R-
squared value of 0.95 when correlating ET with DMP. The SEBAL model, integrated with remote 
sensing, proves valuable for advancing sustainable water management practices in agriculture. 

Keywords: Evapotranspiration (ET), SEBAL Model, Remote Sensing, Precision Irrigation, 
Agricultural Water Management. 

 

 
Introduction 

Efficient water management is a critical factor in 

sustainable agriculture, particularly in arid and 

semi-arid regions where water resources are limited 

and competition for water is intensifying. In these 

environments, accurately estimating 

evapotranspiration (ET), the combined process of 

water loss from soil evaporation and plant 

transpiration, is crucial for optimizing irrigation 
practices (Wanniarachchi & Sarukkalige, 2022; 

Pereira et al., 2020). ET significantly determines 

the amount of water crops require during different 

growth stages (Li et al., 2021; Ahmad et al., 2021). 

Inaccurate estimates of ET can lead to under-

irrigation, resulting in water stress and reduced crop 

yields, or over-irrigation, which wastes water and 

can degrade soil quality. As global populations 

continue to grow and climate change exacerbates 

water scarcity, improving ET estimation is 

becoming increasingly crucial for enhancing 

irrigation efficiency, ensuring food security, and 

maintaining environmental sustainability 

(Karthikeyan et al., 2020). 

 

Many regions characterized by low annual 

precipitation and high evaporative demand face 

significant challenges in maintaining agricultural 
productivity (Lian et al., 2021). In such climates, 

rainfall alone is often insufficient to meet crop 

water requirements, making irrigation a necessity. 

High temperatures, prolonged dry seasons, and 

significant climate variability can lead to increased 

water demand for crops, thereby placing additional 

pressure on already limited water supplies. To 

manage this demand effectively, farmers and 

agricultural planners need reliable methods to 

predict water requirements based on accurate ET 
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estimates (Wanniarachchi & Sarukkalige, 2022). 

Such tools are necessary for water resources to be 

misallocated, resulting in either crop failure due to 

water stress or inefficient water use that reduces the 

overall productivity of farming systems. 

 

Traditional methods for estimating ET rely heavily 

on ground-based meteorological data collected 

from weather stations (Amani & Shafizadeh-

Moghadam, 2023; Kull et al., 2021; Blankenau et 

al., 2020; Elbeltagi et al., 2022). These methods use 
a combination of temperature, humidity, wind 

speed, and solar radiation to calculate the energy 

exchange between the atmosphere and the crop 

surface. While such approaches, such as the 

Penman-Monteith model, are widely used and well-

established, they are often limited by their 

dependence on localized weather data (Paul et al., 

2021; Van et al., 2024). Meteorological stations are 

only sometimes evenly distributed, especially in 

large agricultural areas or remote regions, and their 

measurements may not accurately reflect conditions 
across an entire field. This spatial and temporal 

variability presents challenges in applying these 

models to large-scale farming operations, where 

water demand may vary significantly across 

different parts of the field (Pasquel et al., 2022; 

Peng et al., 2020; Kephe et al., 2021). 

 

In recent years, remote sensing technologies have 

emerged as a valuable tool for overcoming these 

limitations. By providing continuous, large-scale 

data on crop and environmental conditions, 

satellite-based remote sensing offers a more 
comprehensive and scalable solution for monitoring 

ET (Weiss et al., 2020; Radočaj et al., 2020; Chen 

et al., 2022; Fuentes-Peñailillo et al., 2024). 

Satellite data can capture spatial variations in 

surface temperature, vegetation health, and other 

factors that influence ET across vast agricultural 

areas. This capability allows for more precise, field-

level ET estimation and enhances the real-time 

management of water use. Remote sensing-based 

models, such as the Surface Energy Balance 

Algorithm for Land (SEBAL), integrate satellite-
derived data like surface temperature and the 

Normalized Difference Vegetation Index (NDVI) to 

calculate ET without the need for extensive ground-

based measurements (Awada et al., 2022; Cheng et 

al., 2021; Chen et al., 2023). This makes them 

particularly useful in regions with sparse or 

unavailable meteorological data. 

Despite the clear advantages of remote sensing 

technologies, the application of such methods for 

ET estimation still needs to be explored in many 

agricultural contexts. While several studies have 

evaluated the performance of traditional ground-
based models, such as the Penman-Monteith and 

Priestley-Taylor models, there is a need for more 

research comparing these models to satellite-based 

approaches, particularly in the context of large-

scale farming, where SEBAL is often used. 

Moreover, few studies have systematically 

validated these models against actual crop growth 

metrics, such as dry matter production (DMP), 

which is directly linked to crop yield and water use 

efficiency (Tang et al., 2023; de Roos et al., 2021; 

Chevuru et al., 2023; de Roos et al., 2024; Carthy et 

al., 2024). As a result, there is a critical need for 

studies that assess the reliability and practicality of 

remote sensing-based ET models, especially in 
areas where water scarcity is a growing concern 

(Bhattarai & Wagle, 2021; Jindo et al., 2021; 

Derardja et al., 2024; Bretreger et al., 2022).  

 

Addressing this gap in the literature, this study aims 

to evaluate and compare the performance of three 

ET models—SEBAL, Penman-Monteith, and 

Priestley-Taylor—in estimating ET for sugar beet 

(Beta vulgaris L.) cultivation. Sugar beet, a high-

water-demand crop, is widely grown in various 

regions and serves as a valuable test case for 
assessing the accuracy of evapotranspiration (ET) 

models. The models are validated against dry 

matter production (DMP), a key indicator of crop 

growth and productivity. DMP represents the total 

biomass a crop produces and is directly related to 

the water it uses. By comparing the ET estimates 

from each model with the observed DMP, we can 

assess how well the models predict water use and 

its impact on crop growth. 

 

Materials and Methods 

Study Area and Crop 
The field experiment was conducted on a privately 

owned farm located in Minya Governorate, Egypt, 

at the following geographical coordinates: 

27°47'17.06"N latitude and 30°29'56.82"E 

longitude (Figure 1). This area lies within an arid 

climatic zone, typified by prolonged dry periods, 

high temperatures, and limited precipitation. During 

the growing season, which extended from August 

2020 to May 2021, the region experienced 

considerable thermal stress, with an average 

maximum air temperature of 37.4 °C (SD ±3.7 °C), 
an average minimum temperature of 20.1 °C (SD 

±2.0 °C), and a mean daily temperature of 28.0 °C 

(SD ±2.8 °C). Relative humidity remained low 

throughout the season, averaging 27.6% (SD 

±2.8%), with maximum and minimum averages 

recorded at 37.8% (SD ±3.8%) and 15.9% (SD 

±1.6%), respectively. Wind speed, measured at a 

height of 2 meters, averaged 3.3 m/s (SD ±0.3), 

while cloud cover was consistently minimal, with a 

seasonal average of 2.5 octas (SD ±0.3). These 

conditions contributed to elevated 

evapotranspiration rates, highlighting the 
importance of effective water management 

strategies to support crop growth in such 

environments.
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Fig. 1. Map showing the location of the study area in the Minya governorate, Egypt, highlighting the 

specific agricultural fields where the research was conducted. The right panel provides a detailed 

view of the study site, which consists of center-pivot irrigation systems used for sugar beet 

cultivation. 

 

The crop selected for the study was sugar beet 

(Beta vulgaris L.), a strategically important crop for 

Egypt’s sugar industry. The growing period 

spanned approximately 210 days, aligning with the 

typical sugar beet production cycle in the region.  
 

Table 1. Overall Average Climatic Conditions at 

the Experimental Site in Minya Governorate, 

Egypt. Values represent the overall means of 

monthly averages ± standard deviations across 

the entire study period (August 2020 to May 

2021). 

Parameter  Value ± SD 

Average Max Air Temp 37.4 ± 3.7°C 

Average Min Air Temp 20.1 ± 2.0°C 

Mean Air Temp 28.0 ± 2.8°C 

Average Max Relative Humidity 37.8 ± 3.8% 

Average Min Relative Humidity 15.9 ± 1.6% 

Mean Relative Humidity 27.6 ± 2.8% 

Average Wind Speed 3.3 ± 0.3 m/s (at 

2 meters height) 

Average Cloud Cover 2.5 ± 0.3 octas 

 

Soil  and Irrigation Water  
The soil at the experimental site was analyzed prior 

to sugar beet planting. The soil was characterized as 

sandy loam with the following physical and 

chemical properties:  

Clay (10%), silt (20%), sand (70%), bulk density of 

1.45 g/cm³, field capacity (18%), permanent wilting 

point (8%), organic matter (1.2%), pH of 7.9, and 
electrical conductivity (EC) of 3.66 dS/m. 

 

The water used for irrigation was analyzed for 

quality parameters and showed the following 

characteristics: EC of 1.07 dS/m, pH 7.35, sodium 

adsorption ratio (SAR) 3.21, and major ions: Ca²⁺ 

(3.0 meq/L), Mg²⁺ (2.5 meq/L), Na⁺ (5.3 meq/L), 

K⁺ (0.2 meq/L), Cl⁻ (9.0 meq/L), SO₄²⁻ 

(1.76meq/L), and HCO₃⁻ (0.24 meq/L). The 

irrigation water quality was considered suitable for 

sugar beet cultivation without posing significant 
salinity or sodicity issues. 

Description of the Center Pivot Irrigation System 

and Actual Irrigation Requirements 

The center pivot irrigation system used in the 

experiment had an arm length of 338 m, irrigating 

approximately 35.7 hectares (85 feddan). Sprinklers 

with low-pressure spray nozzles were distributed 
along the pivot arm, delivering uniform water 

applications. The pivot operated at a base pressure 

of approximately 1.8 bar, with an average flow rate 

of about 100.5 m³/h. The irrigation efficiency (IE) 

was assumed to be 75%, typical for modern center 

pivot systems. Actual irrigation requirements (IR) 

for sugar beet under the center pivot irrigation 

system were calculated using the equation: 

 
Where: 

 IR is the Irrigation Requirement (mm/day) 

 ET₀ is the Evapotranspiration estimated by 

each model (SEBAL, Penman-Monteith, 

Priestley-Taylor). 

 Kc is the Crop coefficient for sugar beet. 

 IE: Irrigation Efficiency  

Satellite Data Acquisition 

To monitor the sugar beet fields and estimate ET, 

Landsat 8 satellite imagery was employed. Landsat 

8 was selected for its high spatial resolution (10 m x 
10 m), enabling detailed field-level analysis. The 

satellite data, with a revisit cycle of 16 days, 

provided consistent monitoring throughout the 

growing season. Thermal infrared and visible bands 

were used to compute key indicators such as 

surface temperature and the Normalized Difference 

Vegetation Index (NDVI), essential for estimating 

ET. 

Landsat imagery was pre-processed through a series 

of standard steps to ensure the accuracy and 

reliability of the remote sensing data used in the 
study. First, geometric correction was applied to 

align the images with real-world geographic 

coordinates, ensuring spatial consistency. This was 

followed by atmospheric correction, which 

removed distortions caused by atmospheric 

conditions such as haze and aerosols, resulting in 
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more accurate surface reflectance values. Lastly, 

cloud masking was performed to exclude pixels 

affected by cloud cover, thereby enhancing the 

precision of evapotranspiration (ET) estimates 

derived from the imagery. 

 

Field Data Collection 

To ensure accurate validation of satellite-based ET 

models, field data were collected at key 

phenological stages of sugar beet throughout the 

growing season, which spanned from September 
2020 to May 2021. Biomass sampling for dry 

matter production (DMP) and soil moisture 

observations occurred approximately every 30–40 

days, aligned with critical growth phases. Sampling 

took place on the following dates: 15 September 

2020 (emergence stage), 15 October 2020 (early 

vegetative growth), 15 November 2020 (canopy 

development), 15 December 2020 (full canopy), 15 

January 2021 (early root bulking), 15 February 

2021 (root development), 15 March 2021 (late 

growth), 15 April 2021 (maturation), and 15 May 
2021 (harvest). At each stage, representative plant 

samples were collected, oven-dried, and weighed to 

determine total DMP. Soil moisture content was 

manually assessed during each field visit using 

gravimetric sampling methods. This structured 

sampling approach facilitated the temporal 

validation of ET estimates produced by the models 

and supported the analysis of the relationship 

between evapotranspiration, crop growth, and 

irrigation needs. 

Evapotranspiration (ET) Models 

Three ET models—SEBAL (Surface Energy 
Balance Algorithm for Land), Penman-Monteith, 

and Priestley-Taylor—were used to estimate daily 

ET in the sugar beet fields. The following is the 

detailed information for each model: 

1. SEBAL (Surface Energy Balance Algorithm 

for Land) 

SEBAL estimates ET using satellite-derived inputs, 

including surface temperature, NDVI, and albedo. 

SEBAL calculates ET by solving the surface energy 

balance equation (Chen et al., 2023): 

 
Where: 

 

 

 

 
 

SEBAL requires minimal ground-based data, 

mainly relying on satellite inputs. Thermal infrared 
data from Landsat were used to estimate surface 

temperature, while NDVI provided information on 

vegetation health. The model was applied on each 

Landsat acquisition date, and daily ET values were 

interpolated for the periods between satellite 

overpasses. 

2. Penman-Monteith Model 

The Penman-Monteith model is a physically based 

method that calculates ET by combining energy 

balance and aerodynamic principles. The FAO-56 

Penman-Monteith equation was used 

(Abeysiriwardana et al., 2022): 

 

 
Where: 

 is the net radiation (  day , 

 is the soil heat flux (  day), 

 is the wind speed at 2 meters hight , 

 is the mean daily air temperature , 

 is the vapor pressure deficit ( kPa , 

 is the slope of the saturation vapor pressure curve 

, 

 is the psychrometric constant . 

Meteorological data, including solar radiation, 

temperature, humidity, and wind speed, were 

collected from a weather station situated near the 
study area. These data were used to calculate daily 

ET values using the Penman-Monteith model, 

which served as a reference for comparison with 

SEBAL and Priestley-Taylor. 

3. Priestley-Taylor Model 

The Priestley-Taylor model simplifies the Penman-

Monteith equation by assuming a negligible 

aerodynamic component, making it ideal for humid 

environments. The model estimates ET as a fraction 

of available energy (Su & Singh, 2023): 

 
Where  is the Priestley-Taylor coefficient, 

typically set to 1.26 for well-watered conditions. 

This model requires fewer input parameters than 
Penman-Monteith, relying mainly on net radiation, 

soil heat flux, and temperature. The values of  

and  were estimated from the Landsat satellite 

data and supplemented with field-based 
measurements. 

Data Analysis and Model Evaluation 

The performance of the three ET models was 

assessed by comparing their daily ET estimates. 

Statistical metrics were employed to evaluate model 

accuracy: 

 Mean Absolute Error (MAE): Quantified the 

average absolute error between predicted ET values 

and the reference data (Penman-Monteith). 

 Root Mean Square Error (RMSE): Measures the 

standard deviation of prediction errors, with greater 
weight given to more significant deviations. 

 R-squared (R²): Evaluated the correlation 

between ET estimates and dry matter production 
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(DMP), providing insight into how well each model 

explained variability in crop growth. 
 

Estimating Dry Matter Production (DMP) 

The dry matter production (DMP) of sugar beet was 

estimated through periodic biomass sampling 

conducted at multiple stages of crop growth, 

including early vegetative stages, mid-season, and 

just before harvest. Biomass samples were collected 

from randomly selected 1 m² plots distributed 

across the field, with the sampling designed to 

capture spatial variability. All above-ground plant 

material (leaves, stems, and roots) within the plots 

was harvested at each sampling interval. The 

harvested biomass was then dried in an oven at 

70°C until a constant weight was reached, ensuring 

moisture removal and leaving only the dry matter. 

The dry weight was measured using a precision 

balance, and the DMP was calculated by 

extrapolating the average dry weight per square 

meter to the total field area, resulting in the DMP 

expressed in kg/ha. 

This final dry matter estimation was conducted at 

the end of the growing season to assess the total 

crop yield. The DMP data collected throughout the 

season were used to validate the ET models 

(SEBAL, Penman-Monteith, and Priestley-Taylor) 

by comparing the ET predictions with the observed 

crop growth. Regression analysis was performed to 

evaluate the correlation between ET estimates and 

DMP. R-squared (R²) values were calculated to 

assess the models' ability to predict biomass 

production based on water use. This methodology 

provided accurate, field-based observations of crop 

growth, which were critical for assessing the 

performance of the ET models in optimizing 

irrigation practices. 

 

Results and Discussion 

1. Comparison of ET Models 

Figure 2 presents the cumulative evapotranspiration 

(ET) values estimated by the three models—

SEBAL, Penman-Monteith, and Priestley-Taylor—

over the entire period of sugar beet cultivation. This 

figure highlights the key differences in how each 

model estimates total water use, which have 

important implications for irrigation management. 

The Penman-Monteith model consistently estimates 

the highest cumulative ET, reaching approximately 

875 mm by the end of the growing season. This 

suggests that Penman-Monteith considers the sugar 

beet crop to have the highest water demand. The 

high cumulative ET values reflect the model’s 

sensitivity to daily meteorological inputs, such as 

temperature, humidity, and wind speed. While this 

sensitivity enables the calculation of detailed daily 

ET estimates, it may lead to an overestimation of 

total water demand in the long term. This could 

result in excessive irrigation if these estimates are 

applied without adjustment, potentially leading to 

water waste and inefficiency. 

On the other hand, SEBAL produces a more 

moderate cumulative ET estimate of 759.6 mm. 

This result aligns more closely with expected crop 

water requirements based on typical sugar beet 

growth patterns. SEBAL’s cumulative ET curve 

indicates that the model strikes a balance between 

sensitivity to daily weather conditions and an 

overall realistic assessment of crop water use. Its 

reliance on satellite-derived data and the surface 

energy balance method enables a more accurate 

representation of real-time crop water needs, 

making SEBAL particularly effective in regions 

where detailed meteorological data may be limited 

or inconsistent. 

The Priestley-Taylor model, in contrast, 

consistently estimates the lowest cumulative ET, 

with a final value of 633.2 mm. While this model is 

often used due to its simplicity and ease of 

application, it tends to underestimate the crop’s 

water requirements, particularly during periods of 

high demand, such as peak growth stages. The 

cumulative ET curve for Priestley-Taylor rises 

more slowly compared to the other models, 

indicating a conservative approach to estimating 

water demand. This underestimation poses a risk of 

under-irrigation, which can lead to water stress and 

negatively impact crop productivity, particularly in 

regions with limited water availability. 

Overall, Figure 2 illustrates the significant 

variability among the three models in estimating 

cumulative ET, with important implications for 

irrigation scheduling and water management 

strategies. The Penman-Monteith method, while 

providing detailed estimates, may lead to over-

irrigation, particularly in regions where water 

efficiency is crucial. Priestley-Taylor, although 

simple, risks underestimating the crop’s water 

needs, potentially leading to water shortages during 

crucial growth phases. SEBAL emerges as the most 

balanced model, providing accurate and realistic 

water-use estimates, making it an optimal choice 

for managing irrigation in sugar beet cultivation. Its 

ability to provide moderate yet precise cumulative 

ET estimates ensures that crops receive sufficient 

water without over-application, promoting both 

crop health and water conservation. 

This analysis reinforces the importance of selecting 

the appropriate ET model based on regional water 

availability, crop type, and irrigation goals. 

SEBAL's moderate cumulative ET estimates make 

it particularly well-suited for precision irrigation 
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systems, ensuring that water is applied efficiently 

while avoiding both water stress and wastage. 

 

 
 

Fig. 2. Cumulative evapotranspiration (ET) 

values for SEBAL, Penman-Monteith, and 

Priestley-Taylor over the growing season. 

Moreover, Penman-Monteith, recognized as the 

reference ET model due to its extensive use in 
agricultural water management, predicted the 

highest mean ET values (Figure 3). The variability 

in daily ET estimates, ranging from 1.7 mm/day to 

7.7 mm/day, highlights the sensitivity of the 

Penman-Monteith method to detailed 

meteorological inputs. Although Penman-Monteith 

remains accurate under ideal conditions, its reliance 

on comprehensive meteorological data makes it 

more prone to overestimation in data-limited 

environments. This overestimation could result in 

excessive irrigation, leading to water waste. 

 
 

Fig. 3. Box plot comparing the mean 

evapotranspiration (ET) values from SEBAL, 

Penman-Monteith, and Priestley-Taylor, 

illustrating variability and range of estimates. 

 

2. Quantifying Model Differences 

To assess the accuracy of the models, Mean 

Absolute Error (MAE) and Root Mean Square 

Error (RMSE) were calculated using Penman-

Monteith as the benchmark model. SEBAL 

performed better, with an MAE of 0.437 mm/day 

and an RMSE of 0.541 mm/day (Figure 4), 

indicating that SEBAL's ET estimates closely 

aligned with those of the Penman-Monteith method, 

with minimal deviations. The low error values 

confirm SEBAL's robustness in predicting ET 

under various conditions, making it suitable for use 

in well-instrumented and data-scarce environments. 

In contrast, Priestley-Taylor showed higher error 

values, with an MAE of 0.721 mm/day and an 

RMSE of 0.856 mm/day. This indicates that 

Priestley-Taylor's ET estimates deviate significantly 
from Penman-Monteith's, particularly during peak 

growth phases when the crop's water demand is 

high. The higher RMSE for Priestley-Taylor 

reflects more significant prediction errors, which 

could result in under-irrigation, leading to 

decreased crop productivity. The performance of 

SEBAL, as indicated by its lower MAE and RMSE, 

confirms its utility in improving water-use 

efficiency and minimizing errors in irrigation 

scheduling. 

 

 
 

Fig. 4. Bar plot comparing MAE and RMSE 

values for SEBAL and Priestley-Taylor relative 

to Penman-Monteith. 

 

3. Spatial Distribution of Evapotranspiration 

Using SEBAL Model 

Figure 5 illustrates the spatial distribution of 

evapotranspiration (ET) across the distinct growth 

stages of sugar beet, derived from the SEBAL 
model. The selected dates—10/11/2020 and 

12/12/2020 (Early Growth Stage); 13/01/2021 and 

14/02/2021 (Mid-Season); 18/03/2021 and 

19/04/2021 (Late Mid-Season); and 05/05/2021 and 

21/05/2021 (Late Season)—represent critical 

phases in the crop’s development, from 

establishment to maturity. 

During the early growth stage, ET values were 

relatively low, averaging approximately 1.0–1.5 

mm/day on October 11, 2020, and December 12, 

2020. This reflects the crop's lower water 

requirements during the establishment phase when 
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the plants are still small. As the growth transitions 

into the mid-season, ET values increase 

substantially, averaging around 2.5–3.0 mm/day on 

January 13, 2021, and 3.0–4.0 mm/day on February 

14, 2021. This rise corresponds to the crop's 

vegetative growth period, during which water 

demand is at its highest to support biomass 

accumulation. 

 

 
 

The late mid-season (March 18, 2021, and April 19, 

2021) exhibits peak ET values, averaging 4.0–5.0 

mm/day, as the sugar beet reaches its maximum 

growth and water demand phase. These peak ET 

values highlight zones of intensive irrigation needs. 
By the late season (May 5, 2021, and May 21, 

2021), ET values decline to around 2.0–3.0 

mm/day, coinciding with the crop's maturity stage 

when water uptake diminishes significantly. 

These spatial ET patterns emphasize the SEBAL 

model's capability to capture the dynamic changes 

in water demand across different zones and growth 

stages. Such insights enable precision irrigation 

practices, optimizing water application based on 

real-time ET data. This enhances water-use 

efficiency and promotes sustainable crop 

management, particularly in arid and semi-arid 
regions where water resources are limited. 

 

Based on the estimated seasonal evapotranspiration 

(ET) values obtained from the three models—

Penman-Monteith, SEBAL, and Priestley-Taylor. 

The calculated irrigation requirements were 

1166.67 mm for the Penman-Monteith model, 

1012.80 mm for the SEBAL model, and 844.27 mm 

for the Priestley-Taylor model. These results 

highlight the differences among the models in 

estimating crop water needs. The Penman-Monteith 
method yielded the highest irrigation requirement, 

potentially leading to over-irrigation if not cross-

validated. In contrast, SEBAL provided moderate 

values that closely reflect actual field conditions, 

whereas the Priestley-Taylor method estimated the 

lowest water requirement, which may lead to under-

irrigation if used in isolation. These variations 

highlight the significance of model selection in 

irrigation planning, particularly in arid conditions 

and with precision irrigation systems, such as center 
pivots. 

 

4. Relationship between ET and Dry Matter 

Production (DMP) 

The relationship between ET estimates and dry 

matter production (DMP) was critical to this study. 

Regression analysis was conducted to evaluate the 

models' ability to predict DMP, a key indicator of 

crop productivity. SEBAL demonstrated the 

strongest relationship between ET and DMP, 

achieving an R-squared value of 0.95 (Figure 6). 

This high correlation indicates that 95% of the 
variation in DMP can be explained by SEBAL’s ET 

estimates, underscoring SEBAL’s ability to predict 

water use and its impact on crop growth accurately. 

Penman-Monteith also exhibited a strong 

relationship with DMP, with an R-squared value of 

0.91. However, the model's higher variability in ET 

estimates, particularly during periods of high crop 

water demand, slightly weakened its predictive 

power. Penman-Monteith's tendency to 

overestimate water use could lead to over-

irrigation, potentially resulting in inefficient water 
use and reduced irrigation effectiveness. 

On the other hand, Priestley-Taylor demonstrated 

the weakest relationship between ET and DMP, 

with an R-squared value of 0.88 (Table 2). This 

lower correlation reflects the model's conservative 
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nature, which tends to underestimate water 

requirements during peak growth phases, leading to 

under-irrigation and reduced biomass production. 

As DMP is a crucial determinant of crop yield, 

SEBAL's stronger correlation with DMP makes it 

the most effective model for optimizing both 

irrigation and crop productivity. 

 
Fig. 6. Relationship between ET estimates and 

dry matter production (DMP) for SEBAL, 

Penman-Monteith, and Priestley-Taylor. 

 

Table 2. R-squared values of ET models in 

relation to DMP. 

 

Model R-squared (DMP) 

SEBAL 0.95 

Penman-Monteith 0.91 

Priestley-Taylor 0.88 

 

5. Impact of Landsat Satellite Data on ET 

Estimation and DMP Prediction 

Figure 7 illustrates the temporal trends in NDVI, 
cumulative dry matter production (kg/ha), and 

cumulative SEBAL-estimated evapotranspiration 

(mm) for the monitored sugar beet cultivation 

period from July 2020 to September 2021. These 

three parameters provide complementary insights 

into crop vigor, biomass accumulation, and water 

consumption, respectively. 

The NDVI trend exhibits periodic fluctuations, with 

values initially increasing from approximately 0.28 

in July 2020, reaching peaks near 0.47–0.49 during 

the growing season, particularly between May and 
July 2021. This pattern reflects the progressive 

development of crop canopy and chlorophyll 

content, associated with sugar beet growth. The 

decline in NDVI values after July 2021 corresponds 

to crop senescence and eventual harvest, 

highlighting NDVI’s responsiveness to vegetative 

dynamics. 

The cumulative dry matter production remains 

relatively stable during the early months, reflecting 

the limited biomass accumulation that occurs 

during crop establishment. A sharp rise is observed 

from January 2021 onward, with the steepest 
increase between March and June 2021, aligning 

with the peak NDVI period. The curve plateaus at 

approximately 13,500 kg/ha by August 2021, 

indicating biomass maturity. This positive 

correlation between NDVI and dry matter 

production emphasizes the utility of NDVI as a 

proxy for crop performance and yield forecasting. 

Similarly, the cumulative SEBAL 

evapotranspiration shows a gradual increase 

throughout the monitoring period, reflecting both 

crop water usage and soil evaporation. The trend 

becomes steeper during the active vegetative 
growth phase (February to June 2021), concurrent 

with both the increase in NDVI and biomass, 

underscoring the link between evapotranspiration 

and physiological activity. The final cumulative ET 

reaches approximately 145 mm, indicating 

moderate water use efficiency compared to biomass 

outputs. 

Overall, the synchronized trends among NDVI, dry 

matter accumulation, and SEBAL ET reinforce the 

reliability of remote sensing tools and energy 

balance models for monitoring crop phenology, 
productivity, and water consumption. The 

alignment of high NDVI values with biomass 

accumulation and increased ET further validates the 

use of SEBAL in estimating actual 

evapotranspiration under field conditions. This 

integrated approach offers a valuable framework for 

smart irrigation scheduling and yield prediction, 

particularly in water-scarce regions. 

 

 
Fig. 7. NDVI, dry matter production, and 

SEBAL cumulative evapotranspiration (ET) 

plotted over time. 

 

Conclusions 

This study evaluated the performance of three ET 

models—SEBAL, Penman-Monteith, and Priestley-
Taylor—for estimating evapotranspiration (ET) in 

sugar beet (Beta vulgaris L.) cultivation under 

center-pivot irrigation. The results highlighted 

significant differences in model estimates, 

emphasizing the critical importance of selecting 

appropriate models for effective irrigation planning 

and water management. 

Penman-Monteith, a widely used reference model 

due to its meteorological sensitivity, tends to 

overestimate ET, limiting its applicability in data-

scarce environments. In contrast, Priestley-Taylor, 
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known for its simplicity, underestimates crop water 

needs, risking water stress and yield reduction. 

SEBAL emerged as the most dependable model, 

producing balanced ET estimates strongly 

correlated with dry matter production (DMP) and 

achieving a high predictive accuracy (R-squared: 

0.95). Its remote sensing-based approach facilitates 

precise field-scale ET monitoring, making it 

suitable for large-scale agricultural applications. 

Performance metrics further confirmed SEBAL’s 

superiority, with lower Mean Absolute Error 
(MAE: 0.437 mm/day) and Root Mean Square 

Error (RMSE: 0.541 mm/day) compared to the 

Priestley-Taylor method, which exhibited higher 

errors. Spatial analysis demonstrated SEBAL’s 

ability to detect ET variability across crop growth 

stages, supporting more accurate irrigation 

scheduling. 

Although Landsat’s 16-day revisit cycle imposes 

temporal limitations, SEBAL’s consistent 

performance underscores its reliability for 

enhancing irrigation efficiency and promoting 
sustainable water management in both data-rich and 

data-limited agricultural settings. 
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