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ARCTANGENT IDENTITIES INVOLVING THE JACOBSTHAL

AND JACOBSTHAL-LUCAS NUMBERS

O. DIŞKAYA

Abstract. This study presents novel arctangent identities that establish con-

nections between the Jacobsthal and Jacobsthal-Lucas numbers. These find-
ings contribute to the understanding of the interplay between trigonometric

functions and number theory, particularly in relation to well-known mathe-

matical sequences and constants.

1. Introduction

The Jacobsthal and Jacobsthal-Lucas numbers have garnered significant atten-
tion in the field of number theory and combinatorics due to their fascinating prop-
erties and wide-ranging applications. These sequences, denoted respectively as
A001045 and A014551 in the OEIS database [24], are defined by simple recurrence
relations yet exhibit deep connections to various mathematical concepts, includ-
ing graph theory, cryptography, and algorithmic design. The Jacobsthal sequence
{Jn}n≥0 is defined by the initial conditions J0 = 0 and J1 = 1, along with the
recurrence relation:

Jn+2 = Jn+1 + 2Jn, n ≥ 0. (1)

The first few terms of this sequence are 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341. Similarly,
the Jacobsthal-Lucas sequence {jn}n≥0 is defined by the initial values j0 = 2 and
j1 = 1, and follows the recurrence:

jn+2 = jn+1 + 2jn, n ≥ 0. (2)

with its initial terms being 2, 1, 5, 7, 17, 31, 65, 127, 257, 511. These sequences have
been extensively studied in the literature, as seen in works such as [2, 4, 5, 10, 15,
17, 3, 25, 21, 22, 23, 18, 7, 8, 9, 12, 14, 16, 20, 19].
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The Jacobsthal numbers, in particular, have found applications in various fields.
For instance, they appear in the study of tiling problems, where they count the
number of ways to tile a 3 × n rectangle with 1 × 1 and 2 × 2 squares. They
also play a role in the analysis of certain algorithms, particularly those involving
divide-and-conquer strategies, where the recurrence relations of Jacobsthal numbers
often emerge naturally. In cryptography, Jacobsthal numbers have been used in
the design of pseudorandom number generators due to their rapid growth and
combinatorial properties. Similarly, Jacobsthal-Lucas numbers, which are closely
related to Jacobsthal numbers, have applications in the study of graph colorings and
network design, where their recurrence relations help model complex structures.

Both sequences are governed by the characteristic equation:

x2 − x− 2 = 0,

whose roots are x1 = 2 and x2 = −1. These roots satisfy the relationships:

x1 + x2 = 1, x1 − x2 = 3, and x1x2 = −2.

The Binet formulas for the Jacobsthal and Jacobsthal-Lucas sequences are given
by:

Jn =
2n − (−1)n

3
(3)

and

jn = 2n + (−1)n. (4)

These formulas, along with various interrelationships such as [13, 6]:

2n = Jn+1 + Jn

(−1)n = 2Jn−1 − Jn

Jnjn = J2n

j2n + 9J2
n = 2j2n

Jn + jn = 2Jn+1

3Jn + jn = 2n+1

jn = Jn+1 + 2Jn−1

9Jn = jn+1 + 2jn−1

Jmjn + Jnjm = 2Jm+n

jmjn + 9JmJn = 2jm+n

jn+1 + jn = 3.2n

jn+1 − 2jn = 3(2Jn − Jn+1) = 3(−1)n+1

highlight the intricate connections between these sequences and their combinatorial
properties.
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In this study, we explore the interplay between the Jacobsthal numbers and
trigonometric functions, particularly focusing on arctangent identities. Drawing in-
spiration from the works of Adegoke [1] and Guo and Chu [11], who derived arctan-
gent identities involving the golden ratio, Fibonacci numbers, and Lucas numbers,
we aim to establish novel identities connecting the roots of the Jacobsthal charac-
teristic equation (−1 and 2) with the Jacobsthal and Jacobsthal-Lucas sequences.
Additionally, we employ fundamental trigonometric identities such as:

arctan(x) + arctan(y) = arctan

(
x+ y

1− xy

)
, xy < 1 (5)

arctan(x)− arctan(y) = arctan

(
x− y

1 + xy

)
, xy > −1 (6)

arctan

(
1

x

)
+ arctan(x) =

{
π
2 , x > 0

−π
2 , x < 0

(7)

to derive new results that extend the existing literature on arctangent series and
their applications in number theory.

Our work not only contributes to the theoretical understanding of Jacobsthal
numbers but also opens new avenues for exploring BBP-type formulas and their con-
nections to mathematical constants, as demonstrated in the context of the golden
ratio by Adegoke [1]. By combining telescoping methods with Cassini-like formulae,
as seen in Guo and Chu [11], we aim to present closed-form evaluations of arctan-
gent series involving Jacobsthal and Jacobsthal-Lucas numbers, thereby enriching
the growing body of research on these sequences.

2. The reciprocal Jacobsthal and reciprocal Jacobsthal-Lucas
numbers in arctangent formulae

Theorem 2.1. For positive integers m, we have

arctan(2m− 1
2 ) = 2 arctan(1)− 1

2
arctan

(
2m+ 1

2

j2m−1

)
. (8)

Proof. Taking x =
1

2m− 1
2

= y in Eq. (5) and using Eq. (4), we arrive

2 arctan(
1

2m− 1
2

) = arctan


2

2m− 1
2

22m−1 − 1

22m−1


= arctan

(
2m+ 1

2

22m−1 − 1

)

= arctan

(
2m+ 1

2

j2m−1

)
Therefore, combining the above result with Eq. (7), the proof is concluded. □
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We can illustrate the Eq. (8) of the theorem above with an example as follows:
For m = 1, we have

arctan
(
2

1
2

)
+ arctan

(
2

3
2

)
= π − arctan

(
2

1
2

)
.

Taking the tangent of both sides of this equality, we obtain

tan
(
arctan

(
2

1
2

)
+ arctan

(
2

3
2

))
= tan

(
π − arctan

(
2

1
2

))
.

Therefore, applying the tangent addition formula, we reach

tan(arctan(2
1
2 )) + tan(arctan(2

3
2 ))

1− tan(arctan(2
1
2 )) tan(arctan(2

3
2 ))

=
tan(π)− tan(arctan(2

1
2 ))

1 + tan(π) tan(arctan(2
1
2 ))

2
1
2 + 2

3
2

1− 4
=

0− 2
1
2

1 + 0

−2
1
2 = −2

1
2 .

Similar methods are used to verify the other identities for small positive values of
m, and their verification is left to the reader.

Lemma 2.1. For positive integers k, we obtain

4 arctan(1)− 2 arctan(2k) = arctan

(
Jk+2 + Jk+1

j2k

)
. (9)

Proof. The proof follows by taking m = k + 1
2 in Eq. (8) in Theorem 2.1. □

Theorem 2.2. For positive integers n, the following identities are valid:

i . 3 arctan(2−2n) + arctan(22n) = 2 arctan

(
j2n
3J2n

)
,

ii . 3 arctan(2−(2n+1)) + arctan(22n+1) = 2 arctan

(
3J2n+1

j2n+1

)
,

iii . arctan(22n)− arctan(2−2n) = 2 arctan

(
3J2n
j2n

)
,

iv . arctan(22n+1)− arctan(2−(2n+1)) = 2 arctan

(
j2n+1

3J2n+1

)
.

Proof. i. Taking x =
1

22n
and y = 1 in Eq. (5) and using Eqs. (7), (3) and

(4), we arrive

arctan(2−2n) + arctan(1) = arctan

(
2−2n + 1

1− 2−2n

)
arctan(2−2n) +

π

4
= arctan

(
22n + 1

22n − 1

)
2 arctan(2−2n) +

π

2
= 2 arctan

(
22n + (−1)2n

22n − (−1)2n

)
3 arctan(2−2n) + arctan(22n) = 2 arctan

(
j2n
3J2n

)
.
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ii. Taking x =
1

22n+1
and y = −1 in Eq. (6) and using Eq. (7), (3) and (4),

we arrive

arctan(2−(2n+1))− arctan(−1) = arctan

(
2−(2n+1) + 1

1− 2−(2n+1)

)
arctan(2−(2n+1)) +

π

4
= arctan

(
2(2n+1) + 1

2(2n+1) − 1

)
2 arctan(2−(2n+1)) +

π

2
= 2 arctan

(
22n+1 − (−1)2n+1

22n+1 + (−1)2n+1

)
3 arctan(2−(2n+1)) + arctan(22n+1) = 2 arctan

(
3J2n+1

j2n+1

)
.

iii. It can be proven similarly to the proof of i.
iv. It can be proven similarly to the proof of ii.

□

Theorem 2.3. For non-zero integers m, the following identities are valid:

i.

arctan
(
2m+ 1

2

)
= 2arctan(1) +

1

2
arctan

(
2m− 1

2

j2m

)
− 1

2
arctan

(
3.2m− 1

2

J2m

)
, (10)

ii.

arctan
(
2m− 1

2

)
= 2arctan(1)− 1

2
arctan

(
2m− 1

2

j2m

)
− 1

2
arctan

(
3.2m− 1

2

J2m

)
. (11)

Proof. By selecting x = 1

2m+1
2
and x = 1

2m− 1
2
in Eq. (5), it is simple to prove that

arctan

(
1

2m+ 1
2

)
+ arctan

(
1

2m− 1
2

)
= arctan

( 1

2m+1
2
+ 1

2m− 1
2

1− 1
22m

)

= arctan

(
2m− 1

2 + 2m+ 1
2

22m − 1

)

= arctan

(
3.2m− 1

2

J2m

)
.

Therefore, using Eq. (7, we obtain

arctan
(
2m+ 1

2

)
+ arctan

(
2m− 1

2

)
= π − arctan

(
3.2m− 1

2

J2m

)
. (12)

By selecting x = 1

2m+1
2
and x = 1

2m− 1
2
in Eq. (6) and using Eq. (7, we get

arctan
(
2m+ 1

2

)
− arctan

(
2m− 1

2

)
= arctan

(
2m− 1

2

j2m

)
. (13)

Eq. (10) is obtained by adding Eqs. (12) and (13), while Eq. (11) is obtained by
subtracting Eq. (13) from Eq. (12). □

Lemma 2.2. For non-zero integers n, the following identities are valid:
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i.

arctan(22k+1) = 2 arctan(1) +
1

2
arctan

(
j2k+2 − j2k

j4k+1

)
− 1

2
arctan

(
3(J2k+1 + J2k)

J4k+1

)
,

(14)

ii.

arctan(22k−1) = 2 arctan(1)− 1

2
arctan

(
j2k+1 − j2k−1

j4k−1

)
− 1

2
arctan

(
3(J2k + J2k−1)

J4k−1

)
.

(15)

Proof. The proof follows by taking m = 2k + 1
2 and m = 2k − 1

2 in Eqs. (10) and
(11), respectively. □

Remark 1. Observe that the telescoping summation provided by Eq. (13) may be
used to demonstrate that

arctan
(
2n+

1
2

)
= arctan

(
2−

1
2

)
+

n∑
m=1

arctan

(
2m− 1

2

j2m

)
(16)

which can be written as

arctan
(
2n+

1
2

)
= arctan(1) +

1

2
arctan

(
1

2
3
2

)
+

n∑
m=1

arctan

(
2m− 1

2

j2m

)
(17)

by using

arctan
(
2

1
2

)
= arctan(1) +

1

2
arctan

(
1

2
3
2

)
(from n = 1 in Theorem 2.1) (18)

Theorem 2.4. For non-negative integers n, the following identities are valid:

i.

arctan
(
22n−

1
2

)
= 3arctan(1)− 1

2
arctan

(
1

2
3
2

)
− arctan

(
2

1
2 J2n−1

J2n

)
, (19)

ii.

arctan
(
22n−

3
2

)
= 3arctan(1)− 1

2
arctan

(
1

2
3
2

)
− arctan

(
2

1
2 J2n−2

J2n−1

)
. (20)

Proof. By selecting x = 1

2
1
2
and y = 2

1
2 Jm−1

Jm
in Eq. (5), we obtain

arctan

(
1

2
1
2

)
− arctan

(
2

1
2 Jm−1

Jm

)
= (−1)m−1 arctan

(
1

2m− 1
2

)
.

From k = 1 in Theorem 2.1, and using Eq. (7), we have

(−1)m arctan

(
1

2m− 1
2

)
= (2(−1)m + 1) arctan(1)− 1

2
arctan

(
1

2
3
2

)
− arctan

(
2

1
2 Jm−1

Jm

)
.

(21)

Setting m = 2n in Eq. (21), we get identity (19), while m = 2n − 1 in Eq. (21)
gives identity (20). □

Theorem 2.5. For non-negative integers n, the following identities are valid:
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i.

arctan
(
22n−

1
2

)
=

1

2
arctan

(
2

3
2

)
+ arctan

(
J2n

2
1
2 J2n−1

)
, (22)

ii.

arctan
(
22n−

3
2

)
= −1

2
arctan

(
2

3
2

)
− arctan

(
J2n−1

2
1
2 J2n−2

)
. (23)

Proof. By selecting x = 1

2
1
2
and x = Jm

2
1
2 Jm−1

in Eq. (5), we obtain

arctan

(
1

2
1
2

)
+ arctan

(
Jm

2
1
2 Jm−1

)
= (−1)m arctan

(
2m− 1

2

)
.

From m = 1 in Theorem 2.1, and using Eq. (7), we have

1

2
arctan

(
2

3
2

)
+ arctan

(
Jm

2
1
2 Jm−1

)
= (−1)m arctan

(
2m− 1

2

)
. (24)

Setting m = 2n in Eq. (24), we get identity (22), while m = 2n − 1 in Eq. (24)
gives identity (23). □

Theorem 2.6. For n ∈ N, we have

2 arctan

(
1

2k

)
= arctan

(
2k+1

3J2k

)
. (25)

Proof. The selection of x =
1

2k
= y in Eqs. (3) and (5) leads to Eq. (25). □

Theorem 2.7. For non-zero integers k, the following identities are valid:

i.

2 arctan

(
1

2k

)
= arctan

(
Jk+1 + Jk
3J2k+1

)
+ arctan

(
jk+1 + jk
j2k+1

)
, (26)

ii.

2 arctan

(
1

2k+1

)
= arctan

(
jk+1 + jk
j2k+1

)
− arctan

(
Jk+1 + Jk
3J2k+1

)
. (27)

Proof. By selecting x = 1
2k

and x = 1
2k+2 in Eq. (5), it is simple to prove that

arctan

(
1

2k

)
− arctan

(
1

2k+1

)
= arctan

(
32k

22k+1 − 1

)
. (28)

Similarly, selecting x = 1
2k

and x = 1
2k+1 in Eq. (6), we have

arctan

(
1

2k

)
− arctan

(
1

2k+1

)
= arctan

(
2k

22k+1 + 1

)
. (29)

Eq. (26) is obtained by adding Eqs. (28) and (29), while Eq. (27) is obtained by
subtracting Eq. (29) from Eq. (28). □

Remark 2. Utilizing the telescoping summation that is requested by Eq. (29), we
get

arctan

(
1

2

)
− arctan

(
1

2n+1

)
=

n∑
k=1

arctan

(
Jk+1 + Jk
J2k+1

)
.
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We get the formula

arctan

(
1

2

)
=

∞∑
k=1

arctan

(
Jk+1 + Jk
J2k+1

)
by taking limit n → ∞.

Theorem 2.8. For non-zero integers n, the following identities are valid:

i.

arctan

(
3(J2n−1 + J2n−2)

J4n−3

)
= arctan

(
j2n − j2n−2

j4n−3

)
+ arctan

(
j2n+1 − j2n−1

j4n−1

)
+ arctan

(
3(J2n + J2n−1)

J4n−1

)
,

ii.

arctan

(
J2n+1 + J2n

j4n−2

)
= arctan

(
j2n+1 − j2n−1

j4n−1

)
+ arctan

(
3(J2n + J2n−1

J4n−1)

)
,

iii.

arctan

(
3(J2n+1 + J2n)

J4n+1)

)
= arctan

(
J2n+3 + J2n+2

J4n+2

)
+ arctan

(
j2n+2 − j2n

j4n+1

)
,

iv.

arctan

(
jn+1 + jn
j2n+1

)
= arctan

(
Jn+1 + Jn
3J2n+3

)
+ arctan

(
jn+2 + jn+1

j2n+3

)
+ arctan

(
Jn+1 + Jn
3J2n+1

)
.

Proof. i. By setting k = n− 1 in Eq. (14) and k = n in Eq. (15), it may be
proven.

ii. By setting k = 2n− 1 in Eq. (9) and k = n in Eq. (15), it may be proven.

iii. By setting k = 2n+ 1 in Eq. (9) and k = n in Eq. (14), it may be proven.

iv. By setting k = n+ 1 in Eq. (26) and k = n in Eq. (27), it may be proven.
□

3. Conclusion

In this study, we have established novel arctangent identities that connect the
Jacobsthal and Jacobsthal-Lucas numbers. By leveraging telescoping techniques,
we derived closed-form evaluations of sums involving the products of two arctangent
functions. These results extend existing arctangent identities related to Jacobsthal
and Jacobsthal-Lucas numbers, further enriching the interplay between number
theory and trigonometric functions.

These identities not only contribute to theoretical advancements but also hold
potential applications in mathematical analysis and special function theory. Fu-
ture research may explore further generalizations to other recurrence sequences
and investigate potential applications in analytical number theory and mathemat-
ical physics.
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[5] A. Daşdemir, On the Jacobsthal numbers by matrix method. Süleyman Demirel University
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