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Abstract

In this paper, spectral analysis of infinite triangular double-band matrices acting as operators on the
Cesaro space g, is given. The study includes a detailed analysis of the spectrum, distinguishing
between different types of the spectrum (e.g., point spectrum, residual spectrum, continuous
spectrum, defect spectrum, compression spectrum and approximate point spectrum). Besides, a finer
subdivision of the spectrum is given. A generalization of the study to symmetric and non-symmetric
tridiagonal matrices is also derived. The technique used in this study is flexible enough to address
the spectral problem of the underlying operators in various sequence spaces.

Keywords: Spectrum, Sequence spaces, Infinite matrices.

Introduction

Several authors have analyzed the spectra
of various infinite matrix structures, such as
band matrices (matrices with non-zero elements
confined to diagonal band, which includes
lower and upper triangular double-band
matrices), Jacobi matrices (tridiagonal matrices
with specific properties), and more general
matrix forms. Such matrices can usually be
identified with linear operators on sequence
spaces. Also, several operators, like the
difference operators, which are defined by
difference equations, often involve infinite band
matrices. It should be noted that, no general
method exists for finding the spectrum of an
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arbitrary infinite matrix. In fact, in the case of
infinite matrices, the methods used are often
tailored to the specific matrix operator and the
type of sequence space being considered.

In this paper, we concern ourselves with
obtaining the spectra of infinite double-band
matrices, in both lower and upper forms.
Furthermore, tridiagonal matrices are also of
our concern. Our results, in the current paper,
substantially complement recent results on the
difference operators and their adjoints from
[Altay and Basar 2004, Altay and Bagar 2005,
Akhmedov and Basar 2006, Akhmedov and
Bagar 2007, Karakaya and Altun 2010, Dutta
and Tripathy 2013, Tripathy and Das 2015, El-
Shabrawy and Abu-Janah 2018, El-Shabrawy
and Sawano 2021], the Jacobi operators from
[El-Shabrawy and Shindy 2020], the tridiagonal
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non-symmetric matrices as operators from [El-
Shabrawy and Shindy 2025] and other related
results.

Before giving a complete description of the
spectral problem we want to address, we recall
some notations used in this paper.

By ¢%, ¢ and c,, we denote the Banach
spaces of bounded, convergent and null
sequences of complex numbers with the
supremum norm, respectively. We use ¢P
(1 < p < ) to denote the Banach space of p-
absolutely summable sequences with the well-
known £P-norm. The symbol bv stands for the
Banach space of all sequences x = (xy)x=o for
which the following norm

xllpy = [ Jim x| + xo] + Ziy I = s
k—o0

is finite. Furthermore, the space bv, = bv N ¢,
is a Banach space with the bv-norm, whose dual
space is norm isomorphic to the Banach space
bs (cf. [Wilansky 1984, Theorems 7.2.9 and
7.3.5(ii)]), where

bs = {x = (XKk=o
Illos = sup|Ehe x| < ool
N=0

The space of p-bounded variation sequences,
denoted by bv,, (1 <p < ), is the Banach
space of all sequences x = (xi)x=o for which
(xk — xk_l);:;() € gp’ where X_q1 = 0. The
space cs is the Banach space of all sequences
x = (X )p=o SUch that Y3, x; is convergent,
with the norm

llxlles = SIYllpIZLo X
The Hahn sequence space h [Rao 1990] is
defined by
h={x= ()0 €Eco:
lIxlln = Xizo (k + Dlxgs1 — x| < 0},

which is a Banach space. Also, we consider the
Cesaro sequence space o, defined by

0 = 1 = s :
- 1 N
Il = sup iz [ SR ] < oo}
In this paper, we give attention to the Cesaro-
type space ag,, which is the Banach space
defined by
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T 1 yvN —
Op = {x = (Xr)k=o : I\IIET(}OmZk:o Xk = 0}

with the o -norm. Moreover, it is known that

0" = h (cf. [Goes and Goes 1970, Theorem

3.7 (iD]).

Throughout the paper, we adopt the
following conventions:

e Suppose
N=1{1,23,...}and N, ={0,1,2,...}.

e The set of real numbers and the set of
complex numbers are denoted by R and C,
respectively.

e Let X be an infinite-dimensional Banach
space and write B(X) for the space of all
bounded linear operators from X into itself.
For an operator T € B(X), its adjoint
operator T* € B(X™), where X* is the dual
space of X.

e In a sequence space, we typically represent
the zero element as 0 = (0,0,0,...).

e The symbol @ denotes the empty set.

e For a nonzero real number r, define the
closed disc A,., circumference dA, and open
disc A,. as follows:

Av:={1eC: | <|r},
0A:={1€eC: |1 =]r|}
and
A:={1e€C: |A] <|r|}
When r = 1, the index is omitted.

To introduce our problem, consider the
infinite-dimensional lower triangular double-
band matrix B(r,s) = (b,x) [Altay and Basar
2005];

r, ifk=n,
bue=1s, ifk=n-1,
0, otherwise,

where r, seR and s+ 0. On a Banach
sequence space u, this matrix can be identified
with a linear operator B(r,s): i — i;

(B(r,8)x)y, = Xy + SXp_1,
where x = (x)meo0 € 4, M € Ny,

The operator B(r,s) is called the generalized
difference operator. In fact, if r=1 and
s = —1, the operator B(r,s) is reduced to the
difference operator A [Altay and Basar 2004].
Also, for the case s =1—r, the operator
B(r, s) coincides with the Zweier operator Z"
[Altay and Karakus 2005]. The spectral
problem of the operator B(r,s) has been
extensively studied in various sequence spaces.
Notable investigations include ¢y, ¢ [Altay and
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Bagar 2005], # (1<p <), bv, (1<p<
o) [Furkan and Bilgic 2006, Bilgi¢ and Furkan
2008], cs [Dutta and Tripathy 2013], bvy, h
[EL-Shabrawy and Abu-Janah 2018] and £,
bv [El-Shabrawy and Sawano 2021].

The transpose of the matrix B(r,s) is
denoted by U(r,s), which can be identified
with a linear operator in many sequence spaces
[Karakaya and Altun 2010]. If r =1 and s =
—1, the operator U(r,s) coincides with the
operator A* [Diindar and Basar 2013]. In many
investigations [Karakaya and Altun 2010,
Tripathy and Das 2015], the spectra of the
operator U(r,s) have been studied in the
Banach spaces ¢, ¢ and cs.

Furthermore, for r,s,q € Rand n, k € Ny,
we consider the tridiagonal matrix

T = T(T, q, S) = (tnk);

q, if k=mn,

s, ifk=n-1,

r o ifk=n+1,

0, otherwise.

This infinite matrix can be identified with a
linear operator on a Banach sequence space u as
Tip—p

(T(T, q, S)x)n = (Tx)n

= SXp-1+t qxy + X441,

tnk -

1)

where x = (xp)m=o € 4, N € N.

If s = r, then T(r, q, s) is reduced to the Jacobi
matrix J(q,v) =T(r,q,v) [Altun 2011,
Berezanskii 1968, El-Shabrawy and Shindy
2020]. Furthermore, B(r,s) =T(0,r,s) and
U(r,s) =T(s,r,0) are included in the class of
T(r,q,s); see [Altay and Bagar 2005, Karakaya
and Altun 2010]. So, it seems natural to firstly
assume that r, s # 0. However, for either the
case r=20; or the case s=0, see the
conclusion in the last section. The spectra of
T(r,q,s) were determined in the spaces ¢, c,
£1 and ¢% in [Bilgic and Altun 2019]. More
recently, this problem was studied in the
Banach spaces h and bv, [EI-Shabrawy and
Shindy 2025].

To the authors’ knowledge, the spectral
problem has still not received enough attention
in the Cesaro sequence space o,. So, in the
current paper, we address the study of the
spectra of the operators B(r,s), U(r,s) and
T(r,q,s) on a,. This investigation represents a
natural continuation of the studies by
Akhmedov and Basar (2006, 2007), Altay and
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Bagar (2004, 2005), Karakaya and Altun 2010,
Dutta and Tripathy 2013, Tripathy and Das
2015, EIl-Shabrawy and Abu-Janah 2018,
Sawano and El-Shabrawy 2021, and El-
Shabrawy and Shindy (2020, 2025).

Our work in the current paper is outlined in
the following way: Section 2 provides a brief
overview of basic definitions and facts related
to the spectrum and various types of the
spectrum. Section 3 focuses on the study of the
spectra of the operators B(r,s) and U(r,s)
acting on the sequence space o, A
generalization of the study to tridiagonal
matrices has been obtained in Section 4. Finally,
in the last section, a conclusion and future
research are provided.

Preliminaries

To ensure the paper is self-contained, we
briefly gather some basic definitions and
preliminary facts which will be useful
throughout the paper.

For any given A € C and T € B(X), we
write T, =T — AI, where [ is the identity
operator on X. The spectrum of T, denoted by
o(T, X), is the set of all scalars A € C for which
T, is not bijective. Its complement in C is known
as the resolvent set of T, denoted by p(T,X).
The spectrum o(T,X) can be partitioned into
various subsets, classified according to the
properties of R(T,) and the bounded
invertibility of the operator T;. The point
spectrum o, (T, X) of T is defined by

op(T,X) ={A € C: T is notinjective};
the residual spectrum o,.(T, X) of T is defined
by

or-(T,X) = {1 € C: T,isinjective,
but R(T3) is not dense};

the continuous spectrum o.(T,X) of T is
defined by

0.(T,X) ={A € C: T, isinjective and
R(Ty) is dense, but T; ! is unbounded}.

Following [Appell et al. 2004] three more
subsets of the spectrum can be defined as
follows:

0s5(T,X) = {1 € C: T, is not surjective};
0.o(T,X) = {1 € C: R(T) is not dense};
0ap(T, X) = {1 € C: 3 (xy) in X such that
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lxill = 1V k € N, lim [Tyl = 0},
which are called the defect spectrum,
compression spectrum and approximate point
spectrum, respectively. Note that these subsets
of the spectrum overlap and

o (T, X) = 0,p(T, X) U 05(T, X)
= 0ap(T, X) U 0o (T, X).

Another important classification of the
spectrum, which is due to [Taylor and Halberg
1957], is also considered. To be more precise,
let T be a linear operator on a Banach space X
into itself. The operator Tj is classified I, II or
I11, according as R(Ty) = X; R(Ty) = X, but
R(Ty) # X; or R(Ty) # X. Furthermore, T is
classified 1, 2 or 3 according as T; * exists and
is bounded; exists, but is not bounded; or does
not exist. By combining these possibilities, we
obtain different states of the operator. If T €
B(X), the complex plane is subdivided into
parts corresponding to the states of the operator
Ty; 1,0(T, X), 1,6(T, X), 130(T, X), 11,6(T, X),
,0(T, X), l130(T, X), I1l,0(T, X), l1l,o(T, X)
and Ill;0(T,X). Consequently, we obtain a
complete disjoint subdivision of the spectrum.
Precisely, the following relations hold:

o(T, X) = 156(T, X) U ll,6(T, X) U ll;0(T, X)
U Il a(T, X) U lll,a(T, X)
U lL;0(T, X);

0, (T, X) = 130(T, X) U ll30(T, X)
U lL;0(T, X);

0. (T, X) = ll,0(T, X) U lll,o(T, X);
o.(T,X) = I,o(T, X).

It should be noted that II,o(T,X) =0
since any boundedly invertible operator on a
Banach space into itself should have a closed
range (cf. [Taylor and Halberg 1957, Theorem
10]). Furthermore, Lo(T,X)=0 as a
consequence of the closed graph theorem. We
observe that A € p(T,X) if and only if
T, € 1;0(T, X); otherwise 1 € o(T, X).

From the definition, we notice that

o5(T,X) = (T, X)\I30(T, X).
Also, we have
Jap(T'X) = O-(TlX)\IIIIO-(TIX)

(cf. [Taylo and Lay 1986, p. 282]).
It is worthwhile to assert that, if T € B(o,)
is represented by a matrix A, then its adjoint T*
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€ B(oyp) is represented by the transpose matrix
At; see [Taylo and Lay 1986, Problem 7,
P.233].

For the sake of simplicity for the reader, we
recall the following theorems which are
concerned with the spectra of the operators
U(r,s) and B(r, s) on the Hahn sequence space
h. In fact, these results are crucial in the sequel.

Theorem 2.1. [El-Shabrawy and Shindy 2025,
Theorem 3.4] We have U(r,s) € B(h).
Moreover, the following results are satisfied:

1): o(U(r,s),h) ={AeC: |A—r| <|s|}.
(2): 0p,(U(r,s),h) ={A€C: |[A—1|<]|s|}.
(3): a,(U(r,s)",h") = 0.

@): o,(U(r,s),h) = 0.

(5):

Theorem 2.2. [EL-Shabrawy and Abu-Janah

2018] We have B(r,s) € B(h). Moreover, the

following results are satisfied:

(1): o(B(r,s),h)y={r€C: [A—7r| < |s|}

(2): op(B(r,s),h) = 0.

3): op(B(r,s)", h") ={1€C: |[A—-71|<
s}

o.(U(r,s),h) ={1eC: |A—r|=|s|k.

4): o.(B(r,s),h)y={1€C: |A—7|<|s|}
(5): 0c(B(r,s),h) = 0.
(6): 04p(B(r,s),h) ={1€C: [A—7|=|s]}.

(:
(8):

os(B(r,s),h) ={A€C: |[A—r|<|s|}.
Oco(B(r,s),h) ={1€C: |A—7r| <]s|}.

Furthermore, we report on some recent
results concerning the spectra of the operator T
acting on the Hahn space h.

Theorem 2.3. [EI-Shabrawy and Shindy 2025]
For |r| < |s|, we have T € B(h). Moreover,
the following results are satisfied:

(1): o(T,h) = Q (Z\Ag).

(2): 0,(T,h) = 0.

(3): 0,(T"h") = Q (Z\Ag).

@) 0.(T,h) = Q (Z\Ag).

(5): 0.(T,h) = .

Theorem 2.4. [El-Shabrawy and Shindy 2025]

For |r| > |s|, we have T € B(h). Moreover,
the following results are satisfied:

(1): o(T,h) = Q (ZE\A).
(2): 0,(T,h) = Q (AE\Z).
(3): 0,(T",h") = 0.
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@): 6.(T)h) = 0.
©): 0.(T,h) = Q <6A U aAz).

=o(U(r,s),h)\Iza(U(r,s),h)
={1eC: [A-1|=]s]},
where we have used the result in Theorem
2.1(2).
(3): Follows immediately from the relation
0o (U(r,5),h) = a,(U(r,s)",h")
and using Theorem 2.1(3).

Theorem 2.5. [El-Shabrawy and Shindy 2025]
For |r| = |s|, we have T € B(h). Moreover,
the following results are satisfied:

(1): o(T,h) = Q(an). S
(2): 0,(T,h) = . The next is our first main theorem.
(3): 0,(T",h") = {882;{1}). g 7 Theorem 3.2. We have B(r,s) € B(ap).
Q(aA\{l’}) i r :; ) Furthermore, the following statements are
@) o.(T,h) = {Q om s satisfied:
Q({l})' = ' 1): a(B(r,s),00) ={1€C: |A—1|<|s|}.
(5): 6.(T,h) = {@ CTTS 2): 0,(B(r,s),00) = 0.

(3): op(B(r,s)",00) ={AEC: |A—7|<]|s|}.

4): 0.(B(r,s),00) ={1€C: |A—1|<|sl|}.
Spectra of the operators B(r,s) and U(r, s) (5): 0.(B(r,s),00) ={A€C: |A—71|=]s|}.
on oy (6): 04p(B(1,5),00) ={AEC: |A—71]=]s[}

(7): 05(B(r,s),00) ={1€C: |A—71|<|s|}.

In this section, we completely determine the
spectrum and various parts of the spectrum of
the operators B(r, s) and U(r, s) on the Cesaro

(8):
(9):

0c0(B(1,5),00) ={A€C: [A—71|<]s|}.
I;06(B(r,s),0q) = lI30(B(r,s),0p) =
[lI;0(B(r,s),0,) = 0.

space a. Firstly, the following theorem, which (10): 11,6(B(r,s),00) ={AE€C: |A—71| =|s]|}.
completes the results in Theorem 2.1 is given. It (11): 1L a(B(r,s),00) ={A€C: |A—7| < |s|}.
is necessary for our proofs in the current (12): 1l6(B(r,s),0,) = 0.

section. Proof.

Theorem 3.1. We have the following results:
(1): 05p(U(r,5),h) ={A€C: [A—71| < |s]}.
(2): o5(U(r,s),h) ={r€C: |A—7r|=]s|}
(3): 0,,(U(r,s),h) = 0.
Proof.
(1): By utilizing Theorem 2.1(4), we obtain
thatIll;o(U(r,s),h) = @. Combined this
with the fact that
oap(U(1,5),h)

=a(U(r,s), D\Ill;ac(U(r,s),h),
implies
oap(U(r,s),h) ={A1€C: |[A—1|<|s]},
where we have used the result in Theorem
2.1(2).
In fact, we have
I30(U(r,s),h) € 0,(U(r,s),h)

={1eC: |A—r| <]|s|}

Conversely, let A € C such that |1 —r| <
|s|. Then, U(r,s) — Al is not injective.

(2):

Furthermore, from [El-Shabrawy and
Shindy 2025, Proposition  3.2(3)],
U(r,s)—Al is  surjective.  Then

A € I30(U(r,s),h). This concludes that,
I;o(U(r,s),h) ={AeC: |[A—7r|<|s|}.
Thus,

os(U(r,s),h)
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(2): The result follows from [Appell et al. 2004,
Proposition 1.3] and Theorem 2.1(1). In
fact, we have
o(B(r,s),0,) = o(B(r,s)", 0p)

=og(U(r,s),h)
={1eC: |A—-r|<|s|}

(2): 1t can be shown that, for all 1€C,
(B(r,s) —A)x =0 has only the zero
solution for x.

(3): Since

o, (B(r,s)",00) = ap(U(r,s),h),
then applying Theorem 2.1(2) yields the
desired result.

(4): Follows immediately from the relation
O'r(B(T, S)' GO)

= Up(B(r' S)*'GB)\Up(B(T: S)'GO)
and then applying Statements (2) and (3).

(5): Since o, (B(r, 5),0¢), 6. (B(1,5),00) and
o.(B(r,s), o,) form a disjoint subdivision
of a(B(r,s),0y), then, by applying
Statements (1), (2) and (4), we obtain that
0c(B(r,5),00) ={A€C: |[A—71| =|s]}.

(6) — (7): Follow immediately from [Appell
et al. 2004, Proposition 1.3] and using
Theorem 3.1(1)-(2). Indeed, we have
0ap(B(r,5),00) = 05(B(r,5)",00)

= 05(U(r,5),h)
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={1eC: |A—r|=]s|}
and
US(B(T' S), 00) = Oap (B(T, S)*, OJ(;)
= 0,p(U(7,5),h)
={1eC: |A—7| < |s|}
(8): Follows immediately from [Appell et al.
2004, Proposition 1.3] and Statement (3).
Indeed, we have
Oco (B(T, S)' 00) = Up (B(T' S)*, 0-8)
={1eC: |A—-7r| <]s|}
(9): The result follows from Statement (2) and
the fact that
Up(B(T' S), 00) = I3O'(B(T, S), 00)
U ll;0(B(r,s),0,) Ulllza(B(r,s),00).
(10): Simply observe that
I,0(B(r,s),00) = a.(B(r,s),0,)
and then apply Statement (5).
(11): LetA e {1 e C: |A—r| <]|s|}. Since
or(B(r,s),00)
= 1ll;0(B(r,s),0,) Ulll,a(B(r,s),0,),
then, to show A € lll;o(B(r,s),0p), it
suffices to show that B(r,s)* — Al is
surjective [Taylor and Halberg 1957,
Theorem 4]. This follows from the fact that
05(B(r,s)",00) = 05(U(r,s),h)
={1eC: |[A—-r|=|sl},
where we have used Theorem 3.1(2). Thus,
we conclude that
fAeC: |A—-r|<]|s|}
C Ill;o(B(r,s),0p).
The second inclusion follows by using
[Gindler and Taylor 1962, Theorem 3.3].
In fact, we have
I,0(B(r,s),00)
cintfAeC: |A—-71|<|s|})
={1eC: |A-r|<|s|}
(12): Follows immediately.

Next, we give our second main theorem,
which is concerned with the spectra of the
operator U(r, s) on the Cesaro space oy.

Theorem 3.3. We have U(r,s) € B(agy).

Furthermore, the following statements are

satisfied:

(D:0(U(r,s),09) ={A€C: |A—7| <|s|}

(2): 0,(U(r,5),00) ={AE€C: [A—1]<|s[}\
{r + s}.

(3): op(U(1,5)",00) = @.

(4): .(U(r,5),00) = 0.

(5): a.(U(r,s),00) = {r + s}.

(6): 04p(U(1,5),00) ={AEC: |A—71| <|s[}

(7): a5(U(r,5),00) ={AE€C: |A—7|=]s|}
(8): 0o (U(r,5),00) = @.

(9): I30(U(r,s),00) ={A€C: [A—71| <|s|}.

(10): lI30(U(r,s),0p4) = O.

(11): I30(U(r,s),00) ={A€EC: |[A—1| =
IsIN\{r + s}

(12): ll,o(U(r,s),00) = {r + s}.

(13): Illo(U(r,s),0q) =1ll,a(U(r,s),0,) = 0.

Proof.

(1): The required result follows from [Appell
et al. 2004, Proposition 1.3] and Theorem
2.2(1). In fact, we have
o(U(r,s),0y) =a(U(r,s)",0p)

= og(B(r,s),h)
={1€eC: |A—7| < |s|}

(2): Firstly, we recall that,
op(U(r,5),00) € a(U(r,5),00)

={1eC: |A—7r| < |s|}
Furthermore, suppose that
(U(@r,s) —A)x = 0 for x # 0. Thus,

A—r\"
xn=<s )xo, n € N,

Then, we should assume that x, # 0 and
% # 1 since otherwise we would obtain
either x =0 or x & oy. With this, if
A —7| <]sl,

A-r k
Yk=0 Xk = X0 Xk=0 (T)

1_(ﬂ)n+1

-(5)

Then, ﬁzﬁé:o x; — 0 as n — oo, That
is, x = (x) € o, and so,
A € ap(U(r,s),00).

(3): The result follows immediately from the
fact that
op(U(r,8)",00) = 0, (B(r,s),h)
and then applying Theorem 2.2(2).

(4): Using the relation

or(U(r,s),00)
= O-p(U(r' S)*, 0-6)\0-p(U(r' S), 0'0)
along with Statements (2) and (3), the
required result follows.

(5): The result follows based on the fact that
op(U(r,5),00), o0(U(r,5),00) and
o.(U(r,s),0,) form a disjoint partition
of a(U(r,s),0,), and then applying the
results in Statements (1), (2) and (4).

(6) - (7): Follow immediately from [Appell
et al. 2004, Proposition 1.3] and then
using Theorem 2.2 (6)-(7). Indeed, we
have
Oap(U(r,5),00) = 05(U(r,5)",00)

= ag5(B(r,s),h)
={1eC: |[A—-7|<|s|}
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and
0s(U(r,s),00) = 0ap(U(r,5)",0p)

= 0ap(B(1,5),h)

={1eC: |A—r|=|s|}
It follows from [Appell et al. 2004,
Proposition 1.3] and Statement (3) that
O'CO(U(T, S), GO) = Up(U(TJ S)*'O-B) = Q)
It is known that
I30(U(r,s),00) € a,(U(r,5),00).
Then, applying [Gindler and Taylor
1962, Theorem 4.2], we obtain

(8):

(9):

I;0(U(r,s),00) S{A€C: |A—71| <]|s|}

Conversely, let A€ C such that

[A—7r| <|s|. Then 1 & a5(U(r,s),0)

and A € a,(U(r,s),00). This implies

that U(r,s) — Al is surjective and not
injective. Consequently

A €130(U(r,s),0,). Thiscompletes the

proof of the statement.

Clearly,

3a(U(r,s),00) € 0p,(U(r,5),00)

={A€C: [A—r| < |[s|}\{r +s}.

Conversely, for all A€ C such that

[A—r|<|s| and A #r+s, we have

A€ a,(U(r,s),00) and

A& o, (U(r,s)",00). This implies that

U(r,s)—Al is not injective and

U(r,s) —Al has a dense range (cf.

[Taylor and Halberg 1957, Theorem 1]).

Consequently, A & lll;0(U(r,s),0p).

Thus, Iz (U(r, s),0,) = 0.

From the definition of Il;a(U(r,s),0,)

and using Statements (2), (9) and (10),

we obtain

lI30(U(r,s),00)

= 0, (U(r, ), 50)\
[I350(U(r,s),04) Ulll;o(U(r,s),00)]
={1€eC: |A—7r|=|s|}\{r+s}.

Follows from the fact that

I,o(U(r,s),0,) = 0.(U(r,s),0,) and

use Statement (5).

(23): It is known that o.(U(r,s),0p) =
I,o(U(r,s),0,) Ulll,a(U(r,s), o).
With this and the result in Statement (4),
we obtain the required result.

(20):

(12):

(12):

Spectra of the operator T(r, q, s) on oy

For the sake of brevity, if there is no
confusion, we sometimes use T instead of
T(r,q,s), especially when combined with
another symbol. Now, the method on which we
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proceed in order to find the spectra of T depends
on examining the injectivity and surjectivity of
the complex functions;

Q(z)=sz+q+rz ! and
P(z)=rz+q+sz7%,

where r, g and s are fixed real numbers
with r, s # 0. Observe that, if ; and a,, are the
roots of Q, they are nonzero, and a;* and a;*
are the roots of P. Furthermore, the following
relations are satisfied:

(2)

The right-shift operator and the left-shift
operator are defined by (Rx), =x,_; and

T
and o, =-

-q
a +a, =— .
1 2 S 3

(Lx)y, = xp41, respectively: they vyield a
factorization of the operator T;
T =s(—ail) o (R—a,l), 3)

where a; and a, are the roots of the function Q
and interchangeably. As an immediate
consequence, the boundedness of T on o
follows from the boundedness of R and L.

We need the following proposition.

Proposition 4.1. T € (gy: ay) is injective if and

only if one of the following conditions holds:
(i): the function Q has a root inside A,
(ii): either 1 or —1 is a double root of Q.

Proof.

The operator T is not injective if and only if

there exists x = (x,) # 0 in o, with Tx = 0.

From [Bilgi¢ and Altun 2019, Lemma 1.1], the

solution of Tx = 0 is given by

C(Z—;—g—é) if ap # ay,

1+n

an’
where a, and a, are the roots of the function Q.
So, in the forthcoming, we will validate the
result by considering three cases for the
possibilities of @; and «,.

(i): Suppose a; # a, and |a4| = |a;| = |al.
We may assume that a; = |a|(cosf +
isinf) and a, = |a|(cosf — isinf) for
some 0 < 8 < m. Then

Xp =
if = a; =q,

n C( || (cosf—isind) _
k=0" \|a|k(cosh+ising)k
|a|(cos@+isinB) )

|a|¥(cos@—isinB)k
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. 1
= —2iclim —
n-ooon+l

1)8)=0
for |a;| = |ay| = |a| = 1. However, for
la;] = |ay] =lal <1, we have x =
(x,) & 0, [El-Shabrawy and Shindy
2025, Proposition 2.2(1)]. Thus, T is not
injective in o, if and only if |a;| =

k=0 m% sin((k +

lay| = |la] = 1.
(ii): Suppose a; # a, and |aq| # |ay|. We
have
Yk=0Xk = CXk=0o (Z_g - Z_zc)
:C[ ﬁ:oa_lzc_ g:oa_i]-
az az

Hence, we have the following two cases:
@: If lag| > |az| =1 or |az| > |aq] =

1, then limn_,ooﬁzzzo x, = 0.
If lai| < |az| <1, |ag| < |ay| <1,
la;| <1 <|ay| or |az] <1< |ayl,
then x = (x,) € 0w. SO, x = (x,) €
0p.

Thus, in Case (ii), T is not injective in o,

ifand only if |a;| = 1 and |a,| > 1.
(iii): Suppose a; = a, = a. Then, @, and a,

are real. So, we study three cases:
(@): If || > 1, then
lim LZZ‘:O Xk

(b):

n-oon+1
_ . 1 n 1+k _
- CTP—IEon+1 k=0 gk — 0.
(b): If |a| <1, then x = (x,,) & 0. SO,

x = (x,) € oy.
If |a| = 1,thena = —1ora = 1. For
a = —1, we have

. 1 on
lim —— ¥ x,

(c):

n-oo n+1
n+2 e
1 )5 if n is even,
=clim —
n—-oo n+1 n+

—71, if n is odd.
So,
i 1oy
rlll—rgo nr1 k=0 Xk # 0.
However, for « = 1, we have
C 5.
n—-ocon+1 Erlll—l;lgo(n + 2)

From Cases (a), (b) and (c), we
conclude that, in the case where a; = a,, T
is not injective in o, if and only if |a;| =
lay| > 1.

: 1 yvn —
lim =57 x, =

As an immediate result of Proposition 4.1,
we have the following:

Corollary 4.1. T — Al € (0y: 0p) is injective if
and only if one of the following conditions
holds:
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(i): the function @ — A has a root inside A,
(ii): either 1 or —1 is a double root of Q — A.

Now, we consider the following lemma for
the right-shift operator R:

Lemma 4.2. Let a€C. Then, R—al €
(0o: 0p) is surjective if and only if a ¢ A.
Proof. The result follows directly from
Theorem 3.2(7).

As a consequence of Theorem 3.3(7), we
establish the following lemma.

Lemma 4.3. Let a €C. Then, I —al €
(09: 0y) is surjective if and only if a & 0A.

With the help of Lemmas 4.2 and 4.3, we
can introduce the following analogy to [El-
Shabrawy and Shindy 2025, Proposition 2.3],
whose proof can be derived in a similar manner.

Proposition 4.2. T € (0y:0,) is surjective if
and only if the roots of the function Q do not lie
on dA and at least one root of Q is outside A.

Consequently, from Proposition 4.2, we
have the following corollary.

Corollary 4.2. T — Al € (0y: ay) is surjective if
and only if the roots of Q — 4 do not lie on 9A

and at least one root of Q — A is outside A.
Next, we give our first main theorem on the
spectra of the operator T.

Theorem 4.1 For |r| <|s|, we have T €
B(oy). Furthermore, the following statements
hold:

2):
(2):
3):
(4):
(5):
(6):

o(T,00) = Q (Z\Ag).
0,(T,00) = 0.
0,(T*,05) = Q (A\Zg).
0:(T,00) = @ (M\E:),

0.(T,00) =Q <6A£ u 6A>.

I30(T,00) = 1I30(T,00) =
Il;0(T,0,) = Q.

I,6(T, 6) = Q (aAg U aA).
(8): 1l,0(T,04) = Q (A\Z£>.

(9): Nll,o(T,04) = 0.
(10):04 (T, 60) = Q (aAI u aA).

(7):
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(11):05(T, 00) = Q (Z\Ag).
(12):040 (T, 59) = Q (A\ZE)

Proof.

(D)

(2):

@)

(4):

(5):

From [Appell et al. 2004, Proposition
1.3], we have

o(T,0y) = o(T", 0p) = (T, h),
where T is the transpose of T. Now, by
applying  Theorem  2.4(1), with
swapping r and s, we thereby obtain
o(T,00) = P (Bs\a) = 0 (Bar ),

T S
where swapping r and s implies
replacing Q by P.

Since the product of the two roots of
Q — A equals g then, Q — A has a root
inside A. By Corollary 4.1, T — Al is
injective. Therefore, T has no
eigenvalues in o, so that

o, (T,00) = 0.

Follows immediately from Theorem
2.4(2). Indeed, we have

0p(T",05) = o (T, ) = 0 (M\ar ).
S
By using the relation
O-I'(TJ GO) = O-p(T*:O-B)\O-p(TJ 0-O) and
applying Statements (2) and (3), the

result follows directly.
It is known that

o.(T,0,)
=o(T, 00)\[% (T, 00) U o (T, 00)]
- o(Bar)\o (o)
co (E)Ag vaa).

Conversely, let A€Q (aAE U aA).

Then, A€P (E)Ag U 6A>. Therefore,

there exists a root y of P — A such that
¥ € dAs U A. Thatiis |y| = |§| or y| =
1. Therefore, there exists a root of P —
A, which lies on 0A. Hence, by [EI-
Shabrawy and Shindy 2025, Proposition
2.1], T*— Al is injective, and then,
A& o,(T*,00). So, A & 0,.(T,0,). This
implies that 1 € a.(T, 6).
Consequently,
0 (aAz u aA) < 6,(T, o).

S
Thus, we conclude that

0.(T,00) =Q ((?Ag U OA).
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(6):

(7):

(8):

(9):

The result follows immediately from

Statement (2) and the fact that

op(T,00) =130(T, 0¢) U ll30(T, 0¢)
U lll3o(T, 04).

Simply observe that

I,0(T,04) = 0.(T,0,). It remains to

apply Statement (5).

We have

11,6(T,0,) S 0,.(T,04) = Q (A\Zf).
Conversely, let ’

1EQ (A\Z;) =p (Ag\Z). In this
case, there e>s<ists a rootry of P — A such
that y € As\A. From [EIl-Shabrawy and

Shindy 2025, Proposition 2.3], T* — Al
is surjective. That is T—AI has a
bounded inverse (cf. [Taylor and
Halberg 1957,  Theorem  4]).
Additionally, we have 1 € o,(T", 0p),
which implies that T*— Al is not
injective. Then, T — AI does not have a
dense range (cf. [Taylor and Halberg
1957, Theorem 1]). That is we have
A €lllyo(T,04). Thus,

,0(T,0,) = Q (A\Zr)

N
Based on the fact that
Il,0(T,0y) = 6.(T,cx)\Ill,0(T, 6¢)
and then applying Statements (4) and
(8), the result follows immediately.

(10): We have

05(T",00) = 0ap(T, 0¢)
= o(T,0o)\Ill;0(T,0y)
- o(Rar)e ()
cQ (aA U 6A£>.

Conversely, let

€0 (aA U 6A£> —p (aA U 6A;).

Then, there exists aroot y of P — Asuch
that y € dAU dAs. Therefore, P — A

should have a root on 0A. By [El-
Shabrawy and Shindy 2025,
Proposition 2.3], T*—Al is not
surjective. So, A € a5(T*, 0p).
Therefore,

0 (aA u 6A1) C o5(T", 05)
S
= 0ap(T, 0¢).

As a result
Gap(T: 0-0) = O-S(T*l 06)
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—Q (aA U aA:).
(11): The result follows direétly from the
fact that
05(T,00) = (T, 00)\130(T, 6¢)
=Q (Z\Af)

(12): Itisadirect consequence of Statement

(3) and the fact that
0co(T,00) = Op (T*, 00).

Theorem 4.2. For |r|>|s|, we have T €
B(ag,). Furthermore, the following statements
hold:

1): o(T,00) = Q (ZE\A).

() 0,(T,00) = Q (Zg\A).
(3): 0,(T",00) = @.

4): o.(T,09) = 0.

(5): 0.(T,00) = 0.

(6): 130(T,00) = Q (AE\Z).

7): 1,6(T,60) = Q (aAZ U aA).
(8): 1ll30(T,04) = 0. )

9): 1,0(T,04) = 0.
(10): 1l1yo(T, 0y) = lll,0(T, 0p) = O.
(11): 04p(T, 00) = Q (ZE\A).

(12): 05(T, 60) = Q (aAI U aA).
(13): O_co(Tv GO) = Q.
Proof.
(1):  From Theorem 2.3(1), we have
o(T,00) = a(T", 0p)

=o(T* h)
=P (Z\Ag)
=Q (Zg\A).

(2):  Firstly, we have
0,(T,00) S a(T,00) = Q (ZE\A).
Conversely, suppose that )
ALEQ (ZE\A)' Then, there exists a root

B of Q — 2 such that B € Ar\A. So,

1<|B] < |£| Therefore, the two roots

of Q — A lie outside A. Since it can
never happen that 1 or —1 is a double
root of @ — A, then, by Corollary 4.1,
T — Al is not injective, and then,
A € a,(T, 0). Thus, we conclude that
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(3):

(4):

(5):
(6):

0,(T,00) = Q (AE\A)

Follows immediately from Theorem
2.3(2). Indeed, we have

op(T*, 00) = 0,(T",h) = @.

By using the relation

O-r(T! GO) = O-p(T*! 06)\0-p(T! GO)

and applying Statement (3), the result
follows immediately.

Follows immediately.

Let A €l30(T,0,). Then, T —Al is
surjective and not injective. By,
Corollaries 4.1 and 4.2, it follows that

both roots of Q must be outside A. This
implies that Q — 4 has a root f

satisfying 1 < |B] < |§| Hence, f €
Ar\A, and so, 1 =Q(B) € Q <A5\Z>.

Thus, we conclude that
I,0(T,0,) € Q (A;\Z).
Conversely, let 1 € Q <A5\Z>. Then,
there exists a root 8 of Q — A such that
1< Bl < |§| So, by Corollaries 4.1

and 4.2, T — Al is surjective and not
injective. Thus A € 130(T,0,). So,

Q (A;\Z) C I;0(T, op).
S
This ends the proof of Statement (6).

(7)- (8): Simply observe

lI30(T,0,) Ulll30(T, 04)
= 0p(T, 00)\I30(T, 0¢)
- 0(&0)1e (s
cQ (aAI U aA).
Conversely, let A€ Q (aAg U 6A).

Then, A€ P (aAg U aA). Therefore,

there exists a root y of P — A such that
y € dAs U dA. Thisimpliesthat, P — 4

has the two roots inside A. So, by [EI-
Shabrawy and  Shindy 2025,
Proposition 2.1], T* — Al is injective.
From [Taylor and Halberg 1957,
Theorem 1], T — Al has a dense range.

On the other hand, 4 € Q (aA; U aA)
implies that there exists a root B of

Q — A such that |B| =1 or |B] =
Therefore, one of the roots of Q — 1

r
N
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lies on dA and the other one is not
inside A. So, by Corollaries 4.1 and
4.2, T — Al is neither surjective nor
injective.

Consequently, A € lI30(T, 6). Thus,
Q ((?Az U aA) = I1,0(T, 0,)

and Ill;0(T,04) = 0.
(9):  Simply observe that
I,0(T,04) = 0.(T,0p).
It remains to apply Statement (5).
(10): Since
0.(T,0,) = 1l1;0(T, 60) U lll,a(T, 6y),
then the desired result follows by
applying Statement (4).
(11): Indeed, we have
0ap(T, 0¢) = 0(T,00)\111(T, 00)

=Q (Zg\A).
(12): We have
05(T,00) = o(T,00)\I3(T,0¢)

= 0(a8) e (an\5)
cQ <6Ag U aA).

Conversely, letA € Q (aAg U aA). One

can show that T — AI is not surjective,
and then, A€ ag5(T,0,). Thus, we
conclude that

05(T,09) = Q (aAf U 6A>.
S
(13): It is a direct consequence of Statement

(3) and the fact that
0co(T,00) = Op (T*, 00).

Theorem 4.3. For |r|=|s|, we have T €
B(a,). Furthermore, the following statements
hold:

(1): o(T,00) = Q(AA). |
o -
(3): ap(T", 0p) = .

(4): 0.(T,00) = 0. |

(5): 0.(T,0,) = {g'({—l,l}), if r=s,

if r=—s.
(6) 130'(T' GO) = Q. |
(7): U50(T, 0,) = {Q(aA\{—l,l}), if r = s,

(8): lll30(T,04) = O. |
(9): HZO'(T, 00) — {8({_1:1}), if r=s,

i if r=-—s.
(10): M40(T,04) = 1ll,a(T,04) = 9.
(11): 0,p(T, 00) = Q(34).

(12): 05(T,0,) = Q(04).

Q(ah), if r=—s.

(13): 0co(T,00) = @.
Proof.
(1): From Theorem 2.5(1), we have
o(T,0y) =0a(T", 0p)
=o(T" h)
= P(0A)
= Q(04).

(2): Letr =s. Suppose that A € 0,,(T, o).
Then, T — Al is not injective. Since the
product of the two roots of Q — A equals
1, therefore, by Corollary 4.1, the two
roots lie on dA and that neither —1 nor
1 is a double root of Q — A. Let B be a
root of Q — A. Then, B € dA\{—1,1}.
That is, we have
A =Q(p) € Q(aA\{-1,1}). So,

0,(T, 0) € Q(AA\{~1,1)).
Conversely, let A€ Q(9A\{—1,1}).
Then, there exists § € dA\{—1,1} such
that 1 = Q(p). Therefore, S is a root of
Q — A that satisfies |f] =1 and
B & {—1,1}. By Corollary 4.1, T — Al
is not injective, and so, 4 € a,(T, o).
Hence,

Q(M\{-1,1]) € 6, (T, o).

This concludes that

0p(T,60) = Q(3A\{—1,1}).

Letr = —s. The proof is similar to case
r =S.

(3): This result follows directly from
Theorem 2.5(2). Indeed, we have
op(T*,00) = 0,(T*,h) = 0.

(4): Based on the relation
UF(T' GO) = Up(T*' GB)\O-p(T' 0'0)
and using Statement (3), the result
follows immediately.

(B): If r=-s, the proof follows
immediately from the relation
UC(T' GO)
= G(T' 00)\[Gp(T! GO) U Ur(Tl 00)]1
and then applying Statements (1), (2)
and (4). Now, letr = s. In fact, we have
0.(T,00) = Q(AA\Q(AA\{-1,1})

cQ({-11}.

On the other hand, let 1 € Q({—1,1}).
Then, —1 and 1 are the double roots of
Q — A. This implies that T — Al is
injective. Therefore, A €& 0,(T, o).
Consequently, A € a.(T, o).
We conclude that
Q({—l,l}) c UC(T' GO)'
This concludes the result.

(6): Letr = s. From the fact that
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I30(T,00) € (T, 0¢).
We have
I50(T,0,) S Q(AA\{—1,1}).
Conversely, let 1€ Q(aA\{-1,1}).
Therefore, there exists a root B of
Q — Asuchthat g € dA\{—1,1}. So, by
Corollaries 4.1 and 4.2, T—Al is
neither injective nor surjective. So,
A € 130(T,0,). This concludes that
I;0(T,04) = 0.
Letr = —s. The proof is similar to case
r =S.

(7)-(8): Let r =s. Simply observe that
II30(T, 0o) U lll30(T, 6p)

€ 0,(T, 00)\I30(T, 0p)
= Q(aA\{-1,1}).

Now, let 1 € Q(dA\{—1,1}). Then,
A€ P(0A\{—1,1}). Therefore, there
exists a root y of P—A such that
y € 0A\{—1,1}. This implies that the
two roots of P — A are inside A. So, by
[El-Shabrawy and Shindy 2025,
Proposition 2.1], T* — Al is injective.
Also, from [Taylor and Halberg 1957,
Theorem 1], T — Al has a dense range,

and consequently, A € ll30(T, o).
Therefore,

1130(T,0,) = Q(AA\{—1,1}).

and

lll30(T, 0p) = 0.

The case r = —s follows by a similar

argument.
(9): Simply observe that

II,0(T,04) = 0.(T,0p).

It remains to use Statement (5).
(10): Since
Oy (T' 00)

= 111,6(T, 04) U Il1,0(T, 6,),
then the desired result follows by
applying Statement (4).
Indeed, from Statements (1) and (10),
we have
Oap(T, 00) = (T, 00)\11 (T, 0¢)
= Q(04).
Follows directly from Statements (1)
and (6) that
Os (T' GO) = O'(T, 00)\13(T, 00)
= Q(04).

It is a direct consequence of Statement
(3) and the fact that
0co(T,00) = Op (T*, 00).

(12):

(12):

(13):

An important result is in order before
ending this section. Consider the special case
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where r = s > 0. Then, the operator T(r,q, s)
is reduced to the Jacobi operator J(g, ). If this
is the case, we observe that
Q(04) = [q — 2r,q + 2r],

Q(@A\{-1,1}) = (q — 2r,q + 27),

Q({—l,l}) = {q — 2r, q+ 27"}
Consequently, we have the following important
corollary:

Corollary 4.5. Let r and g be fixed real
numbers with r > 0. We have J(q,7r) € B(ay).
Furthermore, the following statements hold:

(1): oU(q,7),00) =[q —2r,q + 2r].

(2) O-p(](q!r)! GO) = (q —2r,q+ 27')

3): a,U(g,1)",00) = 0.

(4) O-r(](q! T'), GO) = @

(5): o.U(q1),00) ={q—2r,q+2r}

(6) 130-(1(61' T),O'()) = w

(7): 130((q,7r),00) = (q —2r,q + 2r).

(8): lz0(J(q,7),00) = Q.

9): 1,0(J(q,r),00) ={q—2r,q + 2r}.

(10): I,o(J(q,7),00) =
Il,6(J(q,7),00) = 0.

(11): 04p(U(q,7),00) = [q — 27,q + 21].

(12): 05U (q,7),00) = [q — 27,q + 27].

(13) UCO(](q' T), 0-0) = @

In Corollary 4.5, the results established in
Statements (1)-(5) agree with the results in [EI-
Shabrawy and Shindy 2020, Theorem 4.1].
While, the remaining results are new
contributions.

Conclusion and work in progress

In this paper, a detailed study on the spectra
of the infinite matrices B(r,s), U(r,s) and
T(r,q,s) as operators on the Cesaro sequence
space o, has been given. In fact, the class of the
operators T(r,q,s) includes B(r,s)=
T(0,r,s) and U(r,s) =T(s,r,0). We assert
that the technique presented in Section 4 is
flexible to be adapted to study the spectral
problem of the operators B(r, s) and U(r, s). In
fact, analogous to Corollaries 4.1, 4.2, 4.3 and
4.4, the reader can easily verify the following
proposition.

Proposition 5.1. The following statements are
satisfied:
(1): B(r,s) — Al € (04:0y) is injective.
(2): B(r,s)" — Al € (h:h) is injective if and
onlyif |[A —7r| = |s].
(3): B(r,s) — Al € (04:0p) is surjective if
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andonly if |[A —r| > |s].

(4): B(r,s)* — Al € (h:h) is surjective if and
only if |[A —r| # |s].

(5): U(r,s) — Al € (0y:0p) is injective if
gither [A —r| > |s|orA=r+s.

(6): U(r,s)* — Al € (h:h) is injective.

(7): U(r,s) — Al € (0y:0,) is surjective if
andonly if |[A —r| # [s].

(8): U(r,s)* — Al € (h:h) issurjective if and

onlyif [A —7r| > |s].

Then, by similar calculations like in the
preceding section, we can obtain results that
agree with those in Section 3. This gives a new
technique for determining the spectra of the
operators B(r,s) and U(r, s).

Further study on the spectra of the operator
T(r,q,s) on sequence spaces, like o, and bs,
is required. However, some difficulties caused
some problems in characterizing the residual
and the continuous spectra of T(r, q,s) 0n 04
and bs. The problem is in progress and we hope
to have advances regarding these results in
future publication.
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