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Abstract: Bridge inspection become essential for ensuring structural safety 

and longevity. Recently, Artificial Intelligence (AI) has become significant 

in improving bridge assessment by supporting different approaches that 

enhance maintenance planning and minimize associated costs. Objective of 

this study is to investigate the more accurate and applicable AI-driven 

technique for assessing reinforced concrete bridges. Therefore, the presented 

study proposed two different techniques to estimate the current Bridge 

Condition Rating (BCR) of reinforced concrete (R.C.) bridges: 1) fuzzy 

decision-making and 2) Markov chain modelling. This paper focused on a 

corrosion attack as the main defect utilized to assess the bridge condition. 

The dual methods depend on visual inspection, applying field and laboratory 

tests, and reviewing the historical data of the inspected bridge to estimate its 

condition rating. The fuzzy decision model is used to find a correlation 

between corrosion degree and concrete surface condition to estimate the 

Bridge Condition Rating (BCR). The Markov chain model is applied to 

predict the current and the future Bridge Condition Rating (BCR) and when 

the bridge will reach the critical condition. The service life for each bridge 

element is evaluated due to the total time required for corrosion based on 

carbonation and chloride attack. The proposed models are validated through 

a real case study of R.C. bridge, and the results demonstrate that the fuzzy 

model is less accurate compared to the Markov chain. The introduced models 

provide valuable insights to provide proper Maintenance, Repair, and 

Replacement (MRR) decisions for the bridges. 
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1. Introduction  

 

Civil infrastructure systems could be classified into roadways, bridges, buildings, and water 

and sewer networks. Meanwhile, statistics show that 98% of its domestic cargo depends on 

this road network and bridges, demonstrating their significant role in the country's economy 

and people’s daily activities [1]. Deterioration and degradation are the most popular issues 
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for the bridges, which are essential components of infrastructure systems. In the United States, 

22.7% of the bridges are either structurally deficient or functionally obsolete, according to 

the American Society of Civil Engineers (2017). In 2006, the cost of eliminating all existing 

bridge deficiencies was estimated at $850 billion [2,3]. The average age of 607,380 bridges 

in the US was 42 years old in 2013 [4]. Numerous factors affect RC bridges; deterioration 

leads to different defects, which reflect the main challenge in bridge inspection programs. 

Some of them belong to design, techniques used for construction, materials, aging, excessive 

loads, environmental exposure, and maintenance of the structure in service [5]. Bridge 

inspection and performance assessment are important in many countries.  

It’s worth mentioning that there are several categories of bridge inspection that reflect the 

intensity of the inspection [6,7]. Mainly, visual inspection is used to evaluate the service 

statuary of the bridges, which can be applied for condition assessment [8]. The diagnosis and 

evaluation of current conditions are the main tools for concrete structure management [9]. 

The authorities around the world have a desire to develop solutions to periodically inspect 

their bridges and to support maintenance activities. They used the bridge management system 

(BMS), which is a visual inspection-based decision support tool, to analyze engineering and 

economic factors and to assist the authorities in taking the decisions regarding maintenance, 

repair, and rehabilitation of bridge structures at a suitable time. In order to take the best 

decision, it is necessary to measure the deterioration of bridges using several Bridge 

Condition Rating (BCR) scales [10,11,12,13]. Generally, it is rare to find an effective, clear, 

and practical system to assess the bridge condition and predict its future deterioration to make 

a decision between three strategies: (a) maintenance, (b) repair, or (c) rehabilitation. 

Over the past years, a lot of studies were competing to integrate a comprehensive study for 

structural safety assessment. Abdelalim [14] suggested an approach for rehabilitated 

reinforced concrete buildings based on a probabilistic deterioration model. The model took 

into account the effects of various maintenance options because of the annual maintenance 

cost. Abdelalim et al. [15] applied a Markov chain model to predict the future building 

condition throughout its life cycle. Ali Mohamed et al. [9] introduced a framework for 

building condition assessment based on building information modelling (BIM). The system 

was divided into two models: the condition assessment model and the deterioration predictive 

model. Nevertheless, the previous models have been designated for RC buildings without 

considering other types of structures. Alsharqawi et al. [16] developed a condition rating 

index utilizing visual inspection in conjunction with ground-penetrating radar (GPR) 

technology to assess subsurface defects. The quality function deployment (QFD) 

methodology was applied for evaluating bridge conditions, while the k-means clustering 

technique was employed to determine the thresholds among various ratings. Their assessment 

depended only on a single nondestructive assessment technique and one clustering algorithm, 

which decreased its accuracy. Rhee et al. [17] proposed a dielectric constant curve that can 

be applied to the assessment of asphalt condition-covered concrete bridge decks, considering 

the concrete's age. Ground penetrating radar (GPR) technology was used in the field survey 

to obtain a condition assessment. Rogulj et al. [18] applied fuzzy analysis to estimate the 

bridge condition. They depended only on visual inspection for bridge condition assessment. 

The bridge components are divided into three elements: superstructure, substructure, and 
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equipment. Each element rating evaluated by experts was defuzzied according to defined 

fuzzy sets, membership functions, and linguistic values. Additionally, ratings for every 

element are assigned a fuzzy structural importance. Finally, the centroid method was applied 

for defuzzifying the component rating. Xia et al. [19] established an approach based on 

inspection reports to estimate the Bridge Condition Rating (BCR). Three levels were 

combined to analyze the bridge condition assessment: component, unit, and system levels. 

The subjective condition rating was divided into five categories: excellent, good, fair, serious, 

and failed. Information from inspection reports was read using an LSTM neural network to 

extract the necessary feature for estimating the Bridge Condition Rating (BCR). The main 

limitation is related to the requirement of a large amount of data for training the neural 

networks. Bertagnoli et al. [20] assessed the safety level of several damage scenarios for 

bridge decks using 3D global non-linear numerical analysis. The ultimate limit state due to 

the safety loss of the damage level was used to evaluate the safety level of the deck. The 

damage threshold was defined in terms of measurable static parameters. Shivam [21] assessed 

the bridge using an inventory of bridges that contains the number and measurement of each 

type of component. At the last stage, the condition of each component was assessed based on 

its percentage of distress in order to observe its severity.  

Although there are different techniques employed for bridge condition assessment, it is still a 

challenge to determine the most effective method because there aren't enough studies that 

compare different approaches. Also, most of the literature studies applied their assessment 

methods on the bridge deck only and ignored the other parts of the bridge. On the other hand, 

deep learning algorithms are suffering from limited transparency and require high 

computational cost during training. Additionally, the previous studies are focusing on the 

visual inspection and inventory data to assess the current condition of the structure. They 

ignored that the inspectors may be required to carry out non-destructive and destructive tests, 

followed by laboratory tests to diagnose the structural condition to get an accurate Bridge 

Condition Rating (BCR).  

Thus, the presented study has a desire to compare different techniques to assess the reinforced 

concrete bridges. Among the two methods compared in this paper, dual AI-based methods 

are selected in recognition of the significance of Artificial Intelligence (AI) in the evaluation 

of reinforced concrete bridges. The current research adopted fuzzy decision-making and 

Markov chain modelling to estimate the overall Bridge Condition Rating (BCR). Fuzzy 

theory is applied because of its ability to deal with uncertainty, flexibility, and generality in 

how problems are formulated and resolved. Also, it gives an opportunity to incorporate all 

input facts to make well-informed decisions. It is useful for membership measures and rule-

based modelling. Furthermore, it doesn’t require high computational cost resources for 

training compared with other AI techniques [22]. For simpler systems, fuzzy logic has proven 

to be very successful and flexible enough to be understood by humans. For more complicated 

systems, it has been demonstrated to be more demanding. Thus, fuzzy logic is widely used in 

complicated systems where it is difficult to identify the interdependencies between individual 

variables using other approaches [18]. On the other hand, the Markov chain is a stochastic 

process applied to capture parameter dependency and uncertainty variables such as load and 

resistance. It is distinguished by its wide range of applications and its practical applicability. 
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This model has been commonly used in the last decade for predicting the deterioration state 

of different infrastructure systems. It was applied based on the concept of predicting the 

deterioration of each element by accumulating its probability of transferring from one 

condition state to another at a given time. The model depends on the transition probability 

matrix [TPM] that is used to express the chance of changing from one condition state to 

another [23]. Once transition probabilities are established, the model is computationally 

efficient for deterioration prediction. 

The established techniques depend not only on visual inspection by bridge inspectors but also on 

applying field and laboratory tests and reviewing the historical data of the inspected bridge to estimate 

the Bridge Condition Rating (BCR). The first technique relied on applying a fuzzy decision model to 

find a correlation between the corrosion degree and concrete surface condition to estimate the condition 

rating for each bridge element to find the overall bridge rating. The second technique adopted the 

Markov Chain model to predict the future condition for each bridge element and to determine when the 

inspected bridge will reach the critical condition. Also, it was taken into consideration to generate the 

transition probability matrix [TPM] of the Markov chain and customise it to specific conditions by 

optimization.  Additionally, this paper estimates the bridge service life based on laboratory and field 

tests. The service life for the RC bridge is calculated due to carbonation attack and chloride-induced 

corrosion of the embedded steel bars. The proposed system aims to investigate the more applicable and 

accurate technique to diagnose the bridge condition state to take the proper decision. 

 

1.2 Novelty and Contribution of the Presented Research 

This study does not merely apply existing models but presents a comparison between fuzzy 

decision-making and Markov chain modeling in the context of reinforced concrete bridge 

condition assessment. Key contributions include: 

• Development of dual decision-support system tools includes real-time diagnosis (fuzzy 

logic) with future deterioration forecasting (MCM). 

• Application to real-world case data, including field inspection, laboratory tests, and 

historical records. 

• The calculation of the service life for the RC bridge due to carbonation based on the 

carbonation depth equation and chloride induced by applying the Life-365 software. 

• Optimization of [TPM] values through nonlinear programming based on actual 

inspection trends, providing a dynamic and accurate prediction approach. 

• Use of expert-informed weighting schemes to improve the relevance of condition scores 

across bridge components. 

• This study offers adaptive tool for infrastructure management. 

 

 

2. Methods and Tools 

 

The introduced research is applied to compare the Bridge Condition Rating (BCR) for R.C. 

bridges due to fuzzy decision model and Markov chain modelling. The data from the 

condition assessment contributes to create deterioration model to predict the state of the whole 

bridge to decide the best strategy reaction. Corrosion of the embedded steel bars is considered 
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in this paper as the main defect to estimate the Bridge Condition Rating (BCR) and its service 

life. The research procedure followed in this study is illustrated in Fig 1. 

 

 
Fig. 1: Research procedure to apply dual techniques for detecting the life cycle of RC bridges 

 

2.1.  Adopted Condition Rating System and Bridge Element Weights 

The National Bridge Inventory has the most common condition rating scale, which has been 

developed by the Federal Highway Administration (FHWA, 2012). It is used to evaluate three 

main components of bridges: deck, superstructure, and substructure. The scale ranged from 

9, which presents excellent condition, to zero, which refers to failed condition, as shown in 

Table 1 [24]. The Federal Highway Administration classification system (FHWA, 2012) is 

adopted in this approach system to categorise the deterioration of reinforced concrete bridges. 

 

Table 1: Scaling Deterioration as per FHWA, 2012 [24] 

Rating Description 

10-N Not applicable (Just Constructed) 

9 Excellent Condition, new Condition, not worthy deficiency. 

8 Very Good Condition, no repair is needed 

7 Good Condition, Some minor Problems for Minor maintenance. 

6 Satisfactory Condition, some minor deterioration for major maintenance. 

5 
Fair Condition, Minor Section Loss, Cracking or Scouring for minor Rehabilitation, 

Minor Rehabilitation is needed 

4 
Poor Condition, Advanced section loss, deterioration, Spalling or Scouring for major 

Rehabilitation, Major Rehabilitation is needed. 
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Rating Description 

3 
Serious Condition, Section Loss, Deterioration, Spalling or Scouring have seriously 

affected primary Structural components, Immediate Rehabilitation is needed. 

2 
Critical Condition, advanced deterioration of Primary Structural elements, Urgent 

Rehabilitation, the Structure may be closed until Corrective Actions taken. 

1 
Imminent Failure Condition, Major Deterioration or Section loss, Structure may be 

closed until Corrective actions which may put it back into light service. 

0 Failed Condition, Beyond Corrective action, Out-of Service 

 

On the other hand, the NY ranking system assigned relative weights for thirteen bridge 

elements as listed in Table 2. The current study used the Weighted Evaluation Method (WEM 

ASTM1957) to justify the weight importance of bridge elements. Weighted evaluation is a 

useful tool that helps decision-makers make suitable decisions. 
 

Table 2: Element weights in the NY rating system [24,25] 

 Component Weight 

1 Primary members 10 

2 Deck 8 

3 Abutment 8 

4 Piers 8 

5 Bearings 6 

6 Bridge Seats 6 

7 Wing walls 5 

8 Back Wall 5 

9 Secondary members 5 

10 Joints 4 

11 Wearing Surface 4 

12 Sidewalks 2 

13 Curb 1 

 

A question of which component element is more important than others based on the thirteen elements 

mentioned in the NY ranking system was discussed with experts with rich knowledge in the bridge 

industry in Egypt, Saudi Arabia, and the United Arab Emirates. The aim of the question is to be used 

in WEM to capture the opinion of experts regarding the important elements affecting the Bridge 

Condition Rating (BCR), especially for R.C. bridges, as shown in Table 3. 

 

Table 3:  Proposed element weights 

 Component Weight 

1 Primary members 15 

2 Deck  12 

3 Abutment 12 

4 Piers 12 

5 Bearings 9 

6 Bridge Seats 9 

7 Wing walls 7 
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 Component Weight 

8 Back Wall 7 

9 Secondary members 6.5 

10 Joints 4.5 

11 Wearing Surface 4.5 

12 Sidewalks 1 

13 Curb 0.5 

 

The weight of each element is compensated in equation (1) to evaluate the overall Bridge 

Condition Rating (BCR) [24]. 

 

𝐵𝐶𝑅 =
∑(𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑛𝑔×𝑊𝑒𝑖𝑔ℎ𝑡

∑𝑊𝑒𝑖𝑔ℎ𝑡𝑠
                                                                     (1) 

 

2.2 Predicting the Bridge Condition Rating (BCR) of Reinforced Concrete Bridges by 

Fuzzy Decision Model 

In this technique, the corrosion is considered the common symptom of distress and bridge 

deterioration. The article adopted a fuzzy decision model to find a correlation between 

concrete surface condition and corrosion degree. Abdelalim, A. M. [26] defined four degrees 

of corrosion as shown in Table 4.   

 

Table 4: Degrees of corrosion and how they affect surface condition of concrete [26] 

Corrosion Degree Steel Bars Condition 

Condition-1 Mill scale remains on the surface of steel bars, rust forms on the surface of 

reinforcing bars, but it is "thin”, and the bar is "solid" throughout; rust is not 

formed on the surface of concrete. 

Condition-2 Small region covered by the "partly floating rust" and the rust is spotty too 

Condition-3 "Floating rust" is seen across the entire circumstance or length of the 

reinforcement bars, although there is no observable loss of cross section area. 

Condition-4 "Loss of cross-sectional area" is observed in reinforcing bars. 

     

To create a correlation between corrosion degree and concrete surface condition, logic 

approach has been adopted with applying Mamdani’s Inference system. Concrete surface 

condition can be categorized into four conditions as shown in Table 5.  

 

Table 5: Degrees of corrosion /surface conditions 

Corrosion 

Degree 
Concrete Surface Condition 

Subjective Assessment of Concrete 

Surface 

Condition-1 Unchanged 6 

Condition-2 Slight 5 

Condition-3 Obvious 4 

Condition-4 Deteriorated 3 

 

Trapezoidal and triangular shapes of membership functions are the most common [27]. Some 

experts preferred the triangular membership and other preferred trapezoidal [28]. Thus, the 
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current study applies both trapezoidal and triangular shapes to compare the results between 

them. 

 

2.2.1 The Membership Functions 

The numerical value for corrosion degree is determined by the rate of corrosion based on 

the pH value. The corrosion degree is the first linguistic variable and takes linguistic values 

(low, moderate, significant, and critical) based on equations (2), (3), and (4) to be shown in 

Table 6. 

 

Let’s X=pH, Y=f(x) where f(x) is the rate of corrosion (mm/year) [26] 

𝑓(𝑥) =  − 0.5155 + (7.318/ 𝑋)                                     9.6< pH ≤14                            (2) 

𝑓(𝑥) = 0.25                                                                      3.6<pH≤9.6                            (3) 

𝑓(𝑥) = 1.484 − (5.016/ 𝑋)  + (4.541/𝑋 2)                 -∞< pH ≤ 3.6                             (4) 

             

Table 6: The numerical value of the corrosion rate based on pH values 

pH value f(x): Corrosion rate (mm/year) Corrosion degree 

14 0.007214286 

Low 

13.6 0.022588235 

13.2 0.038893939 

12.8 0.05621875 

12.4 0.07466129 

12 0.094333333 

11.6 0.115362069 

Moderate 

11.2 0.137892857 

10.8 0.162092593 

10.4 0.188153846 

10 0.2163 

9.6 0.25 

Significant 

9.2 0.25 

8.8 0.25 

8.4 0.25 

8 0.25 

7.6 0.25 

7.2 0.25 

6.8 0.25 

6.4 0.25 

6 0.25 

5.6 0.25 

5.2 0.25 

4.8 0.25 

4.4 0.25 

4 0.25 

3.6 0.441052469 
Critical 

-∞  
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The second linguistic variable is the concrete surface condition, which takes linguistic values 

(unchanged, slight, obvious, and deteriorated) based on bridge experts’ opinions and takes a value from 

3 to 6 as shown in table 5. Both variables are applied to create a correlation between corrosion degree 

and concrete surface condition to get the semi-quantitative condition for the bridge element. On the 

other hand, the output linguistic variables are related to FWHA (2012) [24] from rate 3 to 6, as shown 

in Table 7. 

 

Table 7: Semi quantitative condition rating score based on FHWA, 2012 [24] 

6 Satisfactory Condition 

5 Fair Condition 

4 Poor Condition 

3 Serious Condition. 

 

• First case: 

In the first case trapezoidal and triangular membership are applied for both inputs and output, 

as shown in the Fig.2 and Fig.3. 

 

 
(a)                                                                           (b) 

Fig. 2: Fuzzy sets of the input variables (first case) by MATLAB (R2021a): (a) Corrosion degree, (b) 

Concrete surface condition 

 

To determine the membership value correctly for a specific quantity in a linguistic term is a 

challenge and requires an experiment in order to define it properly. Furthermore, it is possible 

to subjectively determine the membership functions: the closer an element is to meeting a 

set's conditions, the closer its membership grade is to 1, and vice versa [29]. It’s worth 

mentioning that the shapes of the corrosion degree values of the membership function are 

narrow compared with the concrete surface condition membership function. The explanation 

can be related to the fact that the range values of the corrosion degree are determined by 

applying the equations of the rate of corrosion based on the pH values. Whereas the concrete 

surface range values are uncertainties and determined based on expert judgements. Fig. 3 

shows the range values of the membership function of the output variable in the semi-

quantitative condition. 

 

• Second case: 

The triangular shape is only applied in the second case for both input and output membership 

variables, and the range values for both inputs and output are shown in Fig. 4. 
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       Fig. 3: Fuzzy sets of the output variables (first case) by MATLAB (R2021a)  

 

     
(a) (b) 

 
                                         (c) 

                  Fig. 4: Fuzzy set for both input and output variables (second case) by MATLAB (R2021a): 

(a) The first input variable is corrosion degree; (b) the second input variable is concrete surface 

condition; and (c) the output is semi-quantitative condition rating. 

 

• Third case: 

Triangular and trapezoidal shapes are applied for input membership, while the output is only 

a triangular shape. The value ranges are shown in Fig. 5. 

 

2.2.2 Applying Fuzzy Decision Rules 

The semi-quantitative condition rating is determined by two fuzzy variables: corrosion degree 

and concrete surface condition. Because each of these variables has four membership 

functions, there could be a total of 42 (16) precondition combinations that influence the 

condition rating. These preconditions are formed by a set of fuzzy if-then rules, as shown in 

Table 8. 
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(a)                                                                     (b) 

 

                                                                                     (c) 

Fig. 5: Fuzzy set for both input and output variables (third case) by MATLAB (R2021a): (a) The first 

input variable is corrosion degree; (b) the second input variable is concrete surface condition; and (c) 

the output semi-quantitative condition rating. 

 

Table 8:  Fuzzy decision rule 

Rule no Corrosion degree 
Concrete surface 

condition 

Semi-quantitative 

condition rating 

1 Low (L) Unchanged (UC) Satisfactory (ST) 

2 Low (L) Slight (SL) Fair (F) 

3 Low (L) Obvious (O) Poor (P) 

4 Low (L) Deteriorate (D) Serious (S) 

5 Moderate (M) Unchanged (UC) Satisfactory (ST) 

6 Moderate (M) Slight (SL) Fair (F) 

7 Moderate (M) Obvious (O) Poor (P) 

8 Moderate (M) Deteriorate (D) Serious (S) 

9 Significant (SI) Unchanged (UC) Fair (F) 

10 Significant (SI) Slight (SL) Poor (P) 

11 Significant (SI) Obvious (O) Poor (P) 

12 Significant (SI) Deteriorate (D) Serious (S) 

13 Critical ( C) Unchanged (UC) Poor (P) 

14 Critical ( C) Slight (SL) Poor (P) 

15 Critical ( C) Obvious (O) Serious (S) 

16 Critical ( C) Deteriorate (D) Serious (S) 

2.2.3 Defuzzification Stage 

Defuzzification is the last step in a fuzzy process that converts the fuzzy results into real-

world values by applying several methods. The current study applied the centre of gravity 

method, which is defined by equation (5) [29]. Tables (9), (10), and (11) show the fuzzy 

process output after the defuzzification, which shows how the current proposed technique is 

working effectively. 
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               𝑢 =
∑ 𝐼𝑛 𝜇𝑛

𝑁
𝑛=1

∑ 𝜇𝑛
𝑁
𝑛=1

                                                              (5) 

Where: 

U: control action, In: value of interval, n: total no. of intervals. 
 

Table 9: Defuzzification of the fuzzy set for the first case 

Corrosion Degree Semi Quantitative Condition Rating Score 

0.5 4.01 4.01 4.01 4.01 4.01 3.87 3.35 3.41 3.35 3.35 

0.45 4.01 4.01 4.01 4.01 4.01 3.87 3.35 3.41 3.35 3.35 

0.4 4.01 4.01 4.01 4.01 4.01 3.87 3.35 3.41 3.35 3.35 

0.35 4.01 4.01 4.01 4.01 4.01 3.87 3.35 3.41 3.35 3.35 

0.3 4.5 4.5 4 .5 4.5 4.01 3.87 3.86 3.87 3.41 3.41 

0.25 5 5 5 4.5 4.01 4.01 4.01 3.87 3.35 3.35 

0.2 5.13 5.13 5.13 4.51 4.5 4.51 4.01 3.87 3.41 3.41 

0.15 5.68 5.68 5.68 5.12 5 4.51 4.01 3.87 3.35 3.35 

0.1 5.65 5.65 5.65 5.12 5 4.51 4.01 3.87 3.38 3.38 

0.05 5.68 5.68 5.68 5.12 5 4.51 4.01 3.87 3.35 3.35 

Concrete Surface 

Condition 
7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 

 

Table 10: Defuzzification of the fuzzy set for the second case 

Corrosion Degree Semi Quantitative Condition Rating Score 

0.3 4 4 4 3.87 3.32 3.38 3.32 

0.28 4.4 4.44 4 3.87 3.8 3.85 3.36 

0.23 5.03 4.54 4.29 4.33 4 3.87 3.36 

0.18 5.67 5.13 5 4.5 4 3.87 3.33 

0.13 5.61 5.11 5 4.5 4 3.89 3.39 

0.08 5.62 5.12 5 4.5 4 3.88 3.38 

0.03 5.67 5.13 5 4.5 4 3.87 3.33 

Concrete Surface Condition 6 5.5 5 4.5 4 3.5 3 

 

Table 11:  Defuzzification of the fuzzy set for the third case 

Corrosion Degree Semi Quantitative Condition Rating Score 

0.48 4 4 4 4 4 3.87 3.32 3.38 3.32 3.32 

0.43 4 4 4 4 4 3.87 3.32 3.38 3.32 3.32 

0.38 4 4 4 4 4 3.87 3.32 3.38 3.32 3.32 

0.33 4.29 4.29 4.29 4.29 4 3.87 3.72 3.73 3.38 3.38 

0.28 5 5 5 4.5 4 4 4 3.87 3.35 3.35 

0.23 5.02 5.02 5.02 4.52 4.21 4.26 4 3.87 3..34 3.34 

0.18 5.31 5.31 5.31 4.82 4.73 4.5 4 3.87 3.35 3.35 

0.13 5.66 5.66 5.66 5.13 5 4.5 4 3.87 3.34 3.34 

0.08 5.68 5.68 5.68 5.13 5 4.5 4 3.87 3.37 3.37 

0.03 5.68 5.68 5.68 5.13 5 4.5 4 3.87 3.32 3.32 

Concrete Surface 

Condition 
7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 
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As illustrated in Fig. 6, the fuzzy model produces the result output of each pair (corrosion 

degree, concrete surface condition) by applying rules. The three cases got approximately the 

same result.  

 

      
(a)                                                                                     (b) 

 

                                                                                             (c)                                                                                                    

Fig. 6: Surface viewer by MATLAB (R2021a) for: (a) first case, (b) second case, and (c) third 

case 

 

2.3 Predicting the Bridge Condition Rating (BCR) Of Reinforced Concrete Bridges by 

Markov Chain Model 

The Markov chain is a stochastic process has been commonly for predicting the deterioration 

state of different infrastructure systems. The model depends on the transition probability 

matrix [TPM] that is used to express the chance of changing from one condition state to 

another [23, 30]. There are no [TPMs] in the literature that can be generalised to all bridges 

all over the world. However, the biggest challenge in the Markov chain is how to create a 

transition probability matrix for each component in the bridge and update it in case of the 

availability of new data. Therefore, it is important to generate this matrix and customise it to 

specific conditions by optimization. This study assumed that the condition rating would not 

decrease by more than one state in a single year. The maximum rating of bridge components 

(deck, superstructure, substructure) at age zero is 9 on the FHWA rating scale, which 

represents a perfect condition of the bridge. Therefore, the initial state vector IP (0) for any 

component of a new bridge is [1, 0, 0, …. 0]. The lowest condition rating to be considered is 

3, because if it is less than that, the structure may be closed immediately. R is a vector of 
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condition ratings [9 8 7 6 5 4 3], and R ֨  is a transform of R'. The following sections will 

illustrate more details about the Markov chain model and its components: 

2.3.1 Spreadsheet Modelling for Markov Chains 

A spreadsheet model for Markov chains has been structured, including all formulations 

required in cells of Excel 2013.  The [TPM] is multiplied sequentially to raise it to the 

different powers from 1 to A as shown in equation (8). The initial condition state [IP0] is 

multiplied by [TPM] to calculate the future condition state [FPt] at any age (t). Finally, the 

single value of the predicted condition rating is calculated by multiplying [FPt] by the 

column vector [R֨].  

2.3.2 Optimizing [TPM] Probabilities 

Due to the initial [TPMs] arbitrary character, it is likely to produce an inaccurate condition 

rating. Thus, the objective of the optimization model is to find suitable values of the [TPM] 

in order to coincide the Markov predicted condition rating curve with the actual curve. 

2.3.3 Objective Function 

To achieve the optimized model the objective function is to minimize the error between the 

Markov predicted condition rating (𝑃𝐶𝑡) and the actual rating (𝐴𝐶𝑡) from, summed among 

the age (A) of the instance being considered as shown in equation (6) [23,31]. 

  

   𝑀𝑖𝑛 ∑ |𝑃𝐶𝑡 − 𝐴𝐶𝑡|
𝑡=𝐴 
𝑡=1                                                                                                     (6) 

 

Subject to: 

 

  𝑃𝐶𝑡 = [IP0]𝑥

[
 
 
 
 
 
 
𝑝11 𝑞1 0 0 0 0 0 0
0 𝑝22 𝑞2 0 0 0 0 0
0 0 𝑝33 𝑞3 0 0 0 0
0 0 0 𝑝44 𝑞4 0 0 0
0 0 0 0 𝑝55 𝑞5 0 0
0 0 0 0 0 𝑝66 𝑞6 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
𝑡

𝑥 [R֨]  Ɏ 𝑡; = 1,2,3,… . 𝐴         (7) 

 

Where; 0 ≤  Pi,i   ≤  1                                                                                                           (8) 

 [IP0]= |1  0  0  0  0  0  0|                                                                                                         (9) 

 

Additionally, some constraints can be used to optimise the [TPM] for a specific instance with 

a known condition rating (𝐴𝐶𝑡) from historical data. Thus, the error between the predicted 

condition rating and the actual rating should equal zero, as shown in equation (10) [23,31]. 

 

|𝑃𝐶𝑡 − 𝐴𝐶𝑡| = 0                                                                                                                              (10) 

 

2.3.4 Variables 

The diagonal probability values are the Pi,i values in the [TPM], as shown in equation (7). 

After optimisation was completed, the TPM reached the optimum values, and the Markov 

prediction became very close to the actual measure, as shown in Figs. 7 and 8 respectively. 
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Fig. 7:  Markov chain model before optimization Fig. 8:  Markov chain model after optimization 

 

The formula in the spreadsheet is non-linear; that is called a non-linear programming (NLP) 

problem and was solved by (SOLVER) which comes with the Excel software. For Non-Linear 

Programming (NLP), SOLVER uses the Generalised Reduced Gradient method [32]. 

 

2.4 Expected the Service Life for the Reinforced Concrete Bridge Elements 

The main cause of bridge deterioration could be related to steel corrosion. Carbonation, 

chloride-induced, and sulphate attacks are the main causes of reinforcement corrosion [33]. 

This article considers both carbonation and chloride-induced corrosion to estimate the 

corrosion rate and to predict the bridge service life as shown in the following sections: 

2.4.1 Service Life Prediction based on Carbonation Attack 

The corrosion process of embedded steel in concrete is a function of time. The corrosion 

operation can be divided into three stages as shown in equations (11), (14), and (19) 

[26,34,35,36]. Carbonation models typically show a relationship between carbonation depth 

and structure age. The depth of carbonation depends on many factors, such as water-cement 

ratio, cement type, and time. Equation (11) is used to determine the depth of carbonation in 

(mm) [9]. 

 

   𝐷 = 𝐶√T1                                                                                                      (11) 

             

Where; 

D: depth of carbonation which is less than maximum carbonation depth with (5 mm-10 mm) 

T: time for carbonation till reach embedded steel bars, C: coefficient of carbonation 

The coefficient of carbonation can be found by the following equation (12) [26,35]: 

 

 𝐶 =
46∗(

𝑤

𝑐
)−17.6

2.7
∗ C1 ∗ C2                                                                                  (12) 

 

Where; 

w/c: water cement ratio, C1: constant based on type of cement as shown in Table 12 

C2: constant based on the atmospheric condition of concrete as shown in Table 13  
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  Table 12: Values of constant C1 due to type of cement [26] 

Type of cement C1 

Ordinary Portland cement (type I) 1 

Ordinary Portland cement (type II) 0.6 

Ferrous cement (ferrous slag 30% - 40%) 1.4 

Ferrous cement (ferrous slag 60%) 2.2 

 

Table 13: Values of C2 due to concrete atmospheric condition [26] 

Concrete atmospheric condition C2 

wet concrete 0.3 

Externally exposed concrete members 0.5 

Internally exposed members. 1 

 

The time required for developing corrosion rate based on carbonation depth can be calculated 

using the following equation (13) [26,35]: 

   T2 =
0.08∗𝑐.𝑐

∅∗𝑓(𝑥)
                                                                                                           (13) 

 

Where;  

T2: the amount of time needed for corrosion to occur and for concrete to begin to spall. 

c.c: thickness of concrete cover 

ᵠ: steel bar diameter 

f(x): rate of corrosion (mm/year) that is estimated based on equations (2), (3), and (4). 

 

T1 and T2 can be calculated as following [26,35];                                     

     𝑇1 = (
𝐷

𝐶
)2                                                                                                              (14) 

 

Let’ assume                                                                           

    𝑲𝟏 =
𝟏

𝑪𝟐
                                                                                                                (15) 

   𝑲𝟐  =
𝟎.𝟎𝟖∗𝒄.𝒄

∅
                                                                                                         (16) 

Thus; 
    𝑇1 = 𝐾2𝐷

2                                                                                                                                                                    (17)                                                                                          

   𝑇2 =
𝐾1

𝑓(𝑥)
                                                                                                                (18)    

  𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑜𝑟 𝑠𝑝𝑎𝑙𝑙𝑖𝑛𝑔 = K1𝐷
2 +

K2

𝑓(𝑥)
                                               (19)                                                                                    

 

2.4.2 Life-365 Model for Service Life Prediction due to Chloride-Induced 

The Life 365 model is used to predict the service life for concrete structures exposed to 

chloride environments and not cover corrosion due to carbonation. The main parameters 

needed for the service life prediction are the concrete cover, the properties of concrete (mainly 
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diffusion coefficient), chloride threshold, and surface chloride and surface chloride [37,38, 

39,40,41,42]. 

 

 

3. Discussion & Validation 

 

The proposed approach to diagnosis and maintenance decision-making applies to a real 

bridge. The gathering data was taken from the General Authority for Roads and Bridges 

(GARB) and the Ministry of Transportation (MOT). The bridge is a reinforced concrete 

located near the Suez Gulf in Egypt. It was built in 2004, and after 20 years, it shows several 

types of damage (cracks, spalling, etc.). In 2024, a special committee was formed to assess 

the bridge's performance and take appropriate action regarding its situation. The data 

gathering, visual inspection reports, and tests of this committee were studied carefully to 

apply the proposed method. The inspectors add the rate for each bridge element based on 

visual inspection, their expertise, measuring instruments such as callipers, and some tests. 

The experts found that after twenty years, the Bridge Condition Rating (BCR) dropped from 

9 to 4.36. It should be mentioned here that the rehabilitation decision was taken by the revising 

committee, and the bridge has been in service since then.  Investigating and estimating the 

Bridge Condition Rating (BCR) of the R.C. bridge due to the dual proposed models is shown 

in the following sections: 

 

3.1 Data Gathering, Historical Data, Inventory of R.C. Bridge Elements 

All the inventory, including bridge geometry, was collected from the General Authority for 

Roads and Bridges (GARB). Numerous photos are taken to reflect the bridge's general 

conditions from different elements (girders, abutments, deck, and wing walls). The images in 

Fig.9 show that bridge elements are suffering from several defects, such as cracks, spalling, 

rebar exposure, and rust staining due to rebar corrosion. The images of any defects found in 

the bridge elements are collected and classified, such as cracks, spalling, etc. The photos are 

important to identify any defects found in the bridge elements to be an accurate 

documentation of defects. They should be added to the condition inspection form. It can be 

used in determining the required field investigation. Also, they help the inspectors and 

engineers to track any changes that occur over time through the comparison of historical and 

new photos. The required tests were applied and the results were reported, such as ground 

penetrating radar, ultrasonic pulse velocity, half-cell potential, compressive strength, chloride 

content, etc., to investigate and evaluate the damage for each defected element in the 

reinforced concrete bridge. For durability assessment tests, there should be combinations 

between destructive and nondestructive tests.   The next step is to estimate the bridge service 

life.   

 

3.2 Expected the Service Life for Bridge Elements due to Carbonation and Chloride-

Induced 

Carbonation, chloride ingress, and sulphate attack are the main causes of reinforcement 

corrosion. According to laboratory testing, the average sulphate content was lower than the 

allowable limits, therefore the sulphate attack will not have a significant effect on concrete. 
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The R.C. bridge service life will be estimated due to carbonation and chloride induced as 

shown in the following sections: 

3.2.1 Corrosion due to Carbonation for Bridge Elements 

A carbonation test was applied for samples taken from the bridge to find the maximum 

carbonation depth to be applied in equation (11). Compensating with a parameter extracted 

from historical data to get the value of “C” and substitute in equation (11) to calculate T1. 

Also, T2 (propagation time), the time required for corrosion to cause spalling of concrete 

cover, can be calculated by equation (13). Hence, the total time of corrosion, T, must equal 

the sum of T1 and T2; refer to equation (19) and the summary in Appendix Table A1. 

3.2.2 Chloride Induced Corrosion of Reinforcing Steel   

The Life 365 v2.2.3.1 service life software, which was explained by Ehlen and others [43] 

was applied to predict the service life of the concrete for the chloride-induced corrosion. Table 

A1 in Appendix shows the service life for each element of the inspected bridge by Life-365 

software. 

 

 
                          (a)                                                      (b)                                                         (c)                                       

Fig.9: Photos taken during inspection. (a) corrosion steel bar (b) spalling, and (c) cracks and 

exposed rebar 

 

3.3 Condition Assessment for R.C Bridges due to dual Approach, 1) Fuzzy Decision 

Model, 2) Markov Chain Model    

The condition assessment for each bridge element and for whole bridge is estimated due to 

both fuzzy analysis and Markoc chain as shown in the following sections:                      

3.3.1 Fuzzy Decision Model 

In this stage, a fuzzy analysis technique is implemented by MATLAB (R2021a) to estimate 

the Bridge Condition Rating (BCR) based on the relationship between concrete surface 

condition and corrosion degree, as discussed in the previous section. The triangular 

membership function is applied for both inputs and outputs, as shown in Figure. 5, because 

of the narrow peak of its absolute membership compared to the trapezoidal membership 

function, where the peak (absolute membership) is shown through the interval. Triangular 

shape introduces fuzzy numbers, while fuzzy intervals are represented by trapezoidal shape.  
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For G1L1 : 

The first input corrosion rate = 0.065 mm/yr                     The corrosion degree is Condition 

1 (low) 

The second input is Concrete surface condition (Obvious)                     Subjective assessment 

is 4. 

Then the semi-quantitative condition rate = 4 as shown in in rule viewer Fig.10. 

 

 
Fig. 10: The set of all rules with its output values for specified two inputs. MATLAB 

(R2021a) 

 

The condition rating result for each bridge element from fuzzy analysis, as illustrated in the 

previous example of the girder (G1L1) is shown in Table 14. The estimation for each bridge 

element gives an indication of which element is suffering from a critical condition and could 

impact the whole bridge. This makes it easier to prioritize repairs and prevents minor 

problems from developing into major structural issues. Also, the whole bridge elements 

contribute to estimate the overall Bridge Condition Rating (BCR1), as shown in Table 14. 

 

3.3.2 Markov Chain Model 

Markov chain analysis will be applied to estimate the future conditions of the current bridge. 

The bridge was built in 2004. In 2024, there is an evaluation and rehabilitation work. The 

service life of the bridge at the time of rehabilitation is 20 years. Also, due to laboratory tests 

for carbonation and chloride profiles, the service life is calculated for each element and found 

that the girder (G3L1) has the shortest service life of 20 years as shown in Appendix Table 

A1. The transition probability matrix for the deck, superstructure, and substructure of the 

three bridge parts was created in this model. Based on equation (7), the predicted condition 

rating (𝑃𝐶𝑡), the initial condition state [IP0], the column vector [R ֨], and the age (t) which is 

equal 20 years, are known. The transition probability matrix [TPM] is only the unknown 

where 0 ≤ Pi,i   ≤  1. To find the [TPM], MATLAB R2021a is applied to solve the equation 

(7), as shown in Fig. 11.  
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Table 14: Summary of the Bridge Condition Rating (BCR1) based on Fuzzy analysis technique 
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Deck 
S1L1 0.13 2 3 4 4 

4.5 54 
S6L1 0.08 1 2 5 5 

Girders 

G1L1 0.065 1 3 4 4 

4.2 63 

G2L1 0.03 1 3 4 4 

G3L1 0.042 1 2 5 5 

G4L1 0.25 3 3 4 4 

G5L1 0.02 1 3 4 4 

Abutments 
AB1 0.01 1 3 4 4 

4 48 
AB2 0.095 1 3 4 4 

Wing Walls 
W21 0.06 1 3 4 4 

4.5 31.5 
W22 0.042 1 2 5 5 

Diaphragm D1L1 0.25 3 3 4 4 4 60 

BCR1 = 4.01 

 

 

        Fig. 11: Screenshot of MATLAB (R2021a) code to find unknown [TPM] 
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SOLVER, which comes with the Excel software that has been discussed in section 2.3.4 is 

applied for optimization of the generated [TPM] for each bridge element in order to bring the 

Markov prediction very close to the actual measure from the historical data based on 

equations (6) and (10) for the past 20 years, as shown in tables (A2), (A3), (A4), (A5), and 

(A6) in the Appendix and illustrated in Figs. 12, 13, 14, 15, and 16. 

 

Fig. 12: Deterioration curve for diaphragm               Fig. 13: Deterioration curve for wing wall 

 

                 
Fig. 14: Deterioration curve for abutment               Fig. 15: Deterioration curve for girders 

 

 

Fig. 16: Deterioration curve for deck 
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The summary of the condition rating for each element and the overall Bridge Condition 

Rating (BCR2) based on FHWA (2012) are shown in Table 15 and calculated based on each 

element weight as shown in Table 3 and equation (1). 

 

Table 15:  Summary of the Bridge Condition Rating (BCR2) based on MCM 

Element Predicted condition rating CR*Wt 

Deck  4.84 58.08 

Girder 4.85 72.75 

abutment 4.89 58.68 

wing wall 4.84 33.88 

Diaphragm 4.63 69.45 

BCR 2= 4.576 

 

Predicting the future Bridge Condition Rating (BCR)  based on the Markov Chain Model 

(MCM) has been discussed previously. The model predicted the deterioration of the deck, 

girders, diaphragm, abutment, and wing wall of the current bridge study. The Tables (A2), 

(A3), (A4), (A5), and (A6) in the Appendix show when each element will reach a condition 

rating of 3, which is the critical condition rating. The Bridge Condition Rating (BCR) will 

reach 3 after 78 years.  
 

 

Fig. 17: Comparison of ranking the current Bridge Condition Rating (BCR) by fuzzy decision 

model , MCM, and bridge inspection experts report (actual Bridge Condition Rating (BCR)) 
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The results from the dual artificial intelligence techniques differ from the result reported from 

the bridge expert report of the validated case, as shown in Fig. 17. The fuzzy decision model 

and the Markov Chain model required both field and laboratory tests to find and calculate 

essential parameters such as carbonation depth, diffusion coefficient, surface chloride, and 

others. Nevertheless, fuzzy analysis is communicated with ranges that make it less accurate 

than other methods. Additionally, fuzzy is suffering from the redundancy, which is one of the 

problems of linguistic fuzzy IF-THEN rules. While MCM depends on field tests, laboratory 

tests, and historical data, which is required in optimization process to coincide the Markov 

predicted condition rating curve with the actual curve.  Selection of the proper decision 

regarding the estimated Bridge Condition Rating (BCR) of the inspected bridges relies on 

strategy maintenance options as per FHWA, 2012, as shown in Table 1. The two different 

results of the current Bridge Condition Rating (BCR) show that the inspected bridge required 

major rehabilitation as shown in Fig.17. 
 

 

4. Conclusions 

 

This research has aimed to apply artificial intelligence in assessing reinforced concrete 

bridges. The study compares two different methods that relied on visual inspection, historical 

data, bridge inventory and field and laboratory tests to diagnose the bridge reinforcement 

concrete diseases. The dual techniques applied in the study are fuzzy decision-making and 

Markov chain modelling to estimate the overall Bridge Condition Rating (BCR). The 

corrosion is considered the main reason for bridge deterioration. Therefore, the service life 

for the bridge is calculated due to carbonation and chloride attack. The current method 

established a fuzzy decision-making model to find a correlation between concrete surface 

condition and corrosion degree to estimate the current rating for each bridge element. Then, 

the Markov chain model has been used for predicting the deterioration state for each element 

and the whole bridge. Finally, the inspector is able to estimate when the bridge will achieve 

the critical condition based on the FHWA, 2012 rating to take the proper decision.  

The different results obtained make both models applicable. Although the fuzzy decision 

model depends on both field and laboratory tests, the technique is communicated with ranges 

that make it less accurate and is suffering from redundancy. In contrast, MCM depends on 

field tests, laboratory tests, and historical data, which is necessary for the optimization process 

in order to minimize the error between the Markov predicted condition rating and the actual 

rating. Therefore, the assessment derived from MCM is the closest to that obtained by bridge 

inspector experts of the validated case.  

From the obtained results, the suggested models would assist the bridge inspector experts and 

decision-makers in the bridge management sector to achieve appropriate assessment to create 

a systematic plan for the bridge's eventual maintenance, repair, or rehabilitation in accordance 

with their condition and the available budget. The introduced techniques enhance both 

diagnostic and predictive capabilities and are adaptable for broader infrastructure assessment 

scenarios. The presented study considered only the effects of carbonation and chloride on 

steel corrosion, without accounting for the impact of sulfate attack. Therefore, it is 

recommended that future research incorporate the effect of sulfate exposure to  assess the 
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condition of bridges using various estimation methods. The future workers are encouraged to 

apply other types of AI in bridge assessment and make a comparison between them to select 

the more applicable technique. Also, it is recommended to concentrate on selecting the proper 

action based on the cost, duration, efficiency, and urgency of the most deteriorated areas. The 

proposed techniques can be developed to be carried out on the other types of bridges, such as 

steel bridges, precast concrete, etc. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AI Artificial Intelligence 

MRR Maintenance, Repair, and Replacement  

RC Reinforced concrete 

BMS Bridge Management System 

GPR Ground Penetrating Radar 

AASHTO American Association of State Highway and Transportation Officials  

GARB General Authority for Roads and Bridges  

MCM Markov Chain Modelling 

 PCt  

ACt              

Markov predicted condition rating 

actual condition rating 

WEM Weight Evaluation Method 

BCR Bridge Condition Rating 

TPM Transition Probability Matrix 

FHWA Federal Highway Administration classification system 

NY New York ranking system 
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Appendix 
 

Table A1: Summary of corrosion characteristics for bridge elements 

                         

Element 

                                                                 

Parameter 

S1L1  S6L1 
G1L

1 

G2L

1 

G3L

1 

G4L

1 
G5L1 

D1L

1 
AB1 AB2 W21 W22 

Primary Evaluation 4 5 4 4 5 4 4 4 4 4 4 5 

pH-value 7.38 12.28 7.28 13.41 13.12 7.18 13.66 8 13.99 11.98 12.71 13.12 

Rate of corrosion due 

to pH (mm/yr.) 
0.13 0.08 0.25 0.03 0.042 0.25 0.02 0.25 0.01 0.095 0.06 0.042 

Concrete resistivity 

(ohm.cm) 
8000 11500 8000 11800 11800 8000 11800 8500 

1180

0 
11200 

1150

0 
11800 

C.C (mm) 15 15 15 18 15 15 18 12 18 18 15 15 

Measured carbonation 

test (mm) (Laboratory 

test) 

5 5 5 5 5 5 5 2 5 5 5 5 

Uncarbonated depth 

(dc)=min cover-

carbonation depth 

10 10 10 13 10 10 13 10 13 13 10 10 

Steel Diameter 14 14 22 22 22 22 22 22 25 25 18 18 

T1: initiation period 

(years) 
25 25 25 42.25 25 25 42.25 25 42.25 42.25 25 25 

T2: Propagation 

Period (years) 
0.659 1.071 0.218 2.182 1.299 0.218 3.273 0.175 5.760 0.606 1.111 1.587 

Tt= T1+T2 (Due to 

carbonation) 
25.66 26.07 25.22 44.43 

26.30 
25.22 45.52 25.17 48.01 42.86 26.11 26.59 

Service life due to 

Chloride Induced 

(Life -365) 

26.80 28.10 23.50 23.60 20.30 21.30 26.30 24.50 39.60 38.40 23.80 27.70 
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Table A2: Actual and predicted condition rating for diaphragm   

Time PCt ACt Error 

 1 8.90 8.95 0.05 

2 8.78 8.75 0.03 

3 8.65 8.6 0.05 

4 8.49 8.55 0.06 

5 8.32 8.3 0.02 

6 8.11 8.01 0.10 

7 7.87 7.87 0.00 

8 7.61 7.62 0.01 

9 7.33 7.35 0.02 

10 7.04 7.1 0.06 

11 6.75 6.75 0.00 

12 6.46 6.46 0.00 

13 6.18 6.3 0.12 

14 5.91 5.98 0.07 

15 5.66 5.66 0.00 

16 5.42 5.32 0.10 

17 5.20 5 0.20 

18 4.99 4.75 0.24 

19 4.80 4.32 0.48 

20 4.63 4 0.63 

21 4.47     

22 4.32     

23 4.19     

24 4.07     

25 3.97     

26 3.87     

27 3.78     

28 3.70     

29 3.63     

30 3.57     

31 3.51     

32 3.46     

33 3.41     

34 3.37     

35 3.33     

36 3.30     

37 3.27   

38 3.24   

39 3.21   

40 3.19   

41 3.17   

42 3.15   

43 3.14   

44 3.12   

45 3.11   

46 3.10   

https://doi.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ahmed M.Abdelalim et. al, Fuzzy Decision-Making and Markov Chain Modelling for Detecting Life Cycle of RC Bridges 
 

302 

 

 

Time PCt ACt Error 

47 3.09   

48 3.08   

49 3.07   

50 3.06   

51 3.06   

52 3.05   

53 3.05   

54 3.04   

55 3.04   

56 3.03   

57 3.03   

58 3.03   

59 3.02   

60 3.02   

61 3.02   

62 3.02    

63 3.02    

64 3.01    

65 3.01    

66 3.01   

67 3.01   

68 3.01   

69 3.01   

70 3.01   

71 3.01   

72 3.01   

73 3.01   

74 3.00   

 

 

Table A3:  Actual and predicted condition   rating for wing wall 

Time PCt ACt Error 

1 8.90 8.88 0.02 

2 8.79 8.73 0.06 

3 8.66 8.6 0.06 

4 8.52 8.49 0.03 

5 8.36 8.32 0.04 

6 8.18 8.15 0.03 

7 7.97 8 0.03 

8 7.74 7.9 0.16 

9 7.49 7.75 0.26 

10 7.22 7.4 0.18 

11 6.95 6.94 0.01 

12 6.68 6.73 0.05 

13 6.41 6.5 0.09 

14 6.15 6.2 0.05 

15 5.90 5.9 0.00 

16 5.66 5.56 0.10 

17 5.44 5.1 0.34 

18 5.22 4.87 0.35 

19 5.03 4.63 0.40 

20 4.84 4.5 0.34 

21 4.67     

22 4.52     
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23 4.38     

 24 4.25     

25 4.13     

26 4.02     

27 3.92     

28 3.83     

29 3.75     

30 3.68     

31 3.61     

32 3.55     

33 3.49     

34 3.45     

35 3.40     

36 3.36     

37 3.32     

38 3.29     

39 3.26     

40 3.24   

41 3.21   

42 3.19   

43 3.17   

44 3.16   

45 3.14   

46 3.13   

47 3.11   

48 3.10   

49 3.09   

50 3.08   

51 3.07   

52 3.07   

53 3.06   

54 3.05   

55 3.05   

56 3.04   

57 3.04   

58 3.04   

59 3.03   

60 3.03   

61 3.03   

62 3.02   

63 3.02   

64 3.02   

65 3.02     

66 3.02     

67 3.01     

68 3.01     

69 3.01     

70 3.01     

71 3.01     

72 3.01   

73 3.01   

74 3.01   
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75 3.01   

76 3.01   

77 3.00   

 

      

Table A4: Actual and predicted condition  rating for abutment 

Time PCt ACt Error 

1 8.91 8.88 0.03 

2 8.80 8.69 0.11 

3 8.68 8.56 0.12 

4 8.54 8.45 0.09 

5 8.38 8.4 0.02 

6 8.20 8.25 0.05 

7 7.99 8 0.01 

8 7.75 7.77 0.02 

9 7.50 7.65 0.15 

10 7.23 7.43 0.20 

11 6.96 6.96 0.00 

12 6.69 6.75 0.06 

13 6.42 6.5 0.08 

14 6.17 6.24 0.07 

15 5.92 5.87 0.05 

16 5.69 5.55 0.14 

17 5.47 5.3 0.17 

18 5.26 4.75 0.51 

19 5.07 4.52 0.55 

20 4.89 4 0.89 

21 4.73   

22 4.58   

23 4.44   

24 4.31   

25 4.19   

26 4.09   

27 3.99   

28 3.90   

29 3.82   

30 3.82   

31 3.68   

32 3.62   

33 3.56   

34 3.51   

35 3.46   

36 3.42   

37 3.38   

38 3.35   

39 3.32   

40 3.29   

41 3.26   

42 3.24   

43 3.21   

44 3.20   

45 3.18   

46 3.16   

47 3.15   

48 3.13   
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Time PCt ACt Error 

49 3.12   

50 3.11   

51 3.10   

52 3.09   

53 3.08   

54 3.07   

55 3.07   

56 3.06   

57 3.06   

58 3.05   

59 3.05   

60 3.04   

61 3.04   

62 3.03   

63 3.03   

64 3.03   

65 3.03   

66 3.02   

67 3.02   

68 3.02   

69 3.02   

70 3.02   

71 3.01   

72 3.01   

73 3.01   

74 3.01   

75 3.01   

76 3.01   

77 3.01   

78 3.01   

79 3.01   

80 3.01   

81 3.01   

82 3.01   

83 3.01   

84 3.00   

 

Table A5: Actual and predicted condition rating for abutment rating for girders  

Time PCt ACt Error 

1 8.90 8.99 0.09 

2 8.79 8.79 0.00 

3 8.67 8.63 0.04 

4 8.52 8.44 0.08 

5 8.36 8.21 0.15 

6 8.18 8.15 0.03 

7 7.97 8 0.03 

8 7.74 7.9 0.16 

9 7.49 7.75 0.26 

10 7.22 7.4 0.18 

11 6.95 6.94 0.01 

12 6.68 6.73 0.05 

13 6.41 6.5 0.09 

14 6.15 6.2 0.05 

15 5.90 5.9 0.00 
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16 5.66 5.56 0.10 

17 5.44 5.1 0.34 

18 5.23 4.87 0.36 

19 5.03 4.63 0.40 

20 4.85 4.2 0.65 

21 4.68   

22 4.52   

23 4.38   

24 4.25   

25 4.13   

26 4.02   

27 3.93   

28 3.84   

29 3.76   

30 3.68   

31 3.62   

32 3.56   

33 3.50   

34 3.45   

35 3.41   

36 3.37   

37 3.33   

38 3.30   

39 3.27   

40 3.24   

41 3.22   

42 3.20   

43 3.18   

44 3.16   

45 3.14   

46 3.13   

47 3.12   

48 3.11   

49 3.10   

50 3.09   

51 3.08   

52 3.07   

53 3.06   

54 3.06   

55 3.05   

56 3.05   

57 3.04   

58 3.04   

59 3.03   

60 3.03   

61 3.03   

62 3.02   

63 3.02   

64 3.02   

65 3.02   

66 3.02   

67 3.01   

68 3.01   

69 3.01   
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70 3.01   

71 3.01   

72 3.01   

73 3.01   

74 3.01   

75 3.01   

76 3.01   

77 3.01   

78 3.00   

 

Table A6:  Actual and predicted condition rating for deck  

Time PCt ACt Error 

1 8.90 8.77 0.13 

2 8.79 8.63 0.16 

3 8.66 8.45 0.21 

4 8.52 8.21 0.31 

5 8.36 8.15 0.21 

6 8.17 8 0.17 

7 7.96 7.99 0.03 

8 7.73 7.73 0.00 

9 7.48 7.55 0.07 

10 7.22 7.4 0.18 

11 6.95 6.94 0.01 

12 6.68 6.73 0.05 

13 6.41 6.5 0.09 

14 6.15 6.2 0.05 

15 5.90 5.9 0.00 

16 5.66 5.56 0.10 

17 5.43 5.1 0.33 

18 5.22 4.87 0.35 

19 5.02 4.63 0.39 

20 4.84 4.5 0.34 

21 4.67   

22 4.52   

23 4.37   

24 4.24   

25 4.13   

26 4.02   

27 3.92   

28 3.83   

29 3.75   

30 3.68   

31 3.61   

32 3.55   

33 3.50   

34 3.45   

35 3.40   

36 3.36   

37 3.33   

38 3.27   

39 3.27   

40 3.24   

41 3.22   

42 3.19   
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43 3.18   

44 3.16   

45 3.14   

46 3.13   

47 3.12   

48 3.10   

49 3.09   

50 3.08   

51 3.08   

52 3.07   

53 3.06   

54 3.06   

55 3.05   

56 3.04   

57 3.04   

58 3.04   

59 3.03   

60 3.03   

61 3.03   

62 3.02   

63 3.02   

64 3.02   

65 3.02   

66 3.02   

67 3.01   

68 3.01   

69 3.01   

70 3.01   

71 3.01   

72 3.01   

73 3.01   

74 3.01   

75 3.01   

76 3.01   

77 3.00   
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دورة حياة الجسور  تحديدمنهجية اتخاذ القرار الضبابي ونموذج سلسلة ماركوف ل تطبيق

 الخرسانية المسلحة 

 
 احمد محمد عبد العليم *1  ، ياسمين شلبي *2 ، جمال ابراهيم 3، محمد بدوي4

 الملخص 

 

ضرورياً لضمان السلامة الإنشائية وطول العمر الافتراضي. وفي   المسلحة  ةالجسور الخرسانيفحص    ان 

الاصطناعي الذكاء  أصبح  الأخيرة،  تحسين  الآونة  في  مناهج   عملية   مهمًا  دعم  الجسور من خلال  تقييم 

إلى استكشاف تقنية  تهدف  هذه الدراسة    إن .  اللازمة لهاالتكاليف    من   الصيانة وتقلل  خططمختلفة تعزز  

ة المسلحة. لذلك، اقترحت يجسور الخرسانالللتطبيق تعتمد على الذكاء الاصطناعي لتقييم    ةوقابل  ةأكثر دق

مختلفتين  طريقتين  المقدمة  الخرساناحالة    لتقييم   الدراسة  المسلحة:  يلجسور  القرار  (    1ة  اتخاذ  منهجية 

  العيوب  أحدباعتباره    حديد التسليح   ( نمذجة سلسلة ماركوف. ركزت هذه الورقة على تآكل2الضبابي و

تقييم حالة الجسر. تعتمد الطريقتان على الفحص البصري، وتطبيق الاختبارات في    ةالمستخدم  ةالرئيسي

ستخدم  لقد ا.  لتقييم حالتهتم فحصه  يللجسر الذي  المسبقة  ، ومراجعة البيانات التاريخية  عملية الميدانية والم 

. ويطُبق الجسر  تصنيف حالةلنموذج القرار الضبابي لإيجاد علاقة بين درجة التآكل وحالة سطح الخرسانة  

المستقبلية للجسر بأكمله ومتى سيصل إلى الحالة الحرجة.    الحالية و  نموذج سلسلة ماركوف للتنبؤ بالحالة

لحدوث صدأ الحديد   المستغرققدر بناء حساب الزمن  لكل عنصر من عناصر الجسر    الافتراضيعمر  ان ال

الكلوريدو  الكربنةالناتج عن    النماذج المقترحة من خلال دراسة حالة   فاعلية قد تم التحقق من  . لتسرب 

بسلسلة   مقارنةً  أقل دقة  الضبابي  النموذج  أن  النتائج  ماركوف.  واقعية لجسر خرساني مسلح، وأظهرت 

أو   ح أو إصلاصيانة   المناسبة من  قراراتاللاتخاذ  رؤى قيمّة  توفر  النماذج المقترحة  عليه يتضح ان  ءوبنا

 محل الفحص.  للجسور  لاستبدا

 

سلسلة  ، : جسور خرسانية مسلحة ،تقييم ، طرق اتخاذ القرار، الذكاء الاصطناعي، المنطق الضبابيالكلمات المفتاحية 

   ماركوف

 


