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ADVANCED SIMPLE AND DOUBLE INTEGRAL INEQUALITIES
WITH THREE-PARAMETER RATIO-MINIMUM KERNELS

CHRISTOPHE CHESNEAU

ABSTRACT. Integral inequalities play a crucial role in various areas of mathe-
matics, both in theoretical analysis and practical applications. The discovery
of new forms of such inequalities remains an important and ongoing area of
research. This article is a contribution in this sense. We present new in-
tegral inequalities involving three-parameter ratio-minimum weight functions
or kernel functions. In particular, we establish simple integral inequalities of
the weighted Holder type and double integral inequalities of the Hardy-Hilbert
type. The arctangent function plays a crucial role in defining the upper bounds.
These results extend the classical inequalities by incorporating additional pa-
rameters, thereby increasing their flexibility and applicability. Detailed proofs
are provided to ensure clarity and facilitate further research in this area.

1. INTRODUCTION

Integral inequalities are one of the most useful tools in mathematical analysis. Clas-
sically, they provide bounds that are essential for solving various integral-type problems.
Famous simple and double integral inequalities, such as the Holder, Hardy or Hilbert in-
tegral inequalities, have been extensively studied. They are used mainly because of their
wide applicability and deep connections to functional spaces and operator theory. We refer
the reader to the books [7, 3, 15, 2, 5]. In recent years, there has been a growing interest in
generalizing these classical inequalities by introducing additional parameters and auxiliary
functions. We refer to the survey [4] and the books [16, 17] for a focus on double integral
inequalities. In this article, we propose new simple and double integral inequalities using
three-parameter ratio-minimum weight functions or kernel functions. These parametric
functions offer greater flexibility and precision in determining upper bounds. By adjust-
ing the parameters, we can obtain more accurate and general results. This approach thus
improves the adaptability and sharpness of bounds in various applications, especially in
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functional analysis, partial differential equations, optimization and mathematical physics.
Before proceeding, a brief overview of the topic is proposed in the subsection below.

1.1. Overview. Our main motivation stems from a double integral inequality of the
Hardy-Hilbert type established by W.T. Sulaiman in 2008. It is referred to as [11, Theo-
rem 2]. The double integral under consideration is defined with a kernel function of the
one-parameter ratio-minimum type, given by

1
K(z,y) = [z + y + min(z, y)]*’

where v is the parameter. It is clearly homogeneous of degree —v, which means that, for
any A > 0, we have K(Az, \y) = A7"K(z,y). A formal statement of [11, Theorem 2] is
given below, followed by a discussion. Let p > 1, ¢ = p/(p — 1) and f,g : (0,+00) —
(0,400) be two functions. Then the double integral inequalities below apply, distinguish-
ing the cases v > 1, v =1and v € (0,1).

For any v > 1, we have

+o0
1
[/ [z 4+ y + min(z, y)]* f(x)g(y)dzdy

+oco 1/p +oo 1/q
1 1—v 1—v 1-v
<— 1 P(x)d 1(y)d
_2(U_1)(+3 ) /x fP(x)dz /y gd'(ydy|
0 0

where the integrals on the right-hand side must converge. This inequality informs on how
the parameter v affects the constant factor, i.e., (1 + 3'7")/[2(v — 1)], and the weight
function of the integral norms of f and g, i.e., z' 7.

For v = 1, we have

+oo +oo
1 1
{/ z + y + min(z, y) F@)gly)dzdy = {/ [z + y + min(z, y)]* f(@)g(y)dzdy

too /P T oo 1/q
< 2v/2 arctan [\/5] / :z:p/Q_lfp(ac)dx / yQ/Q_lgq (y)dy ,
0 0

where the integrals on the right-hand side must converge. It is interesting to note that
the arctangent function is naturally contained in the constant factor. We mention the
following approximation for this constant: 2v/2 arctan [\/5] ~ 2.70204.

For any v € (0,1), we have

+oo
1
Z/ [ + y 4+ min(z, y)]¥ f(x)g(y)dzdy

1 v v 2 tv/2—1
S PR RY
—2v/2{ 22) ), arr |

+oo 1/P 1400 1/q
[t @an) | [y g gy
0 0

where B(a,b) is the beta function at a,b > 0 defined by B(a,b) = fol t*~ (1 —t)*"1dt, and
the integrals on the right-hand side must converge. In this case, a mathematical error in
the original formulation in [11, Theorem 2] has been corrected: the constant factor 1 has
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been replaced exactly by 1/ 2v/2 The complexity of this constant factor, with a non-closed
integral term, is a drawback for further analysis. However, the following applies:

2 — 2 )
/ Ak dt < L / /2 gt = LA (2“/2 - 2‘“/2) .
1/2 (1+t)v (1+1/2)v 1/2 3vv

With this result, we can therefore deal with the problem of complexity by replacing the
integral term with an upper bound, thus simplifying the analysis at the expense of some
precision. The presence of the v parameter also provides an interesting dimension of
flexibility. However, it should be noted that the minimum of the variables in the kernel
function cannot be modulated. Consequently, this kernel function does not recover the
classical Hardy-Hilbert kernel function defined by

1
]C*(xvy) =

T+y

In addition, we observe that the variables x and y contribute symmetrically within the
minimum. This symmetry suggests a natural direction for generalization, considering
a weighted or modulated minimum, such as min(z,wy), where w acts as an adjustable
parameter, or exploring more sophisticated kernel function structures. This perspective
opens the door to more flexible kernel structures and has motivated further research, as
outlined in the next subsection.

We end this overview with the following key references for double integral inequalities
of the Hardy-Hilbert type involving the minimum or maximum of variables: [14, 8, 1, 9,
12, 13, 10]. They make significant contributions to the field, but none of them take our
research direction into account.

1.2. Contributions. Motivated by [11, Theorem 2] and the above considerations, this
article develops new integral inequalities for both simple and double integrals. It is divided
into three main parts. The first part is devoted to four lemmas that provide integral
formulas. They form the analytical basis from which our inequalities are constructed. In
the second part, simple integral inequalities of the weighted Hdélder type are presented
and proved. These results modify the classical Holder integral inequality by incorporating
three-parameters weight functions. For example, one of the weight functions considered
is of the form
_ 1
" 14 0z + 7 min(z,w)’
where 7, # and w are the parameters. Note that the parameters 7 and w modulate
the minimum term in two different ways. Unlike the framework of [11, Theorem 2],
we do not introduce an exponent parameter v to maintain analytical tractability. In
total, four different weighted Holder-type integral inequalities are established. In the
last part, we derive double integral inequalities of the Hardy-Hilbert type. These results
extend the classical Hardy-Hilbert integral inequality by introducing three-parameter-
kernel functions. One such kernel function is given by

1

x + 0y + 7 min(z, wy)’

’CQ(xv y) =

where 7, 0 and w are the parameters. This leads to a flexible functional structure, where
7 modulates the minimum term, and w weights the contribution of the variable y within
this minimum. As in the second part, we avoid the use of an exponent parameter to
maintain analytical tractability. In total, five Hardy-Hilbert-type integral inequalities are
established.

To the best of our knowledge, all the results presented in this article are new to the
literature. They provide a flexible framework for further developments in integral inequal-
ities, and their applications in analysis. Complete proofs are given in full detail, with
careful attention to the role of the parameters.
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1.3. Organization. The article is organized as follows: Section 2 presents the main in-
tegral formulas. Section 3 applies these results to derive simple integral inequalities of
the weighted Holder type. Section 4 is devoted to the double integral inequalities of the
Hardy-Hilbert type. Detailed proofs are given throughout the text. We conclude with a
summary, supplemented by remarks on possible extensions and applications in Section 5.

2. SOME INTEGRAL FORMULAS

This section presents the new integral formulas that we will need for the proofs of our
main results. They have the feature of being dependent on three adjustable parameters
and involving a minimum term. The first formula is given below.

Lemma 2.1. For any 7,0,w € R such that 6 +1 >0, (6 +T)w > 0, (1 + Tw)f > 0 and
(14 7w)/(fw) > 0, we have

“+ oo

—1/2
x
- dx
/ 1+ 0z + 7 min(z, w)

1 1 1+ 7w
=2 arctan[v/ (0 + 7)w| + ————= arctan .
{\/0+T Vi ol (1+7w)0 Ow }
The case w — 0 yields
+oo
/ m71/2 do — l
1+6z " o
0
Proof. Changing the variables as x = wy, we find that
oo 172 T (wy)~1/?
/ . dx = / . (wdy)
1+ 6z + 7 min(z, w) 1+ fwy + 7 min(wy, w)
0 0

T Y1/
=w / dy.
0

1+ 6wy + Twmin(y, 1)
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Decomposing this integral by the Chasles rule at the threshold value y = 1, taking into
account the term min(y, 1) and using standard arctangent formulas, we get

Vw / y dy

1+ Owy —|— Tw min(y, 1)

+oo

g1/ g1/
=Vw / dy—|— / dy
0 1

1+ fwy + Twmin(y, 1 1 +9wy+7w min(y, 1)

“+oo

! y1/2 y=1/2
=V /1+9wy—|—7‘w><ydy+/1+9wy+7’w><ldy
0 1
1 “+ oo
—-1/2 —1/2
- Vo / Y dy + — / Y dy
) 1+ V(O + eyl Lrw Jo 1+ [y/bwy/(1 + Tw)]?
2 v
= ———arctan[\/(0 + 7)wy]
V(0 + 7w =0
y—+oo
1 1471w Owy
24/ arctan
14+ 7w Ow 14+ 71w )
y=

arctan[/ (0 4+ 7)w]

2
“{m

+; T_ arctan Ou
(1+71w)bw | 2 1+7w
14+ 7w
= arctan[y/ (0 + 7)w] + ———— arctan
\/_{\/ + 7w ( el \/1+T)9 O }
= arctan[ 0+ m)w] + 1 arctan L+ .
(1+7w)é Ow
So we have
e o-1/2
/ 1+ 0z + 7 min(z, w) du
0
=2 ! arctan[/ (60 + 7)w] + - arctan L+ .
0+ (14 Tw)b Ow

For the case w — 0, using the limit result arctan(t) — /2 when t — +o00, we obtain

+o0o
/ L”erg{wi Xz},i
1+60z Vo2l Ve
0
This ends the proof of Lemma 2.1. O

We see that the arctangent function plays a central role in the final expression. The
same will apply to the new simple and double inequalities presented in Sections 3 and 4.
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As a side note, using the identity min(a,b) = (1/2)[a + b — |a — b|] with a,b € R, the
main formula implies that

“+oo

/ x—1/2 J
214 0z) + 1z +w— |z — w] v

0

S arctan[y/ (0 + 7)w] + 1 arctan

1+ 71w
VO+T V(I +7Tw)d ¢

A polynomial-absolute value term has replaced the minimum term in a sense.

The second integral formula is given below. Compared to the previous lemma, the
parameter w now weights the variable x in the minimum, and the threshold value is set
to 1. The proof is mainly based on Lemma 2.1.

Lemma 2.2. For any 7,0,w € R such that 0 + 7w > 0, 0/w+7 >0, (14+7)0 > 0 and
(1+7)w/68 >0, we have

+oo

~1/2
x
- dx
/ 1+ 6z + 7 min(wz, 1)
0

=2 ;arctan q/g—i—T +;arctan M
VO + Tw w V(A+7)0 0 '

Proof. Using a basic property of the minimum, we can write

“+ o0 +oo

—1/2 —1/2
x x
/ - dr = / - dx.
1+ 6z + 7 min(wz, 1) 1+ 6z + 7w min(z, 1/w)
0 0

bl 9

Applying Lemma 2.1 with ”7w” instead of 7”7 and ”1/w” instead of "w”, we get

+oo
/ 1'71/2 e
1+ 0z + Twmin(z, 1/w)
0
[0+ Tw
w
/6
—_ +7—
w

1
1+ (rw)/w)b

arctan arctan

1+ (Tw)/w] }
0/w

1+ 7w }

1
—9d =
{\/G—f—rw

1
= 2<{ ——— arctan
{ 0+ Tw

So we have

1
+ ————=—arctan

1+71)0 0

—+oo

z—1/2
/ - dx
1+ 6z + 7 min(wz, 1)

0
6
A= +T
w

1
= 2<{ ———— arctan .
{ 0+ Tw }

This ends the proof of Lemma 2.2. O

1+7w
0

+ ; arctan
1+71)6

The role of the arctangent function in this formula is once again of crucial importance.
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Using the identity min(a,b) = (1/2)[a + b — |a — b|] with a,b € R, we also have

+oo

/ 3371/2 e
21+ 0z) + 1wz + 1 — |wz — 1]

0

= ; arctan g + 7|+ ; arctan w
VO +Tw Vw (1+7)0 0

The third integral formula is given below, with a change to the previous formula con-
cerning the effect of #. The proof is again based on Lemma 2.1.

Lemma 2.3. For any 7,60,w € R such that 0 +7 >0, (0 +7)w >0, (1 + 7w)f > 0 and
(1+7w)/(6w) >0, we have

“+ oo

—1/2
x
- dx
/ z + 60 4+ 7 min(wz, 1)
0

1 1 1+ 7w
=2 arctan[y/ (0 + 7)w| + ———— arctan .
{\/04—7' VI i (1+7w)o fw }
Proof. It follows from Lemma 2.1 that
oo o-1/2
/ - dx
1+ 0z + 7 min(z, w)
0
1 1 14+ 71w
=2 arctan[\/ (0 + T)w| + —————= arctan .
{\/9-1-7' VI i (14 1w)6 O }

Changing the variables as © = 1/y, the integral can be expressed as

“+ o0

/ x71/2 dr — / (1/y)71/2 B 1 J
1+ 60z + rmin(z,w) 1+0(1/y) + 7min(1/y,w) y? Y
0 “+ o0

—+oo

—1/2 —-1/2
y dy = / y dy
y+ 60+ tymin(1l/y,w) y+ 6+ 7min(1, wy)
0

y71/2

y+ 60 + 7min(wy, 1)

dy.

o\-é— o\-é—

Uniformizing the notation, we therefore have
400

—1/2
x
. dzx
/ x4+ 0 + 7 min(wz, 1)
0

1 1 1+ 7w
=2 arctan 0 + 7)w] + ——— arctan .
{\/0+T [V o] (1+7w)o Ow }

This concludes the proof of Lemma 2.3. (]
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Using the identity min(a,b) = (1/2)[a + b — |a — b|] with a,b € R, this integral formula

gives
+oo
2172

/ 2(x 4+ 0) + Twr + 1 — |wz — 1|
0

]dac

1 1 1+ 7w
= arctan[v/ (0 + 7)w] + ———— arctan _
VO+T VI )] (1+7w)o Ow

The last formula is given below. The proof is mainly based on Lemma 2.3.
Lemma 2.4. For any 7,0,w € R such that 0 + 7w > 0, 0/w+7 >0, (14+7)0 > 0 and
(1+7)w/8 >0, we have
+oo
=172

d
/ z 4+ 6 + 7 min(z,w) o

0
=2 ; arctan |4/ Q + 7 arctan w .
0+ Tw w (1+71)0 0
Proof. We can write
e -1/2 e o172
/ - dr = / . dz.
x4+ 6 + 7 min(z, w) 4+ 6 + Twmin(z/w, 1)
0

0
Applying Lemma 2.3 with ”7w” instead of ”7” and ”1/w” instead of "w”, we find that

oo 12

/ Twmin(x/w
x40+ in(z/w,1)
0

1 1+(7'w)/w:| }

1 10 4+ Tw
= 2<{ ——— arctan arctan
0+ Tw w 1+ (tw)/w)0 0/w
1 /6 1 (147w
= 2{ ——— arctan — + 7| + ————= arctan —_— .
{\/0+TUJ w /(1+7)0 0 }

We therefore have
oo
z1/2

d
/ z 4+ 6 + 7 min(z,w) v
0

:2{;arctan q/g—i—r
0+ 1w w

This ends the proof of Lemma 2.4.
Using the identity min(a,b) = (1/2)[a + b — |a — b|] with a,b € R, we also derive

1
arctan ﬂ

1
F e 0 }
O

+oo

/ $71/2 e
2z +0) + 7z + wr — |z — W]

0

= ;arctan \/ngT +;arctan w
VO + Tw w 1+7)0 0

These lemmas are new, and in particular are not included in the reference book [6].
For the purposes of this article, we will use them as key tools in establishing both simple
and double integral inequalities. They are, of course, of independent interest and can be
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used in a variety of other analytical contexts. In particular, we have in mind operator
theory or the formulation of new integral transforms.

3. SIMPLE INTEGRAL INEQUALITIES OF THE WEIGHTED HOLDER-TYPE

The theorem below contains four simple integral inequalities of the weighted Holder
type. As mentioned earlier, the corresponding weight functions can be described as three-
parameter ratio-minimum functions. The proof is based on the Holder integral inequality
and the previous lemmas.

Theorem 3.1. Letp > 1, ¢=p/(p—1) and f: (0,+00) — (0,400) be a function such
+oo

that [ x(q_l)/qu(x)dm < +00. Then the four simple integral inequalities below, called
0

Simple integral inequality 1, 2, 8 and 4, hold.

Simple integral inequality 1: For any 7,0,w > 0 such that 0+7 > 0, (0 +7)w >
0, (1+7w)8 >0 and (14 7w)/(fw) > 0, we have

+o00

/ 1+ 0z + Tmln(x w)]i/p f(@)dz
0

< ol/p arctan[\/ (0 + 7) —————— arctan
N { VO+T : (14 Tw)9

+o00 1/q

/ NCEICT T

0

1+ 7w
Ow

1/p
} y

where the integrals on the right-hand side must converge.

Simple integral inequality 2: For any 7,0,w > 0 such that 0+7w > 0, 0/w+7 >
0, (1+7)0 >0 and (1+7)w/0 > 0, we have

+oo

1
/ [1+ 0z + 7 min(wz, 1)]1/,, f(z)dz

0
[0
—+7|+
w

1+ 7w
0

arctan

arctan |:

1/p
} .

<o) 1 N
- VO +Tw (1+m7)0
1/q

x(q—l)/qu (l‘)di’

O\jg»

where the integrals on the right-hand side must converge.

Simple integral inequality 3: For any 7,6,w > 0 such that 0+7 > 0, (0 +7T)w >
0, (1+7w)8 >0 and (14 7w)/(fw) > 0, we have

+

/ [z +6+ Tmln(wa: 1))/ f(z)dz
0

1/p
1+ 7w
< ol/p arctan[y/ (0 + 7) ———— arctan X
- {\/9+ [ \/ 1+7’w)9 Ow }
+o0o 1/q
/ LT
0

where the integrals on the right-hand side must converge.
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Simple integral inequality 4: For any 7,0,w > 0 such that 0+7w > 0, /w47 >
0, (1+7)0 >0 and (1+7)w/6 > 0, we have

—+o0

1
/ [z + 0 + 7 min(z,w)]'/? J(w)da

0
/6
— 4T
w

1
<otPl -~ arctan
0+ Tw

1/q

+oo
/ 2@V g
0

(14 7)w
0

1/p
} .

1
+ ——————=arctan
(1+7)0

where the integrals on the right-hand side must converge.

For each of these inequalities, we can eventually apply w — 0.

Proof. For the sake of redundancy, we will only give the details for Simple integral in-
equality 1. The other proofs follow the same lines; each uses the Hoélder integral inequality
and one of the lemmas established in the previous section.
Simple integral inequality 1: Using 1 = 2~/ P21/ (20)  which leads to an ap-
propriate product decomposition of the integrand, and the Holder integral in-
equality with the parameters p and ¢, we get

+oo +oo

1 2= 1/(2p) 1/ (2p)
dx = d
[ Trarrmear @ = | o s
0 0
“+o00 1/p +o0 1/q
< / . dx / .CEq/(?p)fq(m)dx
- 1+ 0z + 7 min(z,w)
0 0
It follows from Lemma 2.1 and the identity p = ¢/(¢ — 1) that
+oo 1/9 1/p 400 1/q
/ a”Y dr / xq/(2p)fq(:c)dm
1+ 0z + 7 min(z, w)
0 0
1/
—ol/p ! arctan[y/ (0 + 7)w] + 1 arctan 1+7w ! %
vO+T V(14 Tw)o Ow

+o00 1/q
/ :C(q_l)/qu(:C)d:E
0

We therefore have
“+ oo

1
/ [1+ 0z + 7 min(x, w)]/? f(z)dz
0

1/p
1 1 1+ 7w
<2/ t 0 e t
< { N arctan[y/ (6 + T)w] + T arctan % } X

+4o00 1/q

/ 20/ 95
0

The desired result is obtained.
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Simple integral inequality 2, 3 and 4: To prove Simple integral inequality 2, 3
and 4, it is sufficient to proceed as we did for Simple integral inequality 1, but
using Lemmas 2.2, 2.3 and 2.4 instead of Lemma 2.1, respectively.

This concludes the proof of Theorem 3.1. |

By considering the weight function

1
" 14 0z + 7 min(z,w)’

W(z)

the first simple integral inequality reads as follows:
+oo oo 1/q
[ W@ e < Co | [ 20 @]
0 0

where

Cone = ol/p { 14+ 71w

Ow

1
arctan[y/ (6 + 7)w] + ————= arctan
+7 (1+7w)o

}1/17

This can also be written as

q +o0

“+oo
/ WYP(2) f(z)dz| < CZ,, / 297V 79 (1) d.
0 0

This is a new weighted Holder integral inequality in the literature. Similar formulations
can be presented for the other integral inequalities.

The main applications of these simple inequalities can be found in the analysis of partial
differential equations, estimates in harmonic analysis, and the study of function spaces
where weighted norms are involved.

As a side note, using the identity min(a, b) = (1/2)[a+b— |a —b|] with a,b € R, Simple
integral inequality 1 implies that

—+o0

1
/ B0 102 17l f oo —wir! @
0
1 1 1+ v
< arctan[+/ (0 + 7)w] + ————= arctan T X
0+ (I1+7w)e Ow

1/q

+oo
/ 2@/ 93y
0

The setting can therefore go beyond the strict inclusion of a minimum term.

4. DOUBLE INTEGRAL INEQUALITIES OF THE HARDY-HILBERT TYPE

New double integral inequalities of the Hardy-Hilbert type are given in the theorem
below. They are mainly concerned with a three-parameter ratio-minimum kernel function
involving the product of the variables, i.e., xy.

Theorem 4.2. Letp >1,q=p/(p—1) and f,g: (0,400) — (0,+00) be two functions
+oo +oo

such that [ xp/zflfp(ac)dx < 400 and [ yq/%lgq(y)dy < +00. Then the four double
0

0
integral inequalities below, called Double integral inequality 1, 2, 8 and 4, hold.
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Double integral inequality 1: For any 7,0,w > 0 such that 0+7 > 0, (0+7)w >
0, (1+7w)d >0 and (14 Tw)/(0w) > 0, we have

+oo

1
// 1+ 02y + 7 min(zy, w) f(x)g(y)dady
0

1 1 1+ 7w
<2 arctan[v/ (0 + 7)w] + ————— arctan X
o {\/Q—&-_T VA ol 1+ 7w)é Ow }
+oco 1/p +o0 1/q
/x”/z’lfp(w)dft /yq/2’lgq(y)dy ,
0 0

where the integrals on the right-hand side must converge.
Double integral inequality 2: For any 7,0,w > 0 such that 0+7w > 0, 0 /w+T >
0, (14+7)0 >0 and (1+ 7)w/0 >0, we have

“+oo

1
// 1+ 0zy + 7 min(way, 1) I (@)g(y)ddy
0

<2 ; arctan |4/ Q +7| + ; arctan w X
- VO + Tw w V(I3 +T1)8 0

4o /P 140 1/q

/ a2 P (2)dx / y P (y)dy |

0 0

where the integrals on the right-hand side must converge.
Double integral inequality 3: For any 7,0,w > 0 such that 0+7 > 0, (0+7)w >
0, (1+7w)8 >0 and (14 7w)/(0w) > 0, we have

+oo

1
// zy + 6 + 7 min(wzy, 1) f(x)g(y)dzdy
0

1 1
<2 { T arctan[y/ (0 + 7)w] + m arctan

+oco 1/p +o0 1/q
/ 2?27 P (@) da / vl (y)dy|
0 0
where the integrals on the right-hand side must converge.
Double integral inequality 4: For any 7,0,w > 0 such that 0+7w > 0, 0 /w+T >
0, (14+7)0 >0 and (1+ 7)w/0 >0, we have

“+oo

1
// 2y + 0 + 7 min(zy, w) F(@)g(y)ddy
0

1+ 7w
Ow

}X

<2 ; arctan |4/ Q + 7| + ; arctan w X
- VO +Tw w V(I3 +T1)0 0

400 /P 1 4o 1/q

/ a2 P (2)dx / y 2 (yydy |

0 0

where the integrals on the right-hand side must converge.

For each of these inequalities, we can eventually apply w — 0.
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Proof. For the sake of redundancy, we will only give the details for the proof of Double
integral inequality 1. The other proofs follow the same lines; each uses the Holder integral
inequality and one of the lemmas established in Section 2.

Double integral inequality 1: Using 1 = g!/(20)y=1/(2P);;=1/(20)1/(2P) yn( the
identity 1/p 4+ 1/q = 1, which lead to a suitable product decomposition of the
integrand, and the Holder integral inequality at the parameters p and q, we get

+ oo

1
// 1+ 0zy + 7 min(zy, w) f(x)g(y)dxdy

/(29) 71/(217) 21/ (29) 1/<2p)
dxd
// 1+ Hmy + 7'mm(9ry7 w)]1/p flz) % 1+ 6zy + Tmm(xy w)]l/q 9(y)dzdy
sml/P(T,e,w)sB 9(1,0,w), ()

where

1+ Ozy + 7 min(zy, w)

T geleay-
Arb.0) = | . 17 (@)dedy
0

and

s ~1/2,,a/(2p) .
0 = dxdy.
B(r,0,w) // 1+99:y+7'min(a:y,w)g (y)dwdy
0

Let us determine the expressions of 2((7, 8, w) and B(7, §,w), one after the other.

For 2(7,0,w), exchanging the order of integration, which is possible by the
Fubini-Tonelli integral theorem, changing the variables as v = xy with respect to
y, using the identity ¢ = p/(p — 1) and applying Lemma 2.1, we obtain

T p/(20)-1/2 gp T (xy) /2
A(r,0,w) = [ = fP(x) T 0oy + rmin(ay.) zdy | dz
0 0
700 v/2 L7 () +/Oo o du | dx
J 14 0u+ 7min(u,w)
0 0
+oo
/ p/2— 1fP
0
1 1
[2 { arctan[ 0+ m)w] + ﬁ arctan "g{;w }:| dz
+ Tw

1 1 1+ 7w
=2 arctan[v/ (0 + 7)w] + ———— arctan X
{\/94—7 [V o] v (1 +7Tw)é Ow }

2?27 P (1) d. (2)

o\g
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For B(r,0,w), we proceed as for (7, 0,w), but changing the variables as v =
ry with respect to . We find that

[e’s}

+ o)1/ +oo (xy)71/2
B(r,0 = 2/3eP)= a dz| d
(,0,w) Yy 9% (y) / T vr— A K
0
—+oo
—1/2
_ q/2—-1 _q v dv| d
y 9'(y) /1+0v+7’min(v,w) v

0

y"* " g% (y) x

—i

0
1 1 1+7w
2 arctan 0 + 7)w] + ——— arctan d
[ { 0+t [V o] 1+ 7w)d Ow }] 4
=2 ! arctan[y/ (6 + 7)w] + 1 arctan 1+ 7w X
0+ 1+ 7w)o O
—+o0
/ y* g (y)dy. (3)
0

Substituting the expressions of A(7, 0, w) and B(7,,w) determined in Equations
(2) and (3) into Equation (1), and using the identity 1/p+ 1/g = 1, we get

+oo

1
// 1+ 6zy + 7 min(zy, w) f(x)g(y)dzdy
0

1 1 1+ 7w
< -
< [2 { N arctan[/ (0 + 7)w] + R arctan 70 } X
+o0 1/p
/ 2?27 P (1) da X
0
1 1 1+ 7w
2 arctan[/ (0 + 7)w] + ————== arctan X
{ VO+T V4] (I+7w)f fw }
+o0 1/q
/ y"? 7 g (y)dy
0
=2 ! arctan[/ (6 + 7)w] + . arctan 17w X
VO +T V(I +Tw)e Ow
+o0 1/p +o0 1/q
/ 2?27 P (2)da / y"* 7 g (y)dy
0 0

The desired inequality is established.

Double integral inequality 2, 3 and 4: For proving Double integral inequality
2, 3 and 4, it is sufficient to proceed as above, but using Lemmas 2.2, 2.3 and 2.4
instead of Lemma 2.1, respectively.

This concludes the proof of Theorem 4.2. |
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As a special case, applying w — 0, we obtain min(z,w) — 0, and Theorem 4.2 gives
+o00 +oo 1/p +oo 1/q
1 ™ _ _
—f(x drdy < — 227 (3)dw /4/21‘1 d
//1+9myf( )9(y) Vs / [ () v g (y)dy
0 0 0
This is a well-known variant of the Hardy-Hilbert integral inequality. See, for example,
[16]. The other cases leading to new double integral inequalities.
Using the identity min(a,b) = (1/2)[a + b — |a — b|] with a,b € R, the double integral
of Double integral inequality 1 implies that

+o0
1
Z/ 2(1 + Ozy) + [y + w — |2y — W] f(@)g(y)dzdy

1 1 147w
< arctan[v/ (6 + 7)w] + ————— arctan X
{\/9+7‘ VI i V(A1 +Tw)e fw }
400 1/p +oo 1/q
/ a7 P (@) dw / g (y)dy
0 0

Similar expressions can be obtained for Double integral inequality 2, 3 and 4. These
reformulations show the relativity of using the minimum term and the flexibility of our

results.
The theorem below proposes a general framework that has the property of unifying the
Hardy-Hilbert integral inequality and [11, Theorem 2].

Theorem 4.3. Letp > 1, q =p/(p—1), 7,6,w > 0 such that (14+7)8 > 0, 6/[(1+7)w] > 0,
0+ 71w >0and w/(0+Tw) >0, and f,g: (0,+00) — (0,400) be two functions such that

+oo +oo
J @7 fP(x)de < 400 and [ y?*7'gU(y)dy < +oo. Then we have
0 0

“+ o0

1
{] x + 0y + T min(z, wy) f(@)g(y)dzdy

1 1 14+ 7w
<2 arctan[+/ (0 + 7)w] + ———— arctan X
o {\/9+T VA ol V(1 +Tw)é Ow }

+oo /P 400 1/q
/ a7 P (x)da / v (y)dy |
0 0

where the integrals on the right-hand side must converge. Note that we can eventually
apply w — 0.

Proof. Using 1 = /(0y=1/(2p);;=1/(20),1/(2P) 41 the identity 1/p 4+ 1/¢ = 1, which
lead to an appropriate product decomposition of the integrand, and the Holder integral
inequality at p and ¢, we obtain

+oo
1
// z + 0y + 7 min(z, wy) F(z)g(y)dzdy
0
+oo
21/(20)y=1/(20) 21/, 1/(20)
= dxd
// [z + 0y + T min(z, wy)]|/P f(@) x [x+0y+T min(m,wy)}l/qg(y) ray
0

< &VP(r,0,w)@"(1,0,0), (4)
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where

ZP/ B0y =1/2
(1, 0,w) // fP(z)dzdy

z + 0y + T min(z, wy)

and

x—1/2 CI/(2P)
D(r,0,w) // )gq(y)dxdy.

T+ 0y + Tmln(:r wy

Let us determine the expressions of ¢(1,0,w) and D(7,0,w), one after the other.

For €(7,0,w), exchanging the order of integration, which is possible by the Fubini-
Tonelli integral theorem, changing the variables as u = y/x with respect to y, using the
identity ¢ = p/(p — 1) and applying Lemma 2.2, we obtain

T /(24)~1/2 N (y/x)~/? 1
0. w) = p/(20)— P —dy| d
e(r,6,w) / v (@) / 1+ 6(y/x) + 7 min(1, wy/x) e

0

oo P oo ~1/2
_ p/2—1 ¢p
o / v (=) / 1 +9u+rmin(1,wu)du du

0 0

“+oo
= / 2?27 P (1)

0

2 L arctan — 47|+ __ arctan M dx
VO +Tw V(1 +7)0 ¢
=2 ; arctan —+7| + ; arctan M X
VO +Tw V(A+7)0 0
—+oo
[ o s 5)
0
For ®(7,0,w), we proceed as for €(7,0,w), but with the change of variables v = «/y with
respect to x, and Lemma 2.4. We find that
+o00 +oo
—~1/2
_ a/(2p)—1/2 q (z/y) 1
0 0

+o0 +oo

Vg (y) / v dv| dy
J v+ 60+ 7min(v,w)

<

0

2 ; arctan —+7| + ; arctan w d
Vot rw S0 0 Y
; arctan —+7| + ; arctan M X
VO + Tw V(1 +7)8 0
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Substituting the expressions of €(7,0,w) and D(7,0,w) obtained in Equations (5) and
(6) into Equation (4), and using the identity 1/p 4+ 1/¢ = 1, we obtain

+oo
1
[/$+ay+Tmin(x7wy)f(w)g(y)dxdy

<[2{;arctan \/E+T + ————— arctan M }><
B VO + 7w w (147)0 0
too 1/p
/ a:p/Q_lfp(m)d;L’ X
0
[2{\/ﬁarctan \/ngT +marctan % }x
too 1/q
/ v 2 g (y)dy
0
—2{;arctan \/Q—FT +;arctan w }x
N EE w 1+7)0 0
+oo /P T 400 1/q
/ 2?27 P (@) da / Y2 g (y)dy
0 0
This ends the proof of Theorem 4.3. ]

In the framework of this theorem, if we take 7 =1, # = 1 and w — 0, then the double
integral simplifies to:

7/0030 Jlr ” f(x)g(y)dady

and the constant factor becomes

1 [0 1 B
2{—0—|——Tw ;4‘7’ +(1—+T)0 }—71’

The corresponding inequality thus reduces the Hardy-Hilbert integral inequality.
As another important special case, if we take 7 =1, # = 1 and w = 1, then the double
integral simplifies to:

(147w

arctan
%

arctan |:

“+oo
1
{/x+y+min(m7wy)f(w)g(y)dwdy

and the constant factor becomes
1
+ ———arctan

1 /0
2 { ——— arctan — 4T
{ 0+ Tw w 1+7)0

1 1
=2 {— arctan [\/5] + — arctan [\/5] } = 2v/2arctan [\/ﬁ] .
V2 V2
The corresponding inequality thus reduces to [11, Theorem 2].
Theorem 4.3 therefore unifies these two key results and adds a greater degree of flexi-
bility thanks to the parameters 7, 6 and w.

1+ 7w
0
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Just activating the parameter w, so by taking 7 = 1 and § = 1, then the double integral
simplifies to:

+oo
1
dxd
// m+y+min($7wy)f(ﬂf)g(y) zdy
0
and the constant factor becomes

2{;arctan 1/9—&—7'

0+ 1w w
1 1 1

=2 1/ —+ 1| + —= arctan | V2 ,

{\/1—1—(‘1 w \/§ [ w]}

leading to the following double integral inequality:

(147w
0

1
+ —————=arctan

(1+7)0

}

arctan

“+oo

{/ r+y+ nllin(x, wy) f(z)g(y)dzdy

JE 41
w

+ i arctan [\/%] } X

<2 ! arctan

- vitw V2
+oo 1/p +o0 1/q
/wp/z*lfp(rr)dx /yq/z’lgq(y)dy
0 0

This result captures the complexity of the problem and shows how a simple modulation of
the variable y affects the constant factor in a sophisticated way. For numerical illustration,
three examples of this result are given below.

Numerical example 1: If we take p =2, f(z) = e 7, g(y) = e™¥ and w = 2, then

we have
+o0 too
// ! f(@)g(y)dzdy = // L e " Vdxd
z + y + min(z, wy) 9 v= z + y + min(z, 2y) 4
0 0
~ 0.766238,
2 ! arctan |4/ l + 1| + L arctan [\/ 2w]
V14w w \/5
1 1 1
= 2<{ — arctan — 4+ 1| + — arctan(2
- : 75 arctan( >}
~ 2.58889,
“+oo +oo
/ 227 (g)dx = / e *dr =05
0 0
and
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so that
1 1 1
2 arctan — 4+ 1| + — arctan [\/ 2w] X
1+w w V2
+oo /P 1400 1/q
/ o2 fP () da / ¥ g (y)dy
0 0

~ 2.58889 x 0.5/ x 0.5'/7 = 1.294445.
The inequality is illustrated since 0.766238 < 1.294445.
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Numerical example 2: If we take p = 2, f(z) = (1/2%)e '/, g(y) = (1/y?)e /¥

and w = 2, then we have
—+oo

{/ T+y+ nllin(gg wy) f(@)g(y)dzdy

—+oo

1 1 /a1y
= X dxd
// T +y+ min(z,2y)  z2y? ¢ ray
0
~~ 0.240245,
2 ! arctan |4/ 1 + 1| + ! arctan [\/2(.0]
Vitw w V2
1 1 1
= 2{ — arctan — 4+ 1| + —= arctan(2
\a 31+ ggermcs )
~ 2.58889,
+oo “+ oo 1
/ 2?27 P () de = / —4672/1dm =0.25
T
0 0
and
+oo +oo 1
/yq/%lgq(y)dy: / EG*Q/ydy = 0.25,
0 0
so that
1 1 1
2 arctan — + 1| + — arctan [\/ 2w] X

1+w w V2

400 1/p +o00 1/q

/ o2 fP (w)da / y* g (y)dy

0 0

~ 2.58889 x 0.25'/2 x 0.25'/2 = 0.6472246.
We obviously have 0.240245 < 0.6472246, supporting the theory.

Numerical example 3: If we take p = 2, f(x) = 6_12, g(y) = eV and w = m,

then we have
+ oo “+ oo

1 1 .2 .2
dzdy = Y dzd,
// x+y+min(x,wy)f(x)g(y) vy // :E+y—|—min(x,7ry)e Ty
0 0

~ 0.811612,




20 CHRISTOPHE CHESNEAU EJMAA-2023/11(2)
1 /1
2 arctan —4+1
{ V14w w
/1
—+1
T

1
= 2{ arctan
+oo +oo 1
/ p/2— 1fp( — / —2a% dr = = E =~ 0.626657
2V 2
0

+ % arctan [\/ﬂ] }

+ L arctan [\/ﬂ] }

1+7 V2

and

+o0 +o0

/ 9/2=1 ga( / e 2 dy \/g ~ 0.626657,

0

so that

2 ! arctan |4/ 1 +1| + = arctan [\/ﬂ] } X

Vitw w V2
+o0 /P rieo 1/q

/;r/2 LfP(x) /y/2 "% (y)dy

0
~ 2.52415 x 0.626657"/2 x 0.626657"/% = 1.581776.
As expected, we have 0.811612 < 1.581776.

As a side note, using the identity min(a,b) = (1/2)[a + b — |a — b|] with a,b € R, the
double integral inequality in Theorem 4.3 implies that

+
1
[/ 2(z + 0y) + Tl + wy — |z — wyl] f(@)g(y)dedy

S{;arctan \/g—i-T +;arctan{ M }x
VO + Tw w (1+7)0 0

400 /P 1 4oo 1/q

/ o2 P () da / y* g (y)dy

0 0

This alternative formulation may be of interest when dealing with a double integral where
there is a ratio term with an absolute value.

5. CONCLUSION

This article introduces new integral inequalities involving three-parameter ratio-minimum
weight or kernel functions. In particular, we derive simple inequalities of the weighted
Holder type and double integral inequalities of the Hardy-Hilbert type. The arctangent
function turns out to be a key component in characterizing the upper bounds. These
generalizations extend the classical results by introducing greater flexibility through ad-
justable parameters. The detailed proofs provide a solid foundation for further mathe-
matical exploration. The limitation of the study remains the mathematical complexity of
the inequalities, but it remains well balanced with their degree of adaptability. Future
research may focus on extending these inequalities to other functional settings or applying
them to the analysis of differential and integral equations.
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