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Abstract  

In this paper, spectral analysis of infinite triangular double-band matrices acting as operators on the 

Cesàro space 𝜎0 is given. The study includes a detailed analysis of the spectrum, distinguishing 

between different types of the spectrum (e.g., point spectrum, residual spectrum, continuous 

spectrum, defect spectrum, compression spectrum and approximate point spectrum). Besides, a finer 

subdivision of the spectrum is given. A generalization of the study to symmetric and non-symmetric 

tridiagonal matrices is also derived. The technique used in this study is flexible enough to address 

the spectral problem of the underlying operators in various sequence spaces. 

Keywords: Spectrum, Sequence spaces, Infinite matrices. 

 

Introduction 

Several authors have analyzed the spectra 

of various infinite matrix structures, such as 

band matrices (matrices with non-zero elements 

confined to diagonal band, which includes 

lower and upper triangular double-band 

matrices), Jacobi matrices (tridiagonal matrices 

with specific properties), and more general 

matrix forms. Such matrices can usually be 

identified with linear operators on sequence 

spaces. Also, several operators, like the 

difference operators, which are defined by 

difference equations, often involve infinite band 

matrices. It should be noted that, no general 

method exists for finding the spectrum of an 

arbitrary infinite matrix. In fact, in the case of 

infinite matrices, the methods used are often 

tailored to the specific matrix operator and the 

type of sequence space being considered. 

In this paper, we concern ourselves with 

obtaining the spectra of infinite double-band 

matrices, in both lower and upper forms. 

Furthermore, tridiagonal matrices are also of 

our concern. Our results, in the current paper, 

substantially complement recent results on the 

difference operators and their adjoints from 

[Altay and Başar 2004, Altay and Başar 2005, 

Akhmedov and Başar 2006, Akhmedov and 

Başar 2007, Karakaya and Altun 2010, Dutta 

and Tripathy 2013, Tripathy and Das 2015, El-

Shabrawy and Abu-Janah 2018, El-Shabrawy 

and Sawano 2021], the Jacobi operators from 

[El-Shabrawy and Shindy 2020], the tridiagonal 
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non-symmetric matrices as operators from [El-

Shabrawy and Shindy 2025] and other related 

results. 

Before giving a complete description of the 

spectral problem we want to address, we recall 

some notations used in this paper. 

By ℓ∞, 𝑐 and 𝑐0, we denote the Banach 

spaces of bounded, convergent and null 

sequences of complex numbers with the 

supremum norm, respectively. We use ℓ𝑝 
(1 ≤ 𝑝 < ∞) to denote the Banach space of 𝑝-
absolutely summable sequences with the well-

known ℓ𝑝-norm. The symbol bv stands for the 

Banach space of all sequences 𝑥 = (𝑥𝑘)𝑘=0
∞  for 

which the following norm   

 ‖𝑥‖bv = | lim
𝑘⟶∞

𝑥𝑘| + |𝑥0| + ∑∞
𝑘=1 |𝑥𝑘 − 𝑥𝑘−1| 

is finite. Furthermore, the space bv0 = bv ∩ 𝑐0 

is a Banach space with the bv-norm, whose dual 

space is norm isomorphic to the Banach space 

bs (cf. [Wilansky 1984, Theorems 7.2.9 and 

7.3.5(ii)]), where 

bs = {𝑥 = (𝑥𝑘)𝑘=0
∞ ∶   

    ‖𝑥‖bs = sup
𝑁≥0

|∑𝑁
𝑘=0 𝑥𝑘| < ∞}.  

The space of 𝑝-bounded variation sequences, 

denoted by bv𝑝 (1 < 𝑝 < ∞), is the Banach 

space of all sequences 𝑥 = (𝑥𝑘)𝑘=0
∞  for which 

(𝑥𝑘 − 𝑥𝑘−1)𝑘=0
∞ ∈ ℓ𝑝, where 𝑥−1 = 0. The 

space cs is the Banach space of all sequences 

𝑥 = (𝑥𝑘)𝑘=0
∞  such that ∑∞

𝑘=0 𝑥𝑘 is convergent, 

with the norm 

‖𝑥‖cs = sup
𝑛

|∑𝑛
𝑘=0 𝑥𝑘|.  

The Hahn sequence space h [Rao 1990] is 

defined by  

h = {𝑥 = (𝑥𝑘)𝑘=0
∞ ∈ 𝑐0 ∶  

‖𝑥‖ℎ = ∑∞
𝑘=0 (𝑘 + 1)|𝑥𝑘+1 − 𝑥𝑘|  < ∞},  

which is a Banach space. Also, we consider the 

Cesàro sequence space 𝜎∞, defined by  

σ∞ = {𝑥 = (𝑥𝑘)𝑘=0
∞ ∶    

‖𝑥‖𝜎∞
= sup

𝑁

1

𝑁+1
|∑𝑁

𝑘=0 𝑥𝑘| < ∞}.  

In this paper, we give attention to the Cesàro-

type space 𝜎0, which is the Banach space 

defined by 

 σ0 = {𝑥 = (𝑥𝑘)𝑘=0
∞ ∶  lim

𝑁→∞

1

𝑁+1
∑𝑁

𝑘=0 𝑥𝑘 = 0} 

with the σ∞-norm. Moreover, it is known that 

σ0
∗ ≃ ℎ (cf. [Goes and Goes 1970, Theorem 

3.7 (ii)]). 

Throughout the paper, we adopt the 

following conventions: 

 Suppose 

 ℕ = {1,2,3, . . . } and  ℕ0 = {0,1,2, . . . }. 

 The set of real numbers and the set of 

complex numbers are denoted by ℝ and ℂ, 

respectively. 

 Let 𝑋 be an infinite-dimensional Banach 

space and write ℬ(𝑋) for the space of all 

bounded linear operators from 𝑋 into itself. 

For an operator 𝑇 ∈ ℬ(𝑋), its adjoint 

operator 𝑇∗ ∈ ℬ(𝑋∗), where 𝑋∗ is the dual 

space of X.  

 In a sequence space, we typically represent 

the zero element as 𝟎 = (0,0,0, . . . ). 

 The symbol ∅ denotes the empty set. 

 For a nonzero real number 𝑟, define the 

closed disc Δ𝑟, circumference 𝜕Δ𝑟 and open 

disc Δ𝑟 as follows: 

 Δ𝑟: = {𝜆 ∈ ℂ ∶  |𝜆| ≤ |𝑟|}, 
𝜕Δ𝑟: = {𝜆 ∈ ℂ ∶  |𝜆| = |𝑟|} 

and 

Δ𝑟: = {𝜆 ∈ ℂ ∶  |𝜆| < |𝑟|}. 
When 𝑟 = 1, the index is omitted.  

To introduce our problem, consider the 

infinite-dimensional lower triangular double-

band matrix 𝐵(𝑟, 𝑠) = (𝑏𝑛𝑘) [Altay and Başar 

2005]; 

𝑏𝑛𝑘 = {
𝑟, 𝑖𝑓 𝑘 = 𝑛,      
𝑠, 𝑖𝑓 𝑘 = 𝑛 − 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

, 

where 𝑟, 𝑠 ∈ ℝ and 𝑠 ≠ 0. On a Banach 

sequence space 𝜇, this matrix can be identified 

with a linear operator 𝐵(𝑟, 𝑠): 𝜇 → 𝜇; 

(𝐵(𝑟, 𝑠)𝑥)𝑛 = 𝑟𝑥𝑛 + 𝑠𝑥𝑛−1, 
where  𝑥 = (𝑥𝑛)𝑛=0

∞ ∈ 𝜇,    𝑛 ∈ ℕ0. 

The operator 𝐵(𝑟, 𝑠) is called the generalized 

difference operator. In fact, if 𝑟 = 1 and  
𝑠 = −1, the operator 𝐵(𝑟, 𝑠) is reduced to the 

difference operator Δ [Altay and Başar 2004]. 

Also, for the case 𝑠 = 1 − 𝑟, the operator 

𝐵(𝑟, 𝑠) coincides with the Zweier operator 𝑍𝑟 

[Altay and Karakuş 2005]. The spectral 

problem of the operator 𝐵(𝑟, 𝑠) has been 

extensively studied in various sequence spaces. 

Notable investigations include 𝑐0, 𝑐 [Altay and 
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Başar 2005], ℓ𝑝 (1 ≤ 𝑝 < ∞), bv𝑝 (1 ≤ 𝑝 <

∞) [Furkan and Bilgiç 2006, Bilgiç and Furkan 

2008], cs [Dutta and Tripathy 2013], bv0, h 

[EL-Shabrawy and Abu-Janah 2018] and ℓ∞, 

bv [El-Shabrawy and Sawano 2021]. 

The transpose of the matrix 𝐵(𝑟, 𝑠) is 

denoted by 𝑈(𝑟, 𝑠), which can be identified 

with a linear operator in many sequence spaces 

[Karakaya and Altun 2010]. If 𝑟 = 1 and 𝑠 =
−1, the operator 𝑈(𝑟, 𝑠) coincides with the 

operator Δ+ [Dündar and Başar 2013]. In many 

investigations [Karakaya and Altun 2010, 

Tripathy and Das 2015], the spectra of the 

operator 𝑈(𝑟, 𝑠) have been studied in the 

Banach spaces 𝑐0, 𝑐 and cs. 

Furthermore, for 𝑟, 𝑠, 𝑞 ∈ ℝ and 𝑛, 𝑘 ∈ ℕ0, 
we consider the tridiagonal matrix 

𝑇 = 𝑇(𝑟, 𝑞, 𝑠) = (𝑡𝑛𝑘); 

𝑡𝑛𝑘 = {

𝑞, 𝑖𝑓 𝑘 = 𝑛,       
𝑠, 𝑖𝑓 𝑘 = 𝑛 − 1,
𝑟,
0,

𝑖𝑓 𝑘 = 𝑛 + 1,
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.    

 

This infinite matrix can be identified with a 

linear operator on a Banach sequence space 𝜇 as 

𝑇: 𝜇 → 𝜇; 

(𝑇(𝑟, 𝑞, 𝑠)𝑥)𝑛 = (𝑇𝑥)𝑛 

 = 𝑠𝑥𝑛−1 + 𝑞𝑥𝑛 + 𝑟𝑥𝑛+1,  (1) 

where 𝑥 = (𝑥𝑛)𝑛=0
∞ ∈ 𝜇, 𝑛 ∈ ℕ0.  

If 𝑠 = 𝑟, then 𝑇(𝑟, 𝑞, 𝑠) is reduced to the Jacobi 

matrix 𝐽(𝑞, 𝑟) = 𝑇(𝑟, 𝑞, 𝑟) [Altun 2011, 

Berezanskii 1968, El-Shabrawy and Shindy 

2020]. Furthermore, 𝐵(𝑟, 𝑠) = 𝑇(0, 𝑟, 𝑠) and 

𝑈(𝑟, 𝑠) = 𝑇(𝑠, 𝑟, 0) are included in the class of 

𝑇(𝑟, 𝑞, 𝑠); see [Altay and Başar 2005, Karakaya 

and Altun 2010]. So, it seems natural to firstly 

assume that 𝑟, 𝑠 ≠ 0. However, for either the 

case 𝑟 = 0; or the case 𝑠 = 0, see the 

conclusion in the last section. The spectra of 

𝑇(𝑟, 𝑞, 𝑠) were determined in the spaces 𝑐0, 𝑐, 

ℓ1 and ℓ∞ in [Bilgiç and Altun 2019]. More 

recently, this problem was studied in the 

Banach spaces h and bv0 [El-Shabrawy and 

Shindy 2025]. 

To the authors’ knowledge, the spectral 

problem has still not received enough attention 

in the Cesàro sequence space σ0. So, in the 

current paper, we address the study of the 

spectra of the operators 𝐵(𝑟, 𝑠), 𝑈(𝑟, 𝑠) and 

𝑇(𝑟, 𝑞, 𝑠) on σ0. This investigation represents a 

natural continuation of the studies by 

Akhmedov and Başar (2006, 2007), Altay and 

Başar (2004, 2005), Karakaya and Altun 2010, 

Dutta and Tripathy 2013, Tripathy and Das 

2015, El-Shabrawy and Abu-Janah 2018, 

Sawano and El-Shabrawy 2021, and El-

Shabrawy and Shindy (2020, 2025). 

Our work in the current paper is outlined in 

the following way: Section 2 provides a brief 

overview of basic definitions and facts related 

to the spectrum and various types of the 

spectrum. Section 3 focuses on the study of the 

spectra of the operators 𝐵(𝑟, 𝑠) and 𝑈(𝑟, 𝑠) 

acting on the sequence space σ0. A 

generalization of the study to tridiagonal 

matrices has been obtained in Section 4. Finally, 

in the last section, a conclusion and future 

research are provided. 

Preliminaries 

To ensure the paper is self-contained, we 

briefly gather some basic definitions and 

preliminary facts which will be useful 

throughout the paper. 

For any given 𝜆 ∈ ℂ and 𝑇 ∈ ℬ(𝑋), we 

write 𝑇𝜆 = 𝑇 − 𝜆𝐼, where 𝐼 is the identity 

operator on 𝑋. The spectrum of 𝑇, denoted by 

𝜎(𝑇, 𝑋), is the set of all scalars 𝜆 ∈ ℂ for which 

𝑇𝜆 is not bijective. Its complement in ℂ is known 

as the resolvent set of 𝑇, denoted by 𝜌(𝑇, 𝑋). 

The spectrum 𝜎(𝑇, 𝑋) can be partitioned into 

various subsets, classified according to the 

properties of ℛ(𝑇𝜆) and the bounded 

invertibility of the operator 𝑇𝜆. The point 

spectrum 𝜎p(𝑇, 𝑋) of 𝑇 is defined by 

𝜎p(𝑇, 𝑋) = {𝜆 ∈ ℂ ∶  𝑇𝜆 is not injective}; 

the residual spectrum 𝜎r(𝑇, 𝑋) of 𝑇 is defined 

by 

𝜎r(𝑇, 𝑋) = {𝜆 ∈ ℂ ∶  𝑇𝜆 is injective, 
 but ℛ(𝑇𝜆) is not dense}; 

the continuous spectrum 𝜎c(𝑇, 𝑋) of 𝑇 is 

defined by 

𝜎c(𝑇, 𝑋) = {𝜆 ∈ ℂ ∶  𝑇𝜆 is injective and 

 ℛ(𝑇𝜆) is dense, but 𝑇𝜆
−1 is unbounded}. 

Following [Appell et al. 2004] three more 

subsets of the spectrum can be defined as 

follows: 

𝜎δ(𝑇, 𝑋) = {𝜆 ∈ ℂ ∶  𝑇𝜆 is not surjective}; 

𝜎co(𝑇, 𝑋) = {𝜆 ∈ ℂ ∶  ℛ(𝑇𝜆) is not dense}; 

𝜎ap(𝑇, 𝑋) = {𝜆 ∈ ℂ ∶ ∃ (𝑥𝑘) in 𝑋 such that 
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    ‖𝑥𝑘‖ = 1 ∀ k ∈ ℕ, lim
𝑘→∞

‖𝑇𝜆𝑥𝑘‖ = 0},  

which are called the defect spectrum, 

compression spectrum and approximate point 

spectrum, respectively. Note that these subsets 

of the spectrum overlap and 

𝜎(𝑇, 𝑋) = 𝜎ap(𝑇, 𝑋) ∪ 𝜎δ(𝑇, 𝑋) 

               = 𝜎ap(𝑇, 𝑋) ∪ 𝜎co(𝑇, 𝑋). 

Another important classification of the 

spectrum, which is due to [Taylor and Halberg 

1957], is also considered. To be more precise, 

let 𝑇 be a linear operator on a Banach space 𝑋 

into itself. The operator 𝑇𝜆 is classified I, II or 

III, according as ℛ(𝑇𝜆) = 𝑋; ℛ(𝑇𝜆) = 𝑋, but 

ℛ(𝑇𝜆) ≠ 𝑋; or ℛ(𝑇𝜆) ≠ 𝑋. Furthermore, 𝑇𝜆 is 

classified 1, 2 or 3 according as 𝑇𝜆
−1 exists and 

is bounded; exists, but is not bounded; or does 

not exist. By combining these possibilities, we 

obtain different states of the operator. If 𝑇 ∈
ℬ(𝑋), the complex plane is subdivided into 

parts corresponding to the states of the operator 

𝑇𝜆; I1𝜎(𝑇, 𝑋), I2𝜎(𝑇, 𝑋), I3𝜎(𝑇, 𝑋), II1𝜎(𝑇, 𝑋), 

II2𝜎(𝑇, 𝑋), II3𝜎(𝑇, 𝑋), III1𝜎(𝑇, 𝑋), III2𝜎(𝑇, 𝑋) 

and III3𝜎(𝑇, 𝑋). Consequently, we obtain a 

complete disjoint subdivision of the spectrum. 

Precisely, the following relations hold: 

𝜎(𝑇, 𝑋) = I3𝜎(𝑇, 𝑋) ∪ II2𝜎(𝑇, 𝑋) ∪ II3𝜎(𝑇, 𝑋)
∪ III1𝜎(𝑇, 𝑋) ∪ III2𝜎(𝑇, 𝑋)
∪ III3𝜎(𝑇, 𝑋); 

𝜎𝑝(𝑇, 𝑋) = I3𝜎(𝑇, 𝑋) ∪ II3𝜎(𝑇, 𝑋)

∪ III3𝜎(𝑇, 𝑋); 

𝜎𝑟(𝑇, 𝑋) = III1𝜎(𝑇, 𝑋) ∪ III2𝜎(𝑇, 𝑋); 

𝜎𝑐(𝑇, 𝑋) = II2𝜎(𝑇, 𝑋). 

 It should be noted that II1𝜎(𝑇, 𝑋) = ∅ 

since any boundedly invertible operator on a 

Banach space into itself should have a closed 

range (cf. [Taylor and Halberg 1957, Theorem 

10]). Furthermore, I2𝜎(𝑇, 𝑋) = ∅ as a 

consequence of the closed graph theorem. We 

observe that 𝜆 ∈ 𝜌(𝑇, 𝑋) if and only if  
𝑇𝜆 ∈ I1𝜎(𝑇, 𝑋); otherwise 𝜆 ∈ 𝜎(𝑇, 𝑋). 

From the definition, we notice that 

𝜎δ(𝑇, 𝑋) = 𝜎(𝑇, 𝑋)\I3𝜎(𝑇, 𝑋). 

Also, we have  

𝜎ap(𝑇, 𝑋) = 𝜎(𝑇, 𝑋)\III1𝜎(𝑇, 𝑋) 

(cf. [Taylo and Lay 1986, p. 282]). 

It is worthwhile to assert that, if 𝑇 ∈ ℬ(σ0) 

is represented by a matrix 𝐴, then its adjoint 𝑇∗ 

∈ ℬ(σ0
∗ ) is represented by the transpose matrix 

𝐴𝑡; see [Taylo and Lay 1986, Problem 7, 

P.233]. 

For the sake of simplicity for the reader, we 

recall the following theorems which are 

concerned with the spectra of the operators 

𝑈(𝑟, 𝑠) and 𝐵(𝑟, 𝑠) on the Hahn sequence space 

h. In fact, these results are crucial in the sequel. 

Theorem 2.1. [El-Shabrawy and Shindy 2025, 

Theorem 3.4] We have 𝑈(𝑟, 𝑠) ∈ ℬ(ℎ). 

Moreover, the following results are satisfied: 

(1): 𝜎(𝑈(𝑟, 𝑠), ℎ) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 
(2): 𝜎𝑝(𝑈(𝑟, 𝑠), ℎ) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. 
(3): 𝜎𝑝(𝑈(𝑟, 𝑠)∗, ℎ∗) = ∅. 
(4): 𝜎𝑟(𝑈(𝑟, 𝑠), ℎ) = ∅. 
(5): 𝜎𝑐(𝑈(𝑟, 𝑠), ℎ) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}.  

Theorem 2.2. [EL-Shabrawy and Abu-Janah 

2018] We have 𝐵(𝑟, 𝑠) ∈ ℬ(ℎ). Moreover, the 

following results are satisfied: 

(1): 𝜎(𝐵(𝑟, 𝑠), h) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 
(2): 𝜎p(𝐵(𝑟, 𝑠), h) = ∅. 

(3): 𝜎p(𝐵(𝑟, 𝑠)∗, h∗) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤

|𝑠|}. 
(4): 𝜎r(𝐵(𝑟, 𝑠), h) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 
(5): 𝜎c(𝐵(𝑟, 𝑠), h) = ∅. 
(6): 𝜎ap(𝐵(𝑟, 𝑠), h) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}. 

(7): 𝜎δ(𝐵(𝑟, 𝑠), h) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 
(8): 𝜎co(𝐵(𝑟, 𝑠), h) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 

Furthermore, we report on some recent 

results concerning the spectra of the operator 𝑇 

acting on the Hahn space h. 

Theorem 2.3. [El-Shabrawy and Shindy 2025] 

For |𝑟| < |𝑠|, we have 𝑇 ∈ ℬ(ℎ). Moreover, 

the following results are satisfied: 

(1): 𝜎(𝑇, h) = 𝑄 (Δ\Δ𝑟

𝑠
). 

(2): 𝜎p(𝑇, h) = ∅. 

(3): 𝜎p(𝑇∗, h∗) = 𝑄 (Δ\Δ𝑟

𝑠
). 

(4): 𝜎r(𝑇, h) = 𝑄 (Δ\Δ𝑟

𝑠
). 

(5): 𝜎c(𝑇, h) = ∅.  

Theorem 2.4. [El-Shabrawy and Shindy 2025] 

For |𝑟| > |𝑠|, we have 𝑇 ∈ ℬ(ℎ). Moreover, 

the following results are satisfied: 

(1): 𝜎(𝑇, h) = 𝑄 (Δ𝑟

𝑠
\Δ). 

(2): 𝜎p(𝑇, h) = 𝑄 (Δ𝑟

𝑠
\Δ). 

(3): 𝜎p(𝑇∗, h∗) = ∅. 
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(4): 𝜎r(𝑇, h) = ∅. 

(5): 𝜎c(𝑇, h) = 𝑄 (𝜕Δ ∪ 𝜕Δ𝑟

𝑠
).  

Theorem 2.5. [El-Shabrawy and Shindy 2025] 

For |𝑟| = |𝑠|, we have 𝑇 ∈ ℬ(ℎ). Moreover, 

the following results are satisfied: 

(1): 𝜎(𝑇, h) = 𝑄(𝜕Δ). 

(2): 𝜎p(𝑇, h) = ∅. 

(3): 𝜎p(𝑇∗, h∗) = {
𝑄(𝜕Δ\{1}), if  𝑟 = 𝑠,

𝑄(𝜕Δ), if  𝑟 = −𝑠.
 

(4): 𝜎r(𝑇, h) = {
𝑄(𝜕Δ\{1}), if  𝑟 = 𝑠,

𝑄(𝜕Δ), if  𝑟 = −𝑠.
 

(5): 𝜎c(𝑇, h) = {
𝑄({1}), if  𝑟 = 𝑠,
∅, if  𝑟 = −𝑠.

  

Spectra of the operators 𝑩(𝒓, 𝒔) and 𝑼(𝒓, 𝒔) 

on 𝛔𝟎 

In this section, we completely determine the 

spectrum and various parts of the spectrum of 

the operators 𝐵(𝑟, 𝑠) and 𝑈(𝑟, 𝑠) on the Cesàro 

space σ0. Firstly, the following theorem, which 

completes the results in Theorem 2.1 is given. It 

is necessary for our proofs in the current 

section. 

Theorem 3.1. We have the following results: 

(1): 𝜎ap(𝑈(𝑟, 𝑠), h) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 

(2): 𝜎δ(𝑈(𝑟, 𝑠), h) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}. 
(3): 𝜎co(𝑈(𝑟, 𝑠), h) = ∅.  
Proof.  

(1): By utilizing Theorem 2.1(4), we obtain 
that III1𝜎(𝑈(𝑟, 𝑠), h) = ∅. Combined this 
with the fact that 
𝜎ap(𝑈(𝑟, 𝑠), h) 

  = 𝜎(𝑈(𝑟, 𝑠), h)\III1𝜎(𝑈(𝑟, 𝑠), h), 
implies 

𝜎ap(𝑈(𝑟, 𝑠), h) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}, 

 where we have used the result in Theorem 

2.1(1). 

(2): In fact, we have 
I3𝜎(𝑈(𝑟, 𝑠), h) ⊆ 𝜎𝑝(𝑈(𝑟, 𝑠), h) 

 = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. 
 Conversely, let 𝜆 ∈ ℂ such that |𝜆 − 𝑟| <

|𝑠|. Then, 𝑈(𝑟, 𝑠) − 𝜆𝐼 is not injective.  
Furthermore, from [El-Shabrawy and 

Shindy 2025, Proposition 3.2(3)], 

𝑈(𝑟, 𝑠) − 𝜆𝐼 is surjective. Then  

𝜆 ∈  I3𝜎(𝑈(𝑟, 𝑠), h). This concludes that, 
I3𝜎(𝑈(𝑟, 𝑠), h) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. 
Thus,  

 𝜎δ(𝑈(𝑟, 𝑠), h) 

  = 𝜎(𝑈(𝑟, 𝑠), h)\I3𝜎(𝑈(𝑟, 𝑠), h) 

 = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}, 
where we have used the result in Theorem 

2.1(1). 
(3): Follows immediately from the relation 

𝜎co(𝑈(𝑟, 𝑠), h) = 𝜎𝑝(𝑈(𝑟, 𝑠)∗, h∗)  
and using Theorem 2.1(3).  

The next is our first main theorem. 

Theorem 3.2. We have 𝐵(𝑟, 𝑠) ∈ ℬ(𝜎0). 

Furthermore, the following statements are 

satisfied:  

(1): 𝜎(𝐵(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 

(2): 𝜎p(𝐵(𝑟, 𝑠), σ0) = ∅. 

(3): 𝜎p(𝐵(𝑟, 𝑠)∗, σ0
∗ ) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. 

(4): 𝜎r(𝐵(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. 

(5): 𝜎c(𝐵(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}. 

(6): 𝜎ap(𝐵(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}. 

(7): 𝜎δ(𝐵(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 

(8): 𝜎co(𝐵(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. 

(9): I3𝜎(𝐵(𝑟, 𝑠), σ0) = II3𝜎(𝐵(𝑟, 𝑠), σ0) =
III3𝜎(𝐵(𝑟, 𝑠), σ0) = ∅. 

(10): II2𝜎(𝐵(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}. 

(11): III1𝜎(𝐵(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. 

(12): III2𝜎(𝐵(𝑟, 𝑠), σ0) = ∅.  

Proof.  

(1): The result follows from [Appell et al. 2004, 

Proposition 1.3] and Theorem 2.1(1). In 

fact, we have 

𝜎(𝐵(𝑟, 𝑠), σ0) = 𝜎(𝐵(𝑟, 𝑠)∗, σ0
∗ ) 

= 𝜎(𝑈(𝑟, 𝑠), h) 

  = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 

(2): It can be shown that, for all 𝜆 ∈ ℂ, 
(𝐵(𝑟, 𝑠) − 𝜆)𝑥 = 𝟎 has only the zero 

solution for 𝑥. 

(3): Since 

𝜎p(𝐵(𝑟, 𝑠)∗, σ0
∗ ) = 𝜎p(𝑈(𝑟, 𝑠), h),  

then applying Theorem 2.1(2) yields the 

desired result. 

(4): Follows immediately from the relation  

𝜎r(𝐵(𝑟, 𝑠), σ0) 

 = 𝜎p(𝐵(𝑟, 𝑠)∗, σ0
∗ )\𝜎p(𝐵(𝑟, 𝑠), σ0) 

and then applying Statements (2) and (3). 

(5): Since 𝜎p(𝐵(𝑟, 𝑠), σ0), σr(𝐵(𝑟, 𝑠), σ0) and 

𝜎c(𝐵(𝑟, 𝑠), σ0) form a disjoint subdivision 

of 𝜎(𝐵(𝑟, 𝑠), σ0), then, by applying 

Statements (1), (2) and (4), we obtain that 

𝜎c(𝐵(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}. 

(6) − (7): Follow immediately from [Appell 

et al. 2004, Proposition 1.3] and using 

Theorem 3.1(1)-(2). Indeed, we have  

𝜎ap(𝐵(𝑟, 𝑠), σ0) = 𝜎δ(𝐵(𝑟, 𝑠)∗, σ0
∗ ) 

= 𝜎δ(𝑈(𝑟, 𝑠), h) 
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= {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|} 
and  

  𝜎δ(𝐵(𝑟, 𝑠), σ0) = 𝜎ap(𝐵(𝑟, 𝑠)∗, σ0
∗ ) 

= 𝜎ap(𝑈(𝑟, 𝑠), h) 

= {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 
(8): Follows immediately from [Appell et al. 

2004, Proposition 1.3] and Statement (3). 

Indeed, we have 

𝜎co(𝐵(𝑟, 𝑠), σ0) = 𝜎p(𝐵(𝑟, 𝑠)∗, σ0
∗ ) 

= {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. 
(9): The result follows from Statement (2) and 

the fact that 

𝜎p(𝐵(𝑟, 𝑠), σ0) = I3𝜎(𝐵(𝑟, 𝑠), σ0) 

  ∪ II3𝜎(𝐵(𝑟, 𝑠), σ0) ∪ III3𝜎(𝐵(𝑟, 𝑠), σ0). 
(10): Simply observe that  

II2𝜎(𝐵(𝑟, 𝑠), σ0) = 𝜎c(𝐵(𝑟, 𝑠), σ0)  
and then apply Statement (5). 

(11): Let 𝜆 ∈ {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. Since 

𝜎r(𝐵(𝑟, 𝑠), σ0) 
= III1𝜎(𝐵(𝑟, 𝑠), σ0) ∪ III2𝜎(𝐵(𝑟, 𝑠), σ0), 

then, to show 𝜆 ∈ III1𝜎(𝐵(𝑟, 𝑠), σ0), it 

suffices to show that 𝐵(𝑟, 𝑠)∗ − 𝜆𝐼 is 

surjective [Taylor and Halberg 1957, 

Theorem 4]. This follows from the fact that  

𝜎δ(𝐵(𝑟, 𝑠)∗, σ0
∗ ) = 𝜎δ(𝑈(𝑟, 𝑠), h) 

= {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}, 
where we have used Theorem 3.1(2). Thus, 

we conclude that 

{𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}
⊆ III1𝜎(𝐵(𝑟, 𝑠), σ0). 

The second inclusion follows by using 

[Gindler and Taylor 1962, Theorem 3.3]. 

In fact, we have  

III1𝜎(𝐵(𝑟, 𝑠), σ0) 

⊆ int({𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}) 
= {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. 

(12): Follows immediately.  

Next, we give our second main theorem, 

which is concerned with the spectra of the 

operator 𝑈(𝑟, 𝑠) on the Cesàro space σ0. 

Theorem 3.3. We have 𝑈(𝑟, 𝑠) ∈ ℬ(𝜎0). 

Furthermore, the following statements are 

satisfied:  

(1): 𝜎(𝑈(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 
(2): 𝜎p(𝑈(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}\

{𝑟 + 𝑠}. 
(3): 𝜎p(𝑈(𝑟, 𝑠)∗, σ0

∗ ) = ∅. 

(4): 𝜎r(𝑈(𝑟, 𝑠), σ0) = ∅. 
(5): 𝜎c(𝑈(𝑟, 𝑠), σ0) = {𝑟 + 𝑠}. 
(6): 𝜎ap(𝑈(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 

(7): 𝜎δ(𝑈(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}. 
(8): 𝜎co(𝑈(𝑟, 𝑠), σ0) = ∅. 

(9): I3𝜎(𝑈(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. 
(10): III3𝜎(𝑈(𝑟, 𝑠), σ0) = ∅. 
(11): II3𝜎(𝑈(𝑟, 𝑠), σ0) = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| =

|𝑠|}\{𝑟 + 𝑠}. 
(12): II2𝜎(𝑈(𝑟, 𝑠), σ0) = {𝑟 + 𝑠}. 
(13): III1𝜎(𝑈(𝑟, 𝑠), σ0) = III2𝜎(𝑈(𝑟, 𝑠), σ0) = ∅.  

Proof. 

(1): The required result follows from [Appell 

et al. 2004, Proposition 1.3] and Theorem 

2.2(1). In fact, we have 

𝜎(𝑈(𝑟, 𝑠), σ0) = 𝜎(𝑈(𝑟, 𝑠)∗, σ0
∗ ) 

= 𝜎(𝐵(𝑟, 𝑠), h) 
= {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 

(2): Firstly, we recall that, 

𝜎p(𝑈(𝑟, 𝑠), σ0) ⊆ 𝜎(𝑈(𝑟, 𝑠), σ0) 

= {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}. 
Furthermore, suppose that 
(𝑈(𝑟, 𝑠) − 𝜆𝐼)𝑥 = 𝟎 for 𝑥 ≠ 𝟎. Thus,  

𝑥𝑛 = (
𝜆 − 𝑟

𝑠
)

𝑛

𝑥0,              𝑛 ∈ ℕ. 

Then, we should assume that 𝑥0 ≠ 0 and 
𝜆−𝑟

𝑠
≠ 1 since otherwise we would obtain 

either 𝑥 = 𝟎 or 𝑥 ∉ σ0. With this, if 
|𝜆 − 𝑟| ≤ |𝑠|, 

∑𝑛
𝑘=0 𝑥𝑘 = 𝑥0 ∑𝑛

𝑘=0 (
𝜆−𝑟

𝑠
)

𝑘
  

= 𝑥0

1−(
𝜆−𝑟

𝑠
)

𝑛+1

1−(
𝜆−𝑟

𝑠
)

.  

Then, 
1

𝑛+1
∑ 𝑥𝑘

𝑛
𝑘=0  → 0 as 𝑛 → ∞. That 

is, 𝑥 = (𝑥𝑘) ∈ σ0 and so,  

 𝜆 ∈ 𝜎p(𝑈(𝑟, 𝑠), σ0). 

(3): The result follows immediately from the 

fact that 

𝜎p(𝑈(𝑟, 𝑠)∗, σ0
∗ ) = 𝜎p(𝐵(𝑟, 𝑠), h)  

and then applying Theorem 2.2(2). 

(4): Using the relation  

𝜎r(𝑈(𝑟, 𝑠), σ0) 

 = 𝜎p(𝑈(𝑟, 𝑠)∗, σ0
∗ )\𝜎p(𝑈(𝑟, 𝑠), σ0) 

along with Statements (2) and (3), the 

required result follows. 

(5): The result follows based on the fact that 

𝜎p(𝑈(𝑟, 𝑠), σ0), 𝜎r(𝑈(𝑟, 𝑠), σ0) and 

𝜎c(𝑈(𝑟, 𝑠), σ0) form a disjoint partition 

of 𝜎(𝑈(𝑟, 𝑠), σ0), and then applying the 

results in Statements (1), (2) and (4). 

(6) - (7): Follow immediately from [Appell 

et al. 2004, Proposition 1.3] and then 

using Theorem 2.2 (6)-(7). Indeed, we 

have  

𝜎ap(𝑈(𝑟, 𝑠), σ0) = 𝜎δ(𝑈(𝑟, 𝑠)∗, σ0
∗ ) 

  = 𝜎δ(𝐵(𝑟, 𝑠), h)  

   = {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|} 
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and  

  𝜎δ(𝑈(𝑟, 𝑠), σ0) = 𝜎ap(𝑈(𝑟, 𝑠)∗, σ0
∗ ) 

= 𝜎ap(𝐵(𝑟, 𝑠), h) 

= {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}. 
(8): It follows from [Appell et al. 2004, 

Proposition 1.3] and Statement (3) that  

𝜎co(𝑈(𝑟, 𝑠), σ0) = 𝜎𝑝(𝑈(𝑟, 𝑠)∗, σ0
∗ )   = ∅. 

(9): It is known that 

I3𝜎(𝑈(𝑟, 𝑠), σ0) ⊆ 𝜎p(𝑈(𝑟, 𝑠), σ0). 

Then, applying [Gindler and Taylor 

1962, Theorem 4.2], we obtain 

I3𝜎(𝑈(𝑟, 𝑠), σ0) ⊆ {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| < |𝑠|}. 
Conversely, let 𝜆 ∈ ℂ such that 
|𝜆 − 𝑟| < |𝑠|. Then 𝜆 ∉ 𝜎δ(𝑈(𝑟, 𝑠), σ0) 

and 𝜆 ∈ 𝜎p(𝑈(𝑟, 𝑠), σ0). This implies 

that 𝑈(𝑟, 𝑠) − 𝜆𝐼 is surjective and not 

injective. Consequently  

𝜆 ∈ I3𝜎(𝑈(𝑟, 𝑠), σ0). This completes the 

proof of the statement. 

(10): Clearly, 

III3𝜎(𝑈(𝑟, 𝑠), σ0) ⊆ 𝜎p(𝑈(𝑟, 𝑠), σ0) 

= {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| ≤ |𝑠|}\{𝑟 + 𝑠}. 
Conversely, for all 𝜆 ∈ ℂ such that 
|𝜆 − 𝑟| ≤ |𝑠| and 𝜆 ≠ 𝑟 + 𝑠, we have 

𝜆 ∈ 𝜎p(𝑈(𝑟, 𝑠), σ0) and  

𝜆 ∉ 𝜎p(𝑈(𝑟, 𝑠)∗, σ0
∗ ). This implies that 

𝑈(𝑟, 𝑠) − 𝜆𝐼 is not injective and 

𝑈(𝑟, 𝑠) − 𝜆𝐼 has a dense range (cf. 

[Taylor and Halberg 1957, Theorem 1]). 

Consequently, 𝜆 ∉ III3𝜎(𝑈(𝑟, 𝑠), σ0). 

Thus, III3𝜎(𝑈(𝑟, 𝑠), σ0) = ∅. 

(11): From the definition of II3𝜎(𝑈(𝑟, 𝑠), σ0) 

and using Statements (2), (9) and (10), 

we obtain 

II3𝜎(𝑈(𝑟, 𝑠), σ0) 

= 𝜎p(𝑈(𝑟, 𝑠), σ0)\ 

[I3𝜎(𝑈(𝑟, 𝑠), σ0) ∪ III3𝜎(𝑈(𝑟, 𝑠), σ0)] 
= {𝜆 ∈ ℂ ∶  |𝜆 − 𝑟| = |𝑠|}\{𝑟 + 𝑠}. 

(12): Follows from the fact that 

II2𝜎(𝑈(𝑟, 𝑠), σ0) = 𝜎c(𝑈(𝑟, 𝑠), σ0) and 

use Statement (5). 

(13): It is known that 𝜎r(𝑈(𝑟, 𝑠), σ0) =
III1𝜎(𝑈(𝑟, 𝑠), σ0) ∪ III2𝜎(𝑈(𝑟, 𝑠), σ0). 

With this and the result in Statement (4), 

we obtain the required result.  

Spectra of the operator 𝑻(𝒓, 𝒒, 𝒔) on 𝛔𝟎 

For the sake of brevity, if there is no 

confusion, we sometimes use 𝑇 instead of 

𝑇(𝑟, 𝑞, 𝑠), especially when combined with 

another symbol. Now, the method on which we 

proceed in order to find the spectra of 𝑇 depends 

on examining the injectivity and surjectivity of 

the complex functions;   

𝑄(𝑧) = 𝑠𝑧 + 𝑞 + 𝑟𝑧−1   and 

𝑃(𝑧) = 𝑟𝑧 + 𝑞 + 𝑠𝑧−1, 

where 𝑟, 𝑞 and 𝑠 are fixed real numbers 

with 𝑟, 𝑠 ≠ 0. Observe that, if 𝛼1 and 𝛼2 are the 

roots of 𝑄, they are nonzero, and 𝛼1
−1 and 𝛼2

−1 

are the roots of 𝑃. Furthermore, the following 

relations are satisfied:  

𝛼1 + 𝛼2 =
−𝑞

𝑠
    and    𝛼1𝛼2 =

𝑟

𝑠
. (2) 

The right-shift operator and the left-shift 

operator are defined by (𝑅𝑥)𝑛 = 𝑥𝑛−1 and 
(𝐿𝑥)𝑛 = 𝑥𝑛+1, respectively: they yield a 

factorization of the operator 𝑇; 

𝑇 = 𝑠(𝐼 − 𝛼1𝐿) ∘ (𝑅 − 𝛼2𝐼), (3) 

where 𝛼1 and 𝛼2 are the roots of the function 𝑄 

and interchangeably. As an immediate 

consequence, the boundedness of 𝑇 on σ0 

follows from the boundedness of 𝑅 and 𝐿. 

We need the following proposition. 

Proposition 4.1. 𝑇 ∈ (𝜎0: 𝜎0) is injective if and 

only if one of the following conditions holds: 

(i): the function 𝑄 has a root inside Δ, 
(ii): either 1 or −1 is a double root of 𝑄.  

Proof.  

The operator 𝑇 is not injective if and only if 

there exists 𝑥 = (𝑥𝑛) ≠ 𝟎  in σ0 with 𝑇𝑥 = 𝟎. 

From [Bilgiç and Altun 2019, Lemma 1.1], the 

solution of 𝑇𝑥 = 𝟎 is given by  

𝑥𝑛 = {
c (

𝛼2

𝛼1
𝑛 −

𝛼1

𝛼2
𝑛) , 𝑖𝑓 𝛼1  ≠  𝛼2,       

𝑐
1+𝑛

𝛼𝑛 ,           𝑖𝑓 𝛼1 =  𝛼2 = 𝛼,
     

where 𝛼1 and 𝛼2 are the roots of the function 𝑄. 

So, in the forthcoming, we will validate the 

result by considering three cases for the 

possibilities of 𝛼1 and 𝛼2.  

(i): Suppose 𝛼1 ≠ 𝛼2 and |𝛼1| = |𝛼2| = |𝛼|. 
We may assume that 𝛼1 = |𝛼|(cos𝜃 +
𝑖sin𝜃) and 𝛼2 = |𝛼|(cos𝜃 − 𝑖sin𝜃) for 

some 0 < 𝜃 < 𝜋. Then 

lim
𝑛→∞

1

𝑛+1
∑ 𝑥𝑘

𝑛
𝑘=0 =

lim
𝑛→∞

1

𝑛+1
∑ 𝑐 (

|𝛼|(cos𝜃−𝑖sin𝜃)

|𝛼|𝑘(cos𝜃+𝑖sin𝜃)𝑘 −𝑛
𝑘=0

|𝛼|(cos𝜃+𝑖sin𝜃)

|𝛼|𝑘(cos𝜃−𝑖sin𝜃)𝑘)  
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= −2𝑖𝑐 lim
𝑛→∞

1

𝑛+1
∑

1

|𝛼|𝑘−1 sin((𝑘 +𝑛
𝑘=0

1)𝜃) = 0  

for |𝛼1| = |𝛼2| = |𝛼| ≥ 1. However, for 

|𝛼1| = |𝛼2| = |𝛼| < 1, we have 𝑥 =
(𝑥𝑛) ∉ σ0 [El-Shabrawy and Shindy 

2025, Proposition 2.2(1)]. Thus, 𝑇 is not 

injective in σ0 if and only if |𝛼1| =
|𝛼2| = |𝛼| ≥ 1. 

(ii): Suppose 𝛼1 ≠ 𝛼2 and |𝛼1| ≠ |𝛼2|. We 

have 

∑ 𝑥𝑘
𝑛
𝑘=0 = c ∑ (

𝛼2

𝛼1
𝑘 −

𝛼1

𝛼2
𝑘)𝑛

𝑘=0   

= 𝑐 [∑
𝛼2

𝛼1
𝑘

𝑛
𝑘=0 − ∑

𝛼1

𝛼2
𝑘

𝑛
𝑘=0 ].  

Hence, we have the following two cases: 

(a): If |𝛼1| > |𝛼2| ≥ 1 or |𝛼2| > |𝛼1| ≥

1, then lim𝑛→∞
1

𝑛+1
∑ 𝑥𝑘

𝑛
𝑘=0 = 0. 

(b): If |𝛼1| < |𝛼2| ≤ 1, |𝛼2| < |𝛼1| ≤ 1, 

|𝛼1| < 1 < |𝛼2| or |𝛼2| < 1 < |𝛼1|, 
then 𝑥 = (𝑥𝑛) ∉ σ∞. So, 𝑥 = (𝑥𝑛) ∉
σ0. 

Thus, in Case (ii), 𝑇 is not injective in σ0 

if and only if |𝛼1| ≥ 1 and |𝛼2| ≥ 1.  

(iii):  Suppose 𝛼1 = 𝛼2 = 𝛼. Then, 𝛼1 and 𝛼2 

are real. So, we study three cases: 

(a): If |𝛼| > 1, then 

  lim
𝑛→∞

1

𝑛+1
∑ 𝑥𝑘

𝑛
𝑘=0  

= 𝑐 lim
𝑛→∞

1

𝑛+1
∑

1+𝑘

𝛼𝑘
𝑛
𝑘=0 = 0.  

(b): If |𝛼| < 1, then 𝑥 = (𝑥𝑛) ∉ σ∞. So, 

𝑥 = (𝑥𝑛) ∉ σ0. 

(c): If |𝛼| = 1, then 𝛼 = −1 or 𝛼 = 1. For 

𝛼 = −1, we have  

 lim
𝑛→∞

1

𝑛+1
∑ 𝑥𝑘

𝑛
𝑘=0   

  = 𝑐 lim
𝑛→∞

1

𝑛+1
{

𝑛+2

2
, if 𝑛 is even,

−
𝑛+1

2
, if 𝑛 is odd.

   

So,  

lim
𝑛→∞

1

𝑛+1
∑ 𝑥𝑘

𝑛
𝑘=0 ≠ 0.  

However, for 𝛼 = 1, we have 

lim
𝑛→∞

1

𝑛+1
∑ 𝑥𝑘

𝑛
𝑘=0 =

𝑐

2
lim

𝑛→∞
(𝑛 + 2).  

 From Cases (a), (b) and (c), we 

conclude that, in the case where 𝛼1 = 𝛼2, 𝑇 

is not injective in σ0 if and only if |𝛼1| = 

|𝛼2| > 1.  

As an immediate result of Proposition 4.1, 

we have the following: 

Corollary 4.1. 𝑇 − 𝜆𝐼 ∈ (𝜎0: 𝜎0) is injective if 

and only if one of the following conditions 

holds: 

(i): the function 𝑄 − 𝜆 has a root inside Δ, 
(ii): either 1 or −1 is a double root of 𝑄 − 𝜆. 

Now, we consider the following lemma for 

the right-shift operator 𝑅: 

Lemma 4.2. Let 𝛼 ∈ ℂ. Then, 𝑅 − 𝛼𝐼 ∈

(𝜎0: 𝜎0) is surjective if and only if 𝛼 ∉ Δ.  

Proof. The result follows directly from 

Theorem 3.2(7).  

As a consequence of Theorem 3.3(7), we 

establish the following lemma. 

Lemma 4.3. Let 𝛼 ∈ ℂ. Then, 𝐼 − 𝛼𝐿 ∈
(𝜎0: 𝜎0) is surjective if and only if 𝛼 ∉ 𝜕𝛥.  

With the help of Lemmas 4.2 and 4.3, we 

can introduce the following analogy to [El-

Shabrawy and Shindy 2025, Proposition 2.3], 

whose proof can be derived in a similar manner. 

Proposition 4.2. 𝑇 ∈ (𝜎0: 𝜎0) is surjective if 

and only if the roots of the function 𝑄 do not lie 

on ∂Δ and at least one root of 𝑄 is outside Δ.  

Consequently, from Proposition 4.2, we 

have the following corollary. 

Corollary 4.2. 𝑇 − 𝜆𝐼 ∈ (𝜎0: 𝜎0) is surjective if 

and only if the roots of 𝑄 − 𝜆 do not lie on 𝜕Δ 

and at least one root of 𝑄 − 𝜆 is outside Δ.  

Next, we give our first main theorem on the 

spectra of the operator 𝑇. 

Theorem 4.1  For |𝑟| < |𝑠|, we have 𝑇 ∈
ℬ(𝜎0). Furthermore, the following statements 

hold: 

(1): 𝜎(𝑇, σ0) = 𝑄 (Δ\Δ𝑟

𝑠
). 

(2): 𝜎p(𝑇, σ0) = ∅. 

(3): 𝜎p(𝑇∗, σ0
∗ ) = 𝑄 (Δ\Δ𝑟

𝑠
). 

(4): 𝜎r(𝑇, σ0) = 𝑄 (Δ\Δ𝑟

𝑠
). 

(5): 𝜎c(𝑇, σ0) = 𝑄 (𝜕Δ𝑟

𝑠
∪ 𝜕Δ). 

(6): I3𝜎(𝑇, σ0) = II3𝜎(𝑇, σ0) =
III3𝜎(𝑇, σ0) = ∅. 

(7): II2𝜎(𝑇, σ0) = 𝑄 (𝜕Δ𝑟

𝑠
∪ 𝜕Δ). 

(8): III1𝜎(𝑇, σ0) = 𝑄 (Δ\Δ𝑟

𝑠
). 

(9): III2𝜎(𝑇, σ0) = ∅. 

(10): 𝜎ap(𝑇, σ0) = 𝑄 (𝜕Δ𝑟

𝑠
∪ 𝜕Δ). 
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(11): 𝜎δ(𝑇, σ0) = 𝑄 (Δ\Δ𝑟

𝑠
). 

(12): 𝜎co(𝑇, σ0) = 𝑄 (Δ\Δ𝑟

𝑠
).  

Proof. 

(1): From [Appell et al. 2004, Proposition 

1.3], we have 

𝜎(𝑇, σ0) = 𝜎(𝑇∗, σ0
∗ ) = 𝜎(𝑇∗, h), 

where 𝑇∗ is the transpose of 𝑇. Now, by 

applying Theorem 2.4(1), with 

swapping 𝑟 and 𝑠, we thereby obtain 

𝜎(𝑇, 𝜎0) = 𝑃 (Δ𝑠
𝑟

\Δ) = 𝑄 (Δ\Δ𝑟
𝑠
) , 

where swapping 𝑟 and 𝑠 implies 

replacing 𝑄 by 𝑃. 

(2): Since the product of the two roots of 

𝑄 − 𝜆 equals 
𝑟

𝑠
, then, 𝑄 − 𝜆 has a root 

inside Δ. By Corollary 4.1, 𝑇 − 𝜆𝐼  is 

injective. Therefore, 𝑇 has no 

eigenvalues in σ0, so that 

𝜎𝑝(𝑇, σ0) = ∅. 

(3): Follows immediately from Theorem 

2.4(2). Indeed, we have  

𝜎p(𝑇∗, σ0
∗ ) = 𝜎p(𝑇∗, h) = 𝑄 (Δ\Δ𝑟

𝑠
). 

(4): By using the relation  

𝜎r(𝑇, σ0) = 𝜎p(𝑇∗, σ0
∗ )\𝜎p(𝑇, σ0) and 

applying Statements (2) and (3), the 

result follows directly. 

(5): It is known that  

𝜎c(𝑇, σ0) 

= 𝜎(𝑇, σ0)\[𝜎p(𝑇, σ0) ∪ 𝜎r(𝑇, σ0)] 

= 𝑄 (Δ\Δ𝑟
𝑠
) \𝑄 (Δ\Δ𝑟

𝑠
) 

⊆ 𝑄 (𝜕Δ𝑟

𝑠
∪ 𝜕Δ).   

Conversely, let 𝜆 ∈ 𝑄 (𝜕Δ𝑟

𝑠
∪ 𝜕Δ). 

Then, 𝜆 ∈ 𝑃 (𝜕Δ𝑠

𝑟
∪ 𝜕Δ). Therefore, 

there exists a root 𝛾 of 𝑃 − 𝜆 such that 

𝛾 ∈ 𝜕Δ𝑠

𝑟
∪ 𝜕Δ. That is |𝛾| = |

𝑠

𝑟
| or |𝛾| =

1. Therefore, there exists a root of 𝑃 −
𝜆, which lies on 𝜕Δ. Hence, by [El-

Shabrawy and Shindy 2025, Proposition 

2.1], 𝑇∗ − 𝜆𝐼  is injective, and then,  

𝜆 ∉ 𝜎p(𝑇∗, σ0
∗ ). So, 𝜆 ∉ 𝜎r(𝑇, σ0). This 

implies that 𝜆 ∈ 𝜎c(𝑇, σ0).  

Consequently, 

𝑄 (𝜕Δ𝑟
𝑠

∪ 𝜕Δ) ⊆ 𝜎c(𝑇, σ0). 

Thus, we conclude that 

𝜎c(𝑇, σ0) = 𝑄 (𝜕Δ𝑟
𝑠

∪ 𝜕Δ). 

(6): The result follows immediately from 

Statement (2) and the fact that 

𝜎p(𝑇, σ0) = I3𝜎(𝑇, σ0) ∪ II3𝜎(𝑇, σ0)

∪ III3𝜎(𝑇, σ0). 
(7): Simply observe that  

II2𝜎(𝑇, σ0) = 𝜎c(𝑇, σ0). It remains to 

apply Statement (5). 

(8): We have 

III1𝜎(𝑇, σ0) ⊆ 𝜎r(𝑇, σ0) = 𝑄 (Δ\Δ𝑟

𝑠
). 

Conversely, let 

 𝜆 ∈ 𝑄 (Δ\Δ𝑟

𝑠
) = 𝑃 (Δ𝑠

𝑟
\Δ). In this 

case, there exists a root 𝛾 of 𝑃 − 𝜆 such 

that 𝛾 ∈ Δ𝑠

𝑟
\Δ. From [El-Shabrawy and 

Shindy 2025, Proposition 2.3], 𝑇∗ − 𝜆𝐼 

is surjective. That is 𝑇 − 𝜆𝐼 has a 

bounded inverse (cf. [Taylor and 

Halberg 1957, Theorem 4]). 

Additionally, we have 𝜆 ∈ 𝜎p(𝑇∗, σ0
∗ ), 

which implies that 𝑇∗ − 𝜆𝐼 is not 

injective. Then, 𝑇 − 𝜆𝐼 does not have a 

dense range (cf. [Taylor and Halberg 

1957, Theorem 1]). That is we have 

𝜆 ∈ III1𝜎(𝑇, σ0). Thus,  

III1𝜎(𝑇, σ0) = 𝑄 (Δ\Δ𝑟
𝑠
). 

(9): Based on the fact that 

III2𝜎(𝑇, σ0) = 𝜎r(𝑇, σ0)\III1𝜎(𝑇, σ0)  
and then applying Statements (4) and 

(8), the result follows immediately. 

(10): We have  

 𝜎δ(𝑇∗, σ0
∗ ) = 𝜎ap(𝑇, σ0) 

                     = 𝜎(𝑇, σ0)\III1𝜎(𝑇, σ0) 

                     = 𝑄 (Δ\Δ𝑟
𝑠
) \𝑄 (Δ\Δ𝑟

𝑠
) 

                     ⊆ 𝑄 (𝜕Δ ∪ 𝜕Δ𝑟
𝑠
). 

Conversely, let 

𝜆 ∈ 𝑄 (𝜕Δ ∪ 𝜕Δ𝑟

𝑠
) = 𝑃 (𝜕Δ ∪ 𝜕Δ𝑠

𝑟
). 

Then, there exists a root 𝛾 of 𝑃 − 𝜆 such 

that 𝛾 ∈ 𝜕Δ ∪ 𝜕Δ𝑠

𝑟
. Therefore, 𝑃 − 𝜆 

should have a root on 𝜕Δ. By [El-

Shabrawy and Shindy 2025, 

Proposition 2.3], 𝑇∗ − 𝜆𝐼 is not 

surjective. So, 𝜆 ∈ 𝜎δ(𝑇∗, σ0
∗ ). 

Therefore, 

𝑄 (𝜕Δ ∪ 𝜕Δ𝑟
𝑠
) ⊆ 𝜎δ(𝑇∗, σ0

∗ ) 

                           = 𝜎ap(𝑇, σ0). 

As a result 

𝜎ap(𝑇, σ0) = 𝜎δ(𝑇∗, σ0
∗ ) 
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= 𝑄 (𝜕Δ ∪ 𝜕Δ𝑟

𝑠
).  

(11): The result follows directly from the 

fact that  

𝜎δ(𝑇, σ0) = 𝜎(𝑇, σ0)\I3𝜎(𝑇, σ0) 

                   = 𝑄 (Δ\Δ𝑟

𝑠
).  

(12): It is a direct consequence of Statement 

(3) and the fact that 

𝜎co(𝑇, σ0) = 𝜎p(𝑇∗, σ0
∗ ).  

Theorem 4.2. For |𝑟| > |𝑠|, we have 𝑇 ∈
ℬ(𝜎0). Furthermore, the following statements 

hold: 

(1): 𝜎(𝑇, σ0) = 𝑄 (Δ𝑟

𝑠
\Δ). 

(2): 𝜎p(𝑇, σ0) = 𝑄 (Δ𝑟

𝑠
\Δ). 

(3): 𝜎p(𝑇∗, σ0
∗ ) = ∅. 

(4): 𝜎r(𝑇, σ0) = ∅. 

(5): 𝜎c(𝑇, σ0) = ∅. 

(6): I3𝜎(𝑇, σ0) = 𝑄 (Δ𝑟

𝑠
\Δ). 

(7): II3𝜎(𝑇, σ0) = 𝑄 (𝜕Δ𝑟

𝑠
∪ 𝜕Δ). 

(8): III3𝜎(𝑇, σ0) = ∅. 

(9): II2𝜎(𝑇, σ0) = ∅. 

(10): III1𝜎(𝑇, σ0) = III2𝜎(𝑇, σ0) = ∅. 

(11): 𝜎ap(𝑇, σ0) = 𝑄 (Δ𝑟

𝑠
\Δ). 

(12): 𝜎δ(𝑇, σ0) = 𝑄 (𝜕Δ𝑟

𝑠
∪ 𝜕Δ). 

(13): 𝜎co(𝑇, σ0) = ∅.  

Proof. 

(1): From Theorem 2.3(1), we have  

 𝜎(𝑇, σ0) = 𝜎(𝑇∗, σ0
∗ ) 

= 𝜎(𝑇∗, h) 

= 𝑃 (Δ\Δ𝑠
𝑟

) 

= 𝑄 (Δ𝑟
𝑠
\Δ). 

(2): Firstly, we have  

𝜎p(𝑇, σ0) ⊆ 𝜎(𝑇, σ0) = 𝑄 (Δ𝑟

𝑠
\Δ).  

Conversely, suppose that 

𝜆 ∈ 𝑄 (Δ𝑟

𝑠
\Δ). Then, there exists a root 

𝛽 of 𝑄 − 𝜆 such that 𝛽 ∈ Δ𝑟

𝑠
\Δ. So,  

1 ≤ |𝛽| ≤ |
𝑟

𝑠
|. Therefore, the two roots 

of 𝑄 − 𝜆 lie outside Δ. Since it can 

never happen that 1 or −1 is a double 

root of 𝑄 − 𝜆, then, by Corollary 4.1, 

𝑇 − 𝜆𝐼  is not injective, and then, 

𝜆 ∈ 𝜎p(𝑇, σ0). Thus, we conclude that  

𝜎p(𝑇, σ0) = 𝑄 (Δ𝑟

𝑠
\Δ).  

(3): Follows immediately from Theorem 

2.3(2). Indeed, we have  

𝜎p(𝑇∗, σ0
∗ ) = 𝜎p(𝑇∗, h) = ∅. 

(4): By using the relation 

𝜎r(𝑇, σ0) = 𝜎p(𝑇∗, σ0
∗ )\𝜎p(𝑇, σ0)  

and applying Statement (3), the result 

follows immediately. 

(5): Follows immediately. 

(6): Let 𝜆 ∈ I3𝜎(𝑇, σ0). Then, 𝑇 − 𝜆𝐼 is 

surjective and not injective. By, 

Corollaries 4.1 and 4.2, it follows that 

both roots of 𝑄 must be outside Δ. This 

implies that 𝑄 − 𝜆 has a root 𝛽 

satisfying 1 < |𝛽| < |
𝑟

𝑠
|. Hence, 𝛽 ∈

Δ𝑟

𝑠
\Δ, and so, 𝜆 = 𝑄(𝛽) ∈ 𝑄 (Δ𝑟

𝑠
\Δ). 

Thus, we conclude that  

I3𝜎(𝑇, σ0) ⊆ 𝑄 (Δ𝑟

𝑠
\Δ).   

Conversely, let 𝜆 ∈ 𝑄 (Δ𝑟

𝑠
\Δ). Then, 

there exists a root 𝛽 of 𝑄 − 𝜆 such that 

1 < |𝛽| < |
𝑟

𝑠
|. So, by Corollaries 4.1 

and 4.2, 𝑇 − 𝜆𝐼 is surjective and not 

injective. Thus 𝜆 ∈ I3𝜎(𝑇, σ0). So,  

𝑄 (Δ𝑟
𝑠
\Δ) ⊆ I3𝜎(𝑇, σ0). 

This ends the proof of Statement (6). 

(7)- (8): Simply observe  

II3𝜎(𝑇, σ0) ∪ III3𝜎(𝑇, σ0) 

= 𝜎p(𝑇, σ0)\I3𝜎(𝑇, σ0) 

= 𝑄 (Δ𝑟
𝑠
\Δ) \𝑄 (Δ𝑟

𝑠
\Δ) 

⊆ 𝑄 (𝜕Δ𝑟
𝑠

∪ 𝜕Δ). 

Conversely, let 𝜆 ∈ 𝑄 (𝜕Δ𝑟

𝑠
∪ 𝜕Δ). 

Then, 𝜆 ∈ 𝑃 (𝜕Δ𝑠

𝑟
∪ 𝜕Δ). Therefore, 

there exists a root 𝛾 of 𝑃 − 𝜆 such that 

𝛾 ∈ 𝜕Δ𝑠

𝑟
∪ 𝜕Δ. This implies that, 𝑃 − 𝜆 

has the two roots inside Δ. So, by [El-

Shabrawy and Shindy 2025, 

Proposition 2.1], 𝑇∗ − 𝜆𝐼 is injective. 

From [Taylor and Halberg 1957, 

Theorem 1], 𝑇 − 𝜆𝐼 has a dense range. 

On the other hand, 𝜆 ∈ 𝑄 (𝜕Δ𝑟

𝑠
∪ 𝜕Δ) 

implies that there exists a root 𝛽 of  

𝑄 − 𝜆 such that |𝛽| = 1 or |𝛽| = |
𝑟

𝑠
|. 

Therefore, one of the roots of 𝑄 − 𝜆 
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lies on 𝜕Δ and the other one is not 

inside Δ. So, by Corollaries 4.1 and 

4.2, 𝑇 − 𝜆𝐼 is neither surjective nor 

injective. 

Consequently, 𝜆 ∈ II3𝜎(𝑇, σ0). Thus,  

𝑄 (𝜕Δ𝑟

𝑠
∪ 𝜕Δ) = II3𝜎(𝑇, σ0)  

and  III3𝜎(𝑇, σ0) = ∅. 
(9): Simply observe that 

II2𝜎(𝑇, σ0) = 𝜎𝑐(𝑇, σ0).  
It remains to apply Statement (5). 

(10): Since  

𝜎r(𝑇, σ0) = III1𝜎(𝑇, σ0) ∪ III2𝜎(𝑇, σ0), 
then the desired result follows by 

applying Statement (4). 

(11): Indeed, we have  

𝜎ap(𝑇, σ0) = 𝜎(𝑇, σ0)\III1(𝑇, σ0) 

= 𝑄 (Δ𝑟
𝑠
\Δ). 

(12): We have  

𝜎δ(𝑇, σ0) = 𝜎(𝑇, σ0)\I3(𝑇, σ0) 

 = 𝑄 (Δ𝑟

𝑠
\Δ) \𝑄 (Δ𝑟

𝑠
\Δ) 

⊆ 𝑄 (𝜕Δ𝑟
𝑠

∪ 𝜕Δ). 

Conversely, let 𝜆 ∈ 𝑄 (𝜕Δ𝑟

𝑠
∪ 𝜕Δ). One 

can show that 𝑇 − 𝜆𝐼  is not surjective, 

and then, 𝜆 ∈ 𝜎δ(𝑇, σ0). Thus, we 

conclude that 

𝜎δ(𝑇, σ0) = 𝑄 (𝜕Δ𝑟
𝑠

∪ 𝜕Δ). 

(13): It is a direct consequence of Statement 

(3) and the fact that 

 𝜎co(𝑇, σ0) = 𝜎p(𝑇∗, σ0
∗ ).  

Theorem 4.3. For |𝑟| = |𝑠|, we have 𝑇 ∈
ℬ(𝜎0). Furthermore, the following statements 

hold: 

(1): 𝜎(𝑇, σ0) = 𝑄(𝜕Δ). 

(2): 𝜎p(𝑇, σ0) = {
𝑄(𝜕Δ\{−1,1}), if  𝑟 = 𝑠,

𝑄(𝜕Δ), if  𝑟 = −𝑠.
 

(3): 𝜎p(𝑇∗, σ0
∗ ) = ∅. 

(4): 𝜎r(𝑇, σ0) = ∅. 

(5): 𝜎c(𝑇, σ0) = {
𝑄({−1,1}), if  𝑟 = 𝑠,
∅, if  𝑟 = −𝑠.

 

(6): I3𝜎(𝑇, σ0) = ∅. 

(7): II3𝜎(𝑇, σ0) = {
𝑄(𝜕Δ\{−1,1}), if  𝑟 = 𝑠,

𝑄(𝜕Δ), if  𝑟 = −𝑠.
 

(8): III3𝜎(𝑇, σ0) = ∅. 

(9): II2𝜎(𝑇, σ0) = {
𝑄({−1,1}), if  𝑟 = 𝑠,
∅, if  𝑟 = −𝑠.

 

(10): III1𝜎(𝑇, σ0) = III2𝜎(𝑇, σ0) = ∅. 

(11): 𝜎ap(𝑇, σ0) = 𝑄(𝜕Δ). 

(12): 𝜎δ(𝑇, σ0) = 𝑄(𝜕Δ). 

(13): 𝜎co(𝑇, σ0) = ∅.  

Proof. 

(1): From Theorem 2.5(1), we have  

𝜎(𝑇, σ0) = 𝜎(𝑇∗, σ0
∗ ) 

= 𝜎(𝑇∗, h) 
= 𝑃(𝜕Δ) 
= 𝑄(𝜕Δ). 

(2): Let 𝑟 = 𝑠. Suppose that 𝜆 ∈ 𝜎p(𝑇, σ0). 

Then, 𝑇 − 𝜆𝐼 is not injective. Since the 

product of the two roots of 𝑄 − 𝜆 equals 

1, therefore, by Corollary 4.1, the two 

roots lie on 𝜕Δ and that neither −1 nor 

1 is a double root of 𝑄 − 𝜆. Let 𝛽 be a 

root of 𝑄 − 𝜆. Then, 𝛽 ∈ 𝜕Δ\{−1,1}. 
That is, we have  

𝜆 = 𝑄(𝛽) ∈ 𝑄(𝜕Δ\{−1,1}). So, 

𝜎p(𝑇, 𝜎0) ⊆ 𝑄(𝜕Δ\{−1,1}). 

Conversely, let 𝜆 ∈ 𝑄(𝜕Δ\{−1,1}). 

Then, there exists 𝛽 ∈ 𝜕Δ\{−1,1} such 

that 𝜆 = 𝑄(𝛽). Therefore, 𝛽 is a root of 

𝑄 − 𝜆 that satisfies |𝛽| = 1 and  

𝛽 ∉ {−1,1}. By Corollary 4.1, 𝑇 − 𝜆𝐼  

is not injective, and so, 𝜆 ∈ 𝜎p(𝑇, σ0). 

Hence, 

𝑄(𝜕Δ\{−1,1}) ⊆ 𝜎p(𝑇, σ0). 

This concludes that  

𝜎p(𝑇, σ0) = 𝑄(𝜕Δ\{−1,1}). 

Let 𝑟 = −𝑠. The proof is similar to case 

𝑟 = 𝑠. 

(3): This result follows directly from 

Theorem 2.5(2). Indeed, we have  

𝜎p(𝑇∗, σ0
∗ ) = 𝜎p(𝑇∗, h) = ∅. 

(4): Based on the relation 

𝜎r(𝑇, σ0) = 𝜎p(𝑇∗, σ0
∗ )\𝜎p(𝑇, σ0)  

and using Statement (3), the result 

follows immediately. 

(5): If 𝑟 = −𝑠, the proof follows 

immediately from the relation 

𝜎c(𝑇, σ0) 

= 𝜎(𝑇, σ0)\[𝜎p(𝑇, σ0) ∪ 𝜎r(𝑇, σ0)], 

and then applying Statements (1), (2) 

and (4). Now, let 𝑟 = 𝑠. In fact, we have 

𝜎c(𝑇, σ0) = 𝑄(𝜕Δ)\𝑄(𝜕Δ\{−1,1}) 
                   ⊆ 𝑄({−1,1}). 
On the other hand, let 𝜆 ∈ 𝑄({−1,1}). 

Then, −1 and 1 are the double roots of 

𝑄 − 𝜆. This implies that 𝑇 − 𝜆𝐼 is 

injective. Therefore, 𝜆 ∉ 𝜎p(𝑇, σ0). 

Consequently, 𝜆 ∈ 𝜎c(𝑇, σ0).  

We conclude that 

𝑄({−1,1}) ⊆ 𝜎c(𝑇, σ0). 
This concludes the result. 

(6): Let 𝑟 = 𝑠. From the fact that  
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I3𝜎(𝑇, σ0) ⊆ 𝜎p(𝑇, σ0).  

We have 

I3𝜎(𝑇, σ0) ⊆ 𝑄(𝜕Δ\{−1,1}). 
Conversely, let 𝜆 ∈ 𝑄(𝜕Δ\{−1,1}). 

Therefore, there exists a root 𝛽 of  
𝑄 − 𝜆 such that 𝛽 ∈ 𝜕Δ\{−1,1}. So, by 

Corollaries 4.1 and 4.2, 𝑇 − 𝜆𝐼 is 

neither injective nor surjective. So, 

𝜆 ∉ I3𝜎(𝑇, σ0). This concludes that 

I3𝜎(𝑇, σ0) = ∅. 

Let 𝑟 = −𝑠. The proof is similar to case 

𝑟 = 𝑠. 

(7)-(8):  Let 𝑟 = 𝑠. Simply observe that  

II3𝜎(𝑇, σ0) ∪ III3𝜎(𝑇, σ0) 

⊆ 𝜎p(𝑇, σ0)\I3𝜎(𝑇, σ0)                

= 𝑄(𝜕Δ\{−1,1}). 
Now, let 𝜆 ∈ 𝑄(𝜕Δ\{−1,1}). Then,  
𝜆 ∈ 𝑃(𝜕Δ\{−1,1}). Therefore, there 

exists a root 𝛾 of 𝑃 − 𝜆 such that  

𝛾 ∈ 𝜕Δ\{−1,1}. This implies that the 

two roots of 𝑃 − 𝜆 are inside Δ. So, by 

[El-Shabrawy and Shindy 2025, 

Proposition 2.1], 𝑇∗ − 𝜆𝐼 is injective. 

Also, from [Taylor and Halberg 1957, 

Theorem 1], 𝑇 − 𝜆𝐼 has a dense range, 

and consequently, 𝜆 ∈ II3𝜎(𝑇, σ0). 

Therefore,  

II3𝜎(𝑇, σ0) = 𝑄(𝜕Δ\{−1,1}). 
and 

III3𝜎(𝑇, σ0) = ∅. 
The case 𝑟 = −𝑠 follows by a similar 

argument.  

(9): Simply observe that  

II2𝜎(𝑇, σ0) = 𝜎c(𝑇, σ0).  

It remains to use Statement (5). 

(10): Since 

𝜎r(𝑇, σ0) 

  = III1𝜎(𝑇, σ0) ∪ III2𝜎(𝑇, σ0), 
then the desired result follows by 

applying Statement (4). 

(11): Indeed, from Statements (1) and (10), 

we have  

𝜎ap(𝑇, σ0) = 𝜎(𝑇, σ0)\III1(𝑇, σ0) 

                    = 𝑄(𝜕Δ). 
(12): Follows directly from Statements (1) 

and (6) that  

𝜎δ(𝑇, σ0) = 𝜎(𝑇, σ0)\I3(𝑇, σ0) 
                   = 𝑄(𝜕Δ). 

(13): It is a direct consequence of Statement 

(3) and the fact that  

𝜎co(𝑇, σ0) = 𝜎p(𝑇∗, σ0
∗ ).  

An important result is in order before 

ending this section. Consider the special case 

where 𝑟 = 𝑠 > 0. Then, the operator 𝑇(𝑟, 𝑞, 𝑠) 

is reduced to the Jacobi operator 𝐽(𝑞, 𝑟). If this 

is the case, we observe that 

𝑄(𝜕Δ) = [𝑞 − 2𝑟, 𝑞 + 2𝑟], 
𝑄(𝜕Δ\{−1,1}) = (𝑞 − 2𝑟, 𝑞 + 2𝑟), 

𝑄({−1,1}) = {𝑞 − 2𝑟, 𝑞 + 2𝑟}. 
Consequently, we have the following important 

corollary: 

Corollary 4.5. Let 𝑟 and 𝑞 be fixed real 

numbers with 𝑟 > 0. We have 𝐽(𝑞, 𝑟) ∈ ℬ(𝜎0). 

Furthermore, the following statements hold: 

(1): 𝜎(𝐽(𝑞, 𝑟), σ0) = [𝑞 − 2𝑟, 𝑞 + 2𝑟]. 
(2): 𝜎p(𝐽(𝑞, 𝑟), σ0) = (𝑞 − 2𝑟, 𝑞 + 2𝑟). 

(3): 𝜎p(𝐽(𝑞, 𝑟)∗, σ0
∗ ) = ∅. 

(4): 𝜎r(𝐽(𝑞, 𝑟), σ0) = ∅. 

(5): 𝜎c(𝐽(𝑞, 𝑟), σ0) = {𝑞 − 2𝑟, 𝑞 + 2𝑟}. 

(6): I3𝜎(𝐽(𝑞, 𝑟), σ0) = ∅. 

(7): II3𝜎(𝐽(𝑞, 𝑟), σ0) = (𝑞 − 2𝑟, 𝑞 + 2𝑟). 

(8): III3𝜎(𝐽(𝑞, 𝑟), σ0) = ∅. 

(9): II2𝜎(𝐽(𝑞, 𝑟), σ0) = {𝑞 − 2𝑟, 𝑞 + 2𝑟}. 

(10): III1𝜎(𝐽(𝑞, 𝑟), σ0) =
III2𝜎(𝐽(𝑞, 𝑟), σ0) = ∅. 

(11): 𝜎ap(𝐽(𝑞, 𝑟), σ0) = [𝑞 − 2𝑟, 𝑞 + 2𝑟]. 

(12): 𝜎δ(𝐽(𝑞, 𝑟), σ0) = [𝑞 − 2𝑟, 𝑞 + 2𝑟]. 
(13): 𝜎co(𝐽(𝑞, 𝑟), σ0) = ∅.  

In Corollary 4.5, the results established in 

Statements (1)-(5) agree with the results in [El-

Shabrawy and Shindy 2020, Theorem 4.1]. 

While, the remaining results are new 

contributions. 

Conclusion and work in progress 

In this paper, a detailed study on the spectra 

of the infinite matrices 𝐵(𝑟, 𝑠), 𝑈(𝑟, 𝑠) and 

𝑇(𝑟, 𝑞, 𝑠) as operators on the Cesàro sequence 

space σ0 has been given. In fact, the class of the 

operators 𝑇(𝑟, 𝑞, 𝑠) includes 𝐵(𝑟, 𝑠) =
𝑇(0, 𝑟, 𝑠) and 𝑈(𝑟, 𝑠) = 𝑇(𝑠, 𝑟, 0). We assert 

that the technique presented in Section 4 is 

flexible to be adapted to study the spectral 

problem of the operators 𝐵(𝑟, 𝑠) and 𝑈(𝑟, 𝑠). In 

fact, analogous to Corollaries 4.1, 4.2, 4.3 and 

4.4, the reader can easily verify the following 

proposition. 

Proposition 5.1. The following statements are 

satisfied: 

(1): 𝐵(𝑟, 𝑠) − 𝜆𝐼 ∈ (σ0: σ0) is injective. 

(2): 𝐵(𝑟, 𝑠)∗ − 𝜆𝐼 ∈ (h: h) is injective if and 

only if |𝜆 − 𝑟| ≥ |𝑠|. 
(3): 𝐵(𝑟, 𝑠) − 𝜆𝐼 ∈ (σ0: σ0) is surjective if 
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and only if |𝜆 − 𝑟| > |𝑠|. 
(4): 𝐵(𝑟, 𝑠)∗ − 𝜆𝐼 ∈ (h: h) is surjective if and 

only if |𝜆 − 𝑟| ≠ |𝑠|. 
(5): 𝑈(𝑟, 𝑠) − 𝜆𝐼 ∈ (σ0: σ0) is injective if 

either |𝜆 − 𝑟| > |𝑠| or 𝜆 = 𝑟 + 𝑠. 

(6): 𝑈(𝑟, 𝑠)∗ − 𝜆𝐼 ∈ (h: h) is injective. 

(7): 𝑈(𝑟, 𝑠) − 𝜆𝐼 ∈ (σ0: σ0) is surjective if 

and only if |𝜆 − 𝑟| ≠ |𝑠|. 
(8): 𝑈(𝑟, 𝑠)∗ − 𝜆𝐼 ∈ (h: h) is surjective if and 

only if |𝜆 − 𝑟| > |𝑠|.  
Then, by similar calculations like in the 

preceding section, we can obtain results that 

agree with those in Section 3. This gives a new 

technique for determining the spectra of the 

operators 𝐵(𝑟, 𝑠) and 𝑈(𝑟, 𝑠). 

Further study on the spectra of the operator 

𝑇(𝑟, 𝑞, 𝑠) on sequence spaces, like σ∞ and bs, 

is required. However, some difficulties caused 

some problems in characterizing the residual 

and the continuous spectra of 𝑇(𝑟, 𝑞, 𝑠) on σ∞ 

and bs. The problem is in progress and we hope 

to have advances regarding these results in 

future publication. 
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 الملخص العربي

 المتتابعات فراغكمؤثرات على  لانهائية البعدحول أطياف بعض المصفوفات ذات النطاق عنوان البحث: 

 𝝈𝟎 يزارولش

 1سعد رشاد الشبراوي، 1أسماء محمد شندي، 1حسن أحمد المرشدي ،1رابحة محمد الأشوح

 .، دمياط، مصردمياطالعلوم، جامعة  كليةقسم الرياضيات، 1

على  النطاق، كمؤثراتم هذا العمل دراسةً طيفيةً لبعض المصفوفات المعروفة، وهي المصفوفات المثلثية السفلية والعلوية ثنائية قد  

ً تتضمن الدراسة تحليلاً .  𝝈𝟎يزارولش المتتابعات فراغ لطيف هذه المؤثرات، مع التمييز بين أنواع الطيف المختلفة مثل: الطيف  دقيقا

م تقسيمًا أدق للطيف. وتمتد  النقطي، الطيف المتبقي، الطيف المتصل، طيف العيب، طيف الضغط، والطيف التقريبي النقطي. كما يقُد ِّ

ويتميز الأسلوب المُت بَع في البحث بمرونة تسمح  .تماثلةالموغير  المتماثلةالدراسة لتشمل تعميمًا على المصفوفات ثلاثية الأقطار 

 .أخرى متتابعات فراغاتفي  موضع الدراسة للمؤثراتالطيفية  المسألةبتطبيقه لدراسة 


