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1. Introduction

The necessity to develop unit-bounded distributions, defined on the interval (0, 1), arises from the
unique nature of data that falls within this range. These datasets are naturally bounded by 0 and 1,
meaning that they cannot take values outside this range. Such data commonly represents proportions,
ratios, percentages, probabilities, or rates, which are prevalent in numerous fields, including data sci-
ence, economics, healthcare, risk analysis, and environmental studies. For instance, the proportion
of total sales in an industry controlled by a particular Firm ranging from 0 (no market presence) to 1
(monopoly), the probability that a startup or business survives beyond a certain period, the percentage
of income spent on food, the rate of people recovering from a disease, and the fraction of total income
in an economy allocated to labour as opposed to capital. Thus, unit-bounded distributions are usually
employed to model the behaviour of such random variables.

Recent literature has witnessed a significant rise in research focused on probability distributions
confined to the unit interval, emphasizing the growing importance of these distributions in various
fields of study. Some of these significant contributions can be found in literature including Korkmaz et
al. [1], Mazucheli et al. [2], Altun and Cordeiro [3], Bashir et al. [4], Saboor et al. [5], Gemeay et al.
[6], . Alghamdi et al. [7], Alsadat et al. [8], Haj et al. [9], and .Alyami et al. [10].

The Gompertz distribution (GD), known for its monotonically increasing hazard rate, has been
adapted to analyze mortality data and mechanical failure patterns (Jha et al. [11]; Pandey et al. [12]).
Eliwa et al. [13] proposed the Inverse Gompertz distribution (IGD) to model upside-down bathtub-
shaped hazard rates, addressing limitations of the GD. In the past few years, significant contributions
have been made to the study of the IGD. See, El-Morshedy et al. [14], Abdelhady et al. [15], Elshahhat
et al. [16], Chaudhary et al. [17], Abd Ellatif and Abd Ellatif [18], Adegoke et al. [19], Baharith [20],
Benkhelifa [21], Yadav and Kumar [22] and Al-Saqal et al. [23], among others. Other generalized
distributions can be mentioned, such as gamma-normal distribution by Alzatreh et al. [24], a new two-
parameter distribution by Suleiman et al. [25], a modified sine distribution by Uthumporn [26], Husain
et al. [27], Sapkota et al. [28], Alsadat et al. [29], .Bantan et al. [30], among others.

In general, as mentioned earlier, the GD is flexible and often applied in various fields. However, the
GD and IGD, as well as their extensions mentioned above, are useful for modelling certain types of
data; they typically work best for semi-bounded data; thus, may struggle to model skewed and heavy-
tailed unit-bounded data. The goal is to develop a novel unit-bounded distribution called Log-Inverse
Gompertz distribution, which is an extension of the IGD by applying the logarithm of its random
variable.

This paper is structured as follows: Section 2 details the formulation of the LIGD. Section 3 exam-
ines its key statistical properties and reliability measures. Parameter estimation methods are presented
in Section 4, while Section 5 evaluates estimator performance through simulation studies. Section 6
demonstrates the model’s practical application using two empirical datasets. The paper concludes with
a discussion of findings in Section 7.
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2. Log-Inverse Gompertz Distribution

By applying X = e−Y , if rv Y ∼ IGD (α, β) , then the cumulative distribution function (cdf) is

G(y) = exp
[
−
α

β

(
e
β
y − 1

)]
, y ∈ (0,∞) , α, β > 0. (2.1)

The cdf of LIGD is

F (x) = 1 − exp
[
−
α

β

(
e−

β
ln(x) − 1

)]
, (2.2)

and its probability density function (pdf) is

f (x;α, β) =
α

x (ln (x))2 exp
[
−
α

β

(
e−

β
ln(x) − 1

)
−
β

ln(x)

]
, x ∈ (0, 1) (2.3)

where α and β are shape and scale parameters respectively. Unlike the IGD, the LIGD’s pdf exhibits
J-shaped and left-skewed unimodal forms as in Figure 1, broadening its applicability to unit-bounded
data.

Figure 1. The pdf plots of LIGD.

3. Statistical Properties of LIGD

3.1. Reliability Measures

1. Survival function

S (x) = exp
[
−
α

β

(
e−

β
ln(x) − 1

)]
(3.1)

2. Hazard rate function (hrf)

h (x) =
αe−

β
ln(x)

x (ln (x))2 (3.2)

The behaviour of the hrf of LIGD is shown in Figure 2.
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3. Reverse hazard function

r(x) =
α

x (ln (x))2 e−
β

ln(x)


e− αβ

(
e
−
β

ln(x) −1
)−1

− 1


−1

(3.3)

4. Odd hazard function

ϑ (x) = e
α
β

(
e
−
β

ln(x) −1
)
− 1 (3.4)

5. Cumulative hazard function

H(x) =
α

β

(
e−

β
ln(x) − 1

)
(3.5)

Figure 2. The hrf plots of LIGD.

Figure 2 shows that the LIGD’s hrf exhibits monotonically increasing shapes. This suggests that
the LIGD is suitable for modelling processes where the risk of an event increases over time, which is
typical in aging-related failure processes or reliability models where failure becomes more likely as
time progresses.

3.2. Quantile Function and Median

Quantile function

xu = exp

− β

ln
(
1 − β

α
ln(1 − u)

) , 0 < u < 1; (3.6)

setting u = 0.5 in Equation (3.6), the median of LIGD is given as

Medx = exp

− β

ln
(
1 − β

α
ln(0.5)

) (3.7)
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3.3. Skewness and Kurtosis

Quantile-based methodology for assessing the skewness and kurtosis of a distribution is particu-
larly employed when its cdf has a closed form. Bowley [32] and Moor [33] proposed quantile-based
measures of skewness and kurtosis for LIGD are respectively derived using Equation (3.7)

S B =
Q

(
3/4

)
− 2Q

(
2/4

)
+ Q

(
1/4

)
Q

(
3/4

)
− Q

(
1/4

) (3.8)

and

KM =
Q

(
7/8

)
− Q

(
5/8

)
+ Q

(
3/8

)
− Q

(
1/8

)
Q

(
6/8

)
− Q

(
2/8

) ; (3.9)

Figure 3 displays the graphical representation of the median (Medx), skewness (S B) and kurtosis (KM)
measures of LIGD.

Figure 3. The 3D plot of the (Medx), (S B) and (KM) of LIGD.

3.4. Order Statistics

Let x(1) ≤ x(2) ≤ ... ≤ x(n), be the ordered statistic, then the pdf of the kth order statistic of LIGD is

fx(k) (x) =
n!

(k − 1)! (n − k)!

1 − e
− αβ

(
e
−
β

ln(x) −1
)k−1 e− αβ

(
e
−
β

ln(x) −1
)n−k

α

x (ln (x))2 e
− αβ

(
e
−
β

ln(x) −1
)
−
β

ln(x) (3.10)

4. Parameter Estimation

Here, the parameters of LIGD are estimated via two estimation techniques.

4.1. Maximum Likelihood Estimation (MLE)

Suppose a sample of n random samples x1, x2, . . . , xn are drawn from the LIGD (α, β). The likeli-
hood function is the product of the individual pdfs evaluated and given as

L (α, β; x1, x2, ..., xn) =
n∏

i=1

f (xi;α, β), (4.1)
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substituting Equation (2.3) into Equation (4.1) gives

L (α, β) =
n∏

i=1

 α

xi [ln (xi)]2
e
− αβ

e− β
ln(xi) −1

− β

ln(xi)

 , (4.2)

L (α, β) = αn
n∏

i=1

(
1

xi [ln (xi)]2

)
exp

 n∑
i=1

(
−
α

β
e−

β
ln(xi) +

α

β
−
β

ln (xi)

) , (4.3)

the log-likelihood function is

ℓ = n ln(α) −
n∑

i=1

ln(xi) − 2
n∑

i=1

ln [ln (xi)] +
n∑

i=1

(
−
α

β
e−

β
ln(xi) +

α

β
−
β

ln (xi)

)
, (4.4)

differentiating Equation (4.4) partially for α and β gives

ℓ

∂α
=

n
α
−

n∑
i=1

(
1
β

e−
β

ln(xi) +
1
β

)
, (4.5)

and
ℓ

∂β
=

n∑
i=1

 αβ2 e−
β

ln(xi) +
α

β

e−
β

ln(xi)

ln(xi)
−
α

β2 −
1

ln (xi)

 (4.6)

respectively. Equating Equations (4.5) and (4.6) each to zero, gives

n
α
−

1
β

n∑
i=1

e−
β

ln(xi) +
n
β
= 0; (4.7)

α

β2

n∑
i=1

e−
β

ln(xi) +
α

β

n∑
i=1

e−
β

ln(xi)

ln(xi)
−
αn
β2 −

n∑
i=1

n
ln (xi)

= 0 (4.8)

solving Equations (4.7) and (4.8) simultaneously gives α̂MLE and β̂MLE However, it requires the use of
numerical optimization techniques via the aid of software such as R or Python (Nash, [34]).

4.2. Maximum Product of Spacing (MPS) Estimation

The MPS is obtained by minimizing the function

m (α, β) =
1

n + 1

n+1∑
i=1

ln
[
F

(
x(i);α, β

)
− F

(
x(i−1);α, β

)]
. (4.9)

Let F
(
X(i)

)
be the cdf of order statistics x(1) ≤ x(2) ≤ ... ≤ x(n), from LIGD (α, β). Therefore, the ith

order statistic for F
(
X(i);α, β

)
and F

(
X(i−1);α, β

)
is expressed respectively as

F(x(i);α, β) = 1 − exp
[
−
α

β

(
e
−

β

ln(x(i)) − 1
)]
, (4.10)
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and

F(x(i−1);α, β) = 1 − exp
[
−
α

β

(
e
−

β

ln(x(i−1)) − 1
)]

(4.11)

substituting Equations (4.10) and (4.11) into (4.9) gives

m =
1

n + 1

n+1∑
i=1

ln

e
− αβ

e−
β

ln(x(i−1)) −1


− e
− αβ

e−
β

ln(x(i)) −1


 , (4.12)

The partial derivative of Equation (4.12) with respect to α and β gives

∂m
∂α
=

1
n + 1

·
1
β
·

n+1∑
i=1

1
Di (α, β)


(
e
−

β

ln(x(i)) − 1
)

e−

e
−

β

ln(x(i)) −1

α
β −

(
e
−

β

ln(x(i−1)) − 1
)

e−

e
−

β

ln(x(i−1)) −1

α
β

 (4.13)

and

∂m
∂β
=

1
n + 1

·
α

β2 ·

n+1∑
i=1

1
Di (α, β)


1 − e

−
β

ln(x(i)) −
βe
−

β

ln(x(i))

ln
(
x(i)

)
 e−

α

e
−

β

ln(x(i)) −1


β −

1 − e
−

β

ln(x(i−1)) −
βe
−

β

ln(x(i−1))

ln
(
x(i−1)

)
 e−

α

e
−

β

ln(x(i−1)) −1


β


(4.14)

respectively, where Di (α, β) = F
(
X(i);α, β

)
− F

(
X(i−1);α, β

)
, i = 1, 2, ..., n + 1.

Solving the system of Equations (4.13) and (4.14) has to be done numerically in order to obtain the
estimates α̂MPS and β̂MPS .

5. Simulation Study

Here, the performance and the consistency of the MLE and MPS of the parameters of LIGD are
assessed. Three different sets of metrics were considered, and a simulation with 10000 replications was
used to generate samples of varying sizes from the LIGD.All simulations were run using R language of
the optim function and the L-BFGS-B method. The simulation results compared the actual parameter
values with the estimates. The performance of these estimators is assessed using mean estimates, bias,
mean square error (MSE) and mean relative error (MRE) for each case. The simulation results are
given in Tables 1 - 4.
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Table 1. The Simulation results of LIGD for α = 0.825, β = 0.217

MLE MPS
n Par. Mean Bias MSE MRE Mean Bias MSE MRE

25
α 0.845 0.020 0.063 0.024 0.933 0.108 0.085 0.131
β 0.320 0.103 0.098 0.474 0.114 -0.103 0.085 0.476

50
α 0.841 0.016 0.030 0.019 0.893 0.068 0.037 0.082
β 0.267 0.050 0.040 0.228 0.145 -0.072 0.037 0.332

150
α 0.840 0.015 0.010 0.018 0.865 0.040 0.012 0.048
β 0.225 0.008 0.015 0.037 0.222 0.007 0.014 0.033

350
α 0.836 0.011 0.004 0.014 0.849 0.024 0.005 0.030
β 0.217 0.000 0.003 0.001 0.189 -0.028 0.008 0.125

500
α 0.834 0.009 0.003 0.011 0.842 0.017 0.004 0.021
β 0.217 0.000 0.003 0.001 0.194 -0.023 0.003 0.105

Table 2. The Simulation results of LIGD for α = 0.371, β = 1.465

MLE MPS
n Par. Mean Bias MSE MRE Mean Bias MSE MRE

25 α 0.423 0.052 0.031 0.139 0.512 0.141 0.057 0.379
β 1.609 0.145 0.239 0.098 1.338 -0.127 0.087 0.087

50 α 0.406 0.035 0.014 0.094 0.459 0.088 0.035 0.237
β 1.484 0.015 0.053 0.037 1.377 -0.092 0.037 0.067

150 α 0.394 0.023 0.005 0.061 0.417 0.046 0.007 0.125
β 1.847 0.382 0.105 0.213 1.640 0.028 0.018 0.019

350 α 0.387 0.016 0.002 0.042 0.389 0.019 0.002 0.051
β 1.398 -0.067 0.009 0.048 1.405 -0.048 0.007 0.035

500 α 0.386 0.015 0.002 0.039 0.391 0.020 0.002 0.054
β 1.468 0.083 0.009 0.062 1.439 -0.026 0.010 0.018

Table 3. The Simulation results of LIGD for α = 0.087, β = 4.505

MLE MPS
n Par. Mean Bias MSE MRE Mean Bias MSE MRE
25 α 0.106 0.019 0.004 0.219 0.143 0.056 0.010 0.648

β 4.710 0.205 0.115 0.046 4.238 -0.267 0.271 0.059
50 α 0.097 0.010 0.002 0.119 0.119 0.032 0.003 0.366

β 4.643 0.133 0.070 0.031 4.341 -0.161 0.231 0.037
150 α 0.094 0.007 0.001 0.075 0.105 0.018 0.001 0.175

β 4.591 0.086 0.038 0.019 4.469 -0.022 0.016 0.005
350 α 0.091 0.004 0.000 0.049 0.094 0.006 0.000 0.098

β 4.517 0.012 0.016 0.003 4.487 -0.018 0.004 0.002
500 α 0.091 0.004 0.000 0.044 0.094 0.007 0.000 0.082

β 4.509 0.004 0.034 0.001 4.509 0.000 0.000 0.000
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Table 4. The Simulation results of LIGD for α = 0.131, β = 9.018

MLE MPS
n Par. Mean Bias MSE MRE Mean Bias MSE MRE

25 α 0.163 0.032 0.011 0.225 0.222 0.091 0.025 0.592
β 9.417 0.419 2.799 0.047 8.943 -0.075 0.692 0.008

50 α 0.146 0.015 0.005 0.115 0.182 0.051 0.009 0.390
β 9.203 0.185 0.815 0.020 8.652 -0.366 0.229 0.042

150 α 0.138 0.007 0.001 0.052 0.150 0.019 0.002 0.141
β 9.029 0.011 0.139 0.001 9.110 0.092 0.014 0.010

350 α 0.130 -0.001 0.000 0.010 0.134 0.003 0.000 0.021
β 9.011 -0.007 0.120 0.001 8.987 -0.031 0.006 0.003

500 α 0.129 -0.002 0.000 0.012 0.132 0.001 0.000 0.007
β 9.028 0.010 0.109 0.001 8.929 -0.089 0.004 0.010

Tables 1 - 4 show the simulation results comparing the performance of MLE and MPS under three
different metrics combinations with increasing sample sizes. According to both methods of estimation,
it is evident that as sample size increases, the average estimates tend towards the true parameter values.
Also, the biases, MSEs, and MREs converge towards zero as the sample size increases. However,
the MLE has smaller bias, MSE, and MRE compared to MPS across all parameter combinations and
sample sizes. Hence, MLE is the preferred technique for estimating the parameters of the LIGD. If
researchers have data that matches the proposed model, it is recommended that they use this technique.

6. Applications

This section presents LIGD’s applicability to two real datasets in comparison to other competing
distributions. The competing distributions used in this study are those from generalized IGDs, log-
modified and unit-bounded distributions; and are specified in Table 5.

Table 5. List of the competing distributions
Distribution Abbreviation Author(s)
Topp-Leone Inverse Gompertz TLIGD Adegoke et al. [19]
Half-Cauchy Inverse Gompertz HCIGD Chaudhary et al. [17]
Kumaraswamy Inverse Gompertz KuIGD El-Morshedy et al. [14]
Inverse Power Gompertz PIGD Abdelhady and Amer [15]
Inverse Gompertz IGD Eliwa et al. [13]
Log-Logistics LLoD Muse et al. [35]
Log-Kumaraswamy LKuD Ishaq et al. [36]
Log-Normal LNoD Limpert et al. [37]
Log-Cauchy LCaD Ali and Habibullah [38]
Kumaraswamy KuD Sultana et al. [39]
Beta BeD Johnson et al. [40]
Unit Burr-XII UBXII Korkmaz and Chesneau [1]
Unit Weibull UWeD Mazucheli et al. [2]
Unit Teissier UTeD Krishna et al. [41]
Rayleigh URaD Bantan et al. [42]

To select the best model, the discrimination criteria (−ℓ̂, AIC, CAIC, BIC and HQIC) and goodness-
of-fit test (KS statistic with its associated p-value) are considered. The model with the smallest dis-
crimination criteria values is said to have outperformed the other competitors in modelling the data.
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Similarly, the model with the smallest goodness-of-fit statistics provides the superior fit. A low p-
value (< 0.05) indicates that the model does not fit the data, while a high p-value (≥ 0.05) suggests
that the model is a good fit for the data (Kar and Mohanty, [43]). The values of the MLEs of the
fitted models along with the above statistical measures were computed using the optimization package
AdequacyModel in R-script with optim() and method=SANN (Marinho et al. [44]).

6.1. Data Source and Descriptive Analysis

The first dataset is the insurance data (Afify et al. [45]), sourced from the U.S. government’s
open-data portal, and comprises 58 observations of claim ratios which are
0.188, 0.202, 0.195, 0.385, 0.489, 0.545, 0.541, 0.535, 0.521, 0.508, 0.512, 0.507, 0.519, 0.493, 0.487,
0.460, 0.490, 0.460, 0.490, 0.500, 0.400, 0.350, 0.370, 0.410, 0.400, 0.400, 0.410, 0.400, 0.420, 0.450,
0.450, 0.420, 0.390, 0.340, 0.360, 0.400, 0.440, 0.390, 0.410, 0.450, 0.460, 0.470, 0.490, 0.460, 0.410,
0.390, 0.400, 0.440, 0.420, 0.420, 0.450, 0.470, 0.530, 0.420, 0.490, 0.440, 0.420, 0.400.
The second dataset represents soil moisture reported by Maiti and Maity [46]. Soil moisture data often
exhibits low noise, that is, fewer samples are needed to detect trends (Vereecken et al. [47]). The
dataset is given as
0.0179, 0.0798, 0.0959, 0.0444, 0.0938, 0.0443, 0.0917, 0.0882, 0.0439, 0.0490, 0.0774, 0.0171,
0.0305, 0.0757, 0.0468.

The descriptive statistics of these datasets are supplied in Table 6.

Table 6. Summary of the datasets.
Data n Min Med Mode Mean Max Std Dev Skewness Kurtosis
Insurance 58 0.1880 0.4400 0.4000 0.4322 0.5450 0.0754 -1.3754 5.8260
Soil Moisture 15 0.0171 0.0490 0.0171 0.0598 0.0959 0.1634 -0.1083 1.6247

The histograms for the datasets are shown in Figure 4, respectively. It clearly shows that the data
are both left skewed.

Figure 4. Histogram of insurance and soil moisture datasets.
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6.2. Analytical Results of Competing Models of the Insurance Data

The MLEs, and other performance measures of LIGD with other competing models of the insurance
data are tabulated in Tables 7 - 9 respectively.

Table 7. Performance of the LIGD against competing generalized IGDs using first dataset.

Models MLEs ℓ̂ AIC BIC KS KS (p-value)
LIGD α̂ = 0.007, β̂ = 4.954 -33.122 -62.245 -60.829 0.168 0.731
TLIGD â = 0.774, b̂ = 0.008, ĉ = 0.069 -29.906 -53.812 -51.688 0.224 0.383
HCIGD â = 0.085, b̂ = 4.024, ĉ = 0.088 -29.620 -53.240 -51.116 0.225 0.377
KuIGD â = 0.172, b̂ = −0.024, ĉ = 8.001 -31.983 -57.965 -55.841 0.177 0.673
PIGD â = 0.015, b̂ = 0.005, ĉ = 1.205 -28.284 -50.568 -48.443 0.288 0.135
IGD â = 0.031, b̂ = 0.021 -27.903 -51.806 -50.390 0.306 0.096

Table 8. Performance of the LIGD against competing log-modified models using first
dataset.

Models MLEs ℓ̂ AIC BIC KS KS (p-value)
LIGD α̂ = 0.007, β̂ = 4.954 -73.752 -143.505 -139.384 0.129 0.291
LNoD â = −0.859, b̂ = 0.212 -56.943 -109.885 -105.764 0.211 0.011
LLoD â = 0.436, b̂ = 10.403 -66.056 -128.113 -123.992 0.102 0.587
LCaD â = −0.827, b̂ = 0.090 -66.164 -128.327 -124.206 0.124 0.336
LKuD â = 3.901, b̂ = 45.110 -48.247 -92.495 -88.374 0.290 < 0.0001

Table 9. Performance of the LIGD against competing unit-bounded models using first dataset

Models MLEs ℓ̂ AIC BIC KS KS (p-value)
LIGD α̂ = 0.007, β̂ = 4.954 -73.752 -143.505 -139.384 0.129 0.291
KuD â = 4.627, b̂ = 34.034 -64.084 -124.167 -120.047 0.218 0.008
Beta â = 16.201, b̂ = 21.363 -65.506 -127.011 -122.890 0.172 0.066
UBXII â = 2.250, b̂ = 6.273 -65.432 -126.864 -122.743 0.171 0.068
URaD â = 1.277 -35.935 -69.869 -67.809 0.375 < 0.0001
UWeD â = 1.243, b̂ = 3.625 -52.035 -100.070 -95.949 0.230 0.004
UTeD â = 1.274 -42.405 -82.811 -82.750 0.325 < 0.0001

As observed in Tables 7 - 9, the LIGD has the smallest information criteria than its competitors,
thus, the LIGD outperforms all other competing models and A* values than other competing models,
hence, LIGD outperforms all the competing models. Also, the LIGD has the smaller KS value and a KS
p-value (0.291) which is ≥ 0.05, thus, the LIGD provides a better fit for the insurance data. However,
LLoD and LCaD provide the best fit compared to the LIGD. This conclusion is further supported by
the histogram of the insurance data alongside the densities and Quantile-Quantile (QQ) plots for all the
fitted distributions shown in Figures 5 and 6.
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Figure 5. The estimated pdfs for insurance data.

Figure 6. The QQ plots for insurance data.
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Figure 5 shows that the LIGD distribution offers a close fit to the insurance data. Similarly, as
illustrated in Figure 6, distributions such as LCaD, KuD, and Beta also exhibit strong correlation with
the data, as evidenced by their high correlation coefficients (0.925, 0.941, and 0.926, respectively). In
particular, the LIGD achieves the highest correlation coefficient (0.968), which highlights its superior
performance. Taken together, these graphical analyzes substantiate the robustness and superiority of
LIGD in modeling the insurance data set.

6.3. Analytical Results of Competing Models of Soil Moisture Data

The MLEs, and other performance measures of LIGD with other competing models of the soil
moisture data are tabulated in Tables 10 - 12 respectively.

Table 10. Performance of the LIGD against competing generalized IGDs using second
dataset.

Models MLEs ℓ̂ AIC BIC KS KS (p-value)
LIGD α̂ = 0.039, β̂ = 16.002 -33.122 -62.245 -60.829 0.168 0.731
TLIGD â = 0.774, b̂ = 0.008, ĉ = 0.069 -29.906 -53.812 -51.688 0.224 0.383
HCIGD â = 0.085, b̂ = 4.024, ĉ = 0.088 -29.620 -53.240 -51.116 0.225 0.377
KuIGD â = 0.172, b̂ = −0.024, ĉ = 8.001 -31.983 -57.965 -55.841 0.177 0.673
PIGD â = 0.015, b̂ = 0.005, ĉ = 1.205 -28.284 -50.568 -48.443 0.288 0.135
IGD â = 0.031, b̂ = 0.021 -27.903 -51.806 -50.390 0.306 0.096

Table 11. Performance of the LIGD against competing log-modified models using second
dataset.

Models MLEs ℓ̂ AIC BIC KS KS (p-value)
LIGD α̂ = 0.039, β̂ = 16.002 -33.122 -62.245 -60.829 0.168 0.731
LNoD â = −2.953, b̂ = 0.550 -31.862 -59.724 -58.308 0.217 0.419
LLoD â = 0.056, b̂ = 3.160 -31.609 -59.217 -57.801 0.191 0.580
LCaD â = −2.802, b̂ = 0.377 -28.694 -53.388 -51.971 0.219 0.407
LKuD â = 1.282, b̂ = 29.780 -29.398 -54.797 -53.381 0.242 0.296

Table 12. Performance of the LIGD against competing unit-bounded models using second
dataset.

Models MLEs ℓ̂ AIC BIC KS KS (p-value)
LIGD α̂ = 0.039, β̂ = 16.002 -33.122 -62.245 -60.829 0.168 0.731
KuD â = 1.241, b̂ = 25.552 -29.442 -54.885 -53.469 0.239 0.307
Beta â = 1.951, b̂ = 27.524 -31.088 -58.176 -56.760 0.217 0.421
UBXII â = 0.104, b̂ = 9.008 -12.305 -20.609 -19.193 0.548 < 0.0001
URaD â = 1.111 -22.633 -43.266 -42.558 0.457 0.002
UWeD â = 0.002, b̂ = 5.314 -30.971 -57.943 -56.526 0.194 0.559
UTeD â = 0.387 -25.126 -48.253 -47.545 0.436 0.004
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As shown in Tables 10 - 12, the LIGD outperforms its competing models with the lowest informa-
tion criteria. In addition, the LIGD has the smallest KS values and the highest KS p-value (0.731),
confirming its superior fit. This conclusion is further supported by the soil moisture data histogram
alongside the densities and QQ plots for all the fitted distributions shown in Figures 7 and 8.

Figure 7. The estimated pdfs for soil moisture data.

Figure 7 demonstrates that the LIGD distribution offers a close fit to the soil moisture data. Sim-
ilarly, as illustrated in Figure 8, distributions such as KuD, Beta, and UBXII also exhibit strong cor-
relation with the data, as evidenced by their high correlation coefficients (0.928, 0.934, and 0.950,
respectively). Notably, the LIGD achieves the highest correlation coefficient (0.972), underscoring its
superior performance. Collectively, these graphical analyses substantiate the LIGD’s robustness and
superiority in modeling the soil moisture dataset.

7. Conclusion

This study introduced a novel two-parameter distribution, termed the Log Inverse Gompertz
Distribution (LIGD), as an extension of the Inverse Gompertz distribution for modeling data restricted
to the unit interval (0, 1). The LIGD was derived through a negative exponential transformation
of the inverse Gompertz distribution. Its probability density function displayed unimodal behavior
and accommodated a variety of shapes, including J-shaped and reversed-J forms, while its hazard
rate function exhibited a monotonically increasing pattern. Some statistical properties and reliability
measures were derived, highlighting the distribution’s applicability in practical data analysis. Param-
eter estimation was carried out using the methods of maximum likelihood and maximum product of
spacing, with a Monte Carlo simulation study conducted to evaluate the estimators’ performance. The
application of the new model to insurance and soil moisture datasets revealed its superior fit over
competing models, reinforcing its effectiveness for analyzing unit-bounded data.
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Figure 8. The QQ Plots for soil moisture data.
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