
 

 

 

 
IJT’2025, Vol.05, Issue 02.   https://ijt.journals.ekb.eg 

An Optimized Technique for Securing Modern Smart Cities 

Using Equipped Crowed-Sensing Unmanned aerial vehicles  

Amr Aboghanem 1,2,*, Hanan Amer 3 and Abeer Twakol 4 
1 Dept. Electronics and Communications, Faculty of Engineering, Mansoura, Egypt, Email: Amrab-

oghanem836@gmail.com 
2 Dep. of Electronics and Electrical Communications Engineering, Air Defense Collage, Egyptian 

Military Academy; New Administrative Capital. 
3 Dept. Electronics and Communications, Faculty of Engineering, Mansoura, Egypt, 

Email:eng_hanan_2007@mans.edu.eg. 
4 Dept. Electronics and Communications, Faculty of Engineering, Mansoura, Egypt, E-mail: 

abeer.twakol@mans.edu.eg. 

* Correspondence: Amraboghanem836@gmail.com; Tel.: (+201009434384). 

Abstract: Unmanned aerial vehicles (UAVs) have become a vital and indispensable tool in 

modern disaster management, especially in smart cities that rely on complex infrastruc-

ture and communication networks. This paper addresses the pivotal importance of UAVs 

in disaster prevention efforts, with a particular focus on the challenges posed by GNSS 

signal disturbances, which hinder accurate navigation and relief efforts. In this paper, we 

present an efficient and robust system that aims to establish a secure and reliable com-

munication channel between UAVs—equipped with crowd-sensing techniques and ad-

vanced estimation filters such as Extended Kalman Filters and Particle Filters—and the 

ground control station. This system ensures continuous communication even in the ab-

sence of GNSS signals, enabling UAVs to efficiently perform their vital tasks. Further-

more, we propose a secure communication method based on robust cryptographic ste-

ganography, combining the Advanced Encryption Standard (AES) and stego-images 

using discrete wavelet (DWT) coefficients. The test results confirm the effectiveness of the 

proposed method, as its performance was successfully evaluated using the mean square 

error (MSE), maximum signal-to-noise ratio (PSNR), and correlation (COR) metrics. 

Keywords: Unmanned Aerial Vehicle (UAV) ; Global Navigation Satellite System (GNSS) ; In-

ertial Measurement Unit (IMU) ;  Extended Kalman Filter (EKF) ;  Particle Filter (PF), Discrete 

Wavelet Transform (DWT) ; Advanced Encryption Standard (AES) . 

 

1. Introduction 

In the contemporary landscape, smart cities stand as emblematic embodiments of technological progress and 

sustainability, leveraging cutting-edge innovations like the Internet of Things (IoT), artificial intelligence (AI), 

and advanced communication networks (5G and 6G) to elevate living standards and optimize resource utiliza-

tion [1-3]. In addition to making daily life easier, these urban environments have a powerful ability to protect 

people from natural and man-made disasters, reducing the number of deaths and injuries and the amount of 

damage to property [4-5]. Smart cities are excellent at preventing and handling disasters because they use in-

tegrated sensor arrays and real-time data analytics to find risks like earthquakes and floods early, send out early 

warnings, and make it easier for everyone to work together during an emergency [6–8]. Drones emerge as in-

dispensable assets in the disaster relief arsenal of smart cities, offering swift and inventive solutions for crisis 

management [9-10]. Their versatility includes quick aerial surveys to check for damage, quick delivery of es-
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sential supplies to areas that can't be reached, and advanced search and rescue capabilities that use thermal 

sensors and night vision cameras  to find survivors in tough environments [11–14]. 

The proposed framework makes the following contributions : 

 We discuss the significance of UAVs in addressing crisis-related issues, particularly those such as GNSS 

signal disruptions that complicate normal navigation, and the suggested approach for aid operations. 

 The suggested method uses a combination of crowd-sensing data and a number of nonlinear estimators to 

improve the navigation solution, even when GNSS signals are lost. 

  The suggested method sets up a solid communication link between the UAVs and the ground control station, 

even when the channels are noisy. This improves operational continuity during crises by using these ad-

vanced encryptions and embedding techniques to keep data safe and private during UAV operations in 

crises. 

The paper is organized into the following subsections: Section 2 discusses the existing work related to the pro-

posed approach. Section 3 provides an overview of the system and scheme modeling, including its compo-

nents and how it works. Section 4 presents and analyzes the experimental results obtained from the suggested 

system. The paper concludes with Section 5, which outlines the findings of the study. 

2. Related work 

Amidst the backdrop of escalating climate change impacts and a surge in natural disasters, there has been a 

notable flow of interest surrounding the advancement of communication networks, particularly those tailored 

for drones [15-16]. Concurrently, the exploration of specialized drone applications has intensified due to their 

pivotal role in disaster response and event support.  

To improve the well-being of citizens and make sure they are ready for unplanned emergencies, smart cities 

need to make a big change toward using cutting-edge technologies. This means that technological progress 

needs to be carefully and constantly evaluated to make sure that everyone has access to the newest tools and 

ideas [17-18]. This article focuses on the network-centric components of multi-drone systems and their poten-

tial applications in monitoring major events and pandemics. It also talks about how to set up a strong commu-

nication link between UAVs and the ground control station, even over noisy channels, so that operations can 

continue during crises. This article uses advanced encryption and embedding techniques to keep data safe and 

private during UAV operations during crises. Hence, Table 1 shows the important works related to the pro-

posed method in this paper. 

Table 1. the important works related to the proposed method in this paper. 

Disadvantages Advantages Main Contribution Ref. 

No security focus, lacks image 

encryption or classification 

Real-time communication, 

integration with 6G 

UAV-aided 6G networks for 

disaster management 
18 

No encryption, lacks robust re-

sponse time analysis 

Uses CNN models for object 

detection, improves rescue 

targeting 

AI-based object detection in 

UAV rescue missions 
19 

No image classification, limited 

real-time UAV field testing 

Focus on speed and low 

energy consumption 

Lightweight encryption for 

IoT-UAV communication 
20 

High computational cost, no 

benchmark with modern de-

tectors 

Improved video privacy, 

strong AES-RSA mix 

Secure drone video stream-

ing using hybrid encryption 
21 
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Doesn’t consider encryption or 

system-level response time 

High accuracy, low com-

putational demand 

EfficientNet for UAV-based 

object recognition 
22 

No compromise on system per-

formance or response time 
Uses AES + RSA encryption 

Secure video transmission 

over UAV networks 
23 

Lacks Strong Encryption Tech-

nologies 
Reduces Processing Time 

Using AI at the Edge with 

UAVs 
24 

Does not cover message analy-

sis or real-time encryption 
Preventing data tampering 

Maintaining data integrity 

using blockchain 
25 

3. System and scheme modeling 

This section gives a thorough explanation of the suggested approach and presents the system model . 

3.1 System modeling  

The proposed system is designed to ensure robust UAV navigation and secure communication, especially in 

GNSS-denied environments, by combining advanced sensor fusion and image-based steganography tech-

niques as shown in Figure 1. First, the UAV navigates without GNSS signals using a fusion of Radar sensors (to 

detect targets, extract their velocity and height) and IMU, which measure position, velocity, and attitude. These 

inputs are processed using algorithms like EKF and PF to estimate accurate navigation parameters, enabling the 

UAV to remain stable and achieve reliable positioning in challenging conditions. Simultaneously, the UAV’s 

camera (equipped with an Optical Flow Estimator) captures a cover image that will be used for secure com-

munication. In parallel, a secret message is prepared for transmission. 

The process begins with the secret message undergoing fuzzification, which transforms the message into a 

flexible and adaptable numerical form, making it suitable for further processing. The fuzzified message is then 

transformed using the DWT, which decomposes the data into various frequency components to allow efficient 

embedding into the image. To secure the message, it is encrypted using the AES algorithm, ensuring it remains 

protected from unauthorized access. After encryption, the transformed secret message is embedded into the 

DWT-transformed cover image using a weighted embedding function (α), where α represents the degree of 

embedding applied to the image. The result of this process is a stego-image—an image that visually resembles 

the original cover image but contains the securely hidden secret message. 

In scenarios where GNSS signals are lost, such as in dense urban environments or under deliberate signal 

jamming, the system activates its alternative navigation strategy based on crowd-sensing fusion. The UAV 

collects accurate sensory data from onboard radar (for target detection, velocity, and altitude), an IMU (for po-

sition, velocity, and attitude), and a camera with optical flow estimation. These inputs are processed through 

advanced filtering algorithms (EKF and PF) to produce a stable and precise navigation solution in real-time, 

despite the absence of satellite-based positioning. 

In parallel with the navigation process, the system prepares a secure message containing essential mission data. 

This message is encrypted, embedded within a cover image using steganography techniques, and transmitted 

over a potentially noisy wireless channel. Even with interference or data corruption during transmission, the 

ground station performs filtering and denoising operations to clean the received stego-image. It then applies 

DWT, de-weighting, and IDWT to extract the encrypted message, which is decrypted using the AES key and 
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defuzzified to recover the original readable data. This ensures accurate and secure data transmission even when 

GNSS is unavailable. 

The stego-image is then transmitted from the UAV over a noisy communication channel, such as wireless 

transmission prone to interference and noise. At the Earth Station, the received stego-image undergoes multiple 

processing steps to extract and recover the secret message accurately. First, the stego-image is processed 

through filtering techniques to remove any noise that may have been introduced during transmission. The fil-

tered image is then decomposed using DWT to isolate the embedded data. To retrieve the original secret mes-

sage, the weighted embedding function is reversed through de-weighting (1/α), effectively scaling the embed-

ded message back to its original state.  

Once the weighted message is extracted, the Inverse Discrete Wavelet Transform (IDWT) is applied to recon-

struct the hidden message. At this stage, the message remains in its encrypted form, so it is decrypted using the 

AES decryption key, which restores the original encrypted content. To convert the decrypted message back into 

a readable form, the system applies defuzzification, which reverses the earlier fuzzification process. The fully 

recovered message is then displayed at the Earth Station, where it is validated and compared against a finger-

printing database to verify its accuracy and integrity 

 
 

 
Figure1, the proposed system 
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Noise can occur intentionally or unintentionally during data transmission (the image carrying the message) 

from the drone to the ground station. This can affect the quality of the stego-image, alter some pixels in the 

image, compromise accurate extraction of the hidden message, and add an additional challenge to verifying the 

reliability of the data. 

The system handles noise at the ground station by receiving the noisy stego-image. Filtering is the first 

step after reception, removing the noise generated by the wireless channel using techniques such as Gaussian 

Filter, Median Filter, or Wiener Filter. Denoising is then performed as a more precise filtering step. The removal 

of changes that specifically affect the embedded message can be achieved using algorithms such as Wavelet 

Thresholding and Non-Local Means. DWT analyzes the frequencies of the cleaned image and separates the 

image components, including the component carrying the message. De-weighting (1/α) reverses the process by 

which the message was hidden, helping to reduce the impact of noise. IDWT: The frequencies are recombined 

to extract the encrypted message. AES Decryption: The message is decrypted (if the keys are unaffected). De-

fuzzification: The message is recovered in its final, understandable form. 

In summary, the system combines UAV navigation (through GNSS-denied signal fusion) with secure commu-

nication techniques using image steganography and encryption. The UAV achieves robust navigation in harsh 

conditions by fusing radar and IMU data through advanced filtering techniques like EKF and PF, while the 

secure communication process involves fuzzification, DWT, AES encryption, and weighted embedding to se-

curely transmit a message hidden inside a cover image. The Earth Station processes the received stego-image 

through noise removal, de-weighting, and IDWT, followed by AES decryption and defuzzification to recover 

and display the original message, ensuring security, accuracy, and reliability in data transmission. 

 

3.2 scheme modeling 

The proposed system has been developed to enable dependable UAV navigation and safeguarded communica-

tion in modern smart cities during natural disasters that lead to unavailable GNSS signals. This is achieved by 

integrating cutting-edge sensor fusion mechanisms with image-based information security techniques like ste-

ganography. Hence without GNSS signals, the UAV undertakes navigation tasks by amalgamating data from 

radar sensors, which identify targets and extract their velocity and altitude, alongside IMU sensors that record 

position, velocity, and attitude 

Utilizing algorithms such as the EKF and PF, these inputs are processed to ascertain precise navigation param-

eters, ensuring the UAV's stability and accurate positioning even in challenging environments. Concurrently, 

the UAV's camera, equipped with an optical flow estimater, captures a cover image for secure communication 

purposes, while a confidential message is readied for transmission. Figure 2 shows the flight path when there is 

a GNSS network outage. 

The encryption process commences with the confidential message undergoing fuzzification, a procedure that 

converts the message into a versatile numerical format, optimizing it for subsequent processing stages. This 

fuzzified message is then subjected to transformation via the DWT, which dissects the data into distinct fre-

quency components, facilitating efficient embedding into the image. To reinforce the message's security, it un-

dergoes encryption using AES algorithm, safeguarding it against unauthorized access. Following encryption, 

the transformed secret message is integrated into the DWT-transformed cover image through a weighted em-

bedding function (α), where α denotes the level of embedding applied to the image.  

The encryption process commences with the confidential message undergoing fuzzification, a procedure that 

converts the message into a versatile numerical format, optimizing it for subsequent processing stages. This 
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fuzzified message is then subjected to transformation via the DWT, which dissects the data into distinct fre-

quency components, facilitating efficient embedding into the image. To reinforce the message's security, it un-

dergoes encryption using AES algorithm, safeguarding it against unauthorized access. Following encryption, 

the transformed secret message is integrated into the DWT-transformed cover image through a weighted em-

bedding function (α), where α denotes the level of embedding applied to the image.   

The outcome of this process is a stego-image—a visually similar image to the original cover image, concealing the se-

curely hidden confidential message. Figure 3 shows the flowchart of the proposed system  

 

 

Figure2, Unmanned Arial Vehicle (UAV) in a GNSS denied environment 

 



IJT’2025, Vol.05, Issue 02.       7 of 15 
 

 

 

 

3.2.1.The navigation solution Algorithm Using types of linear and nonlinear estimators 

The proposed navigation solution relies on a combination of linear and non-linear estimators like the Extended 

EKF and PF. The PF, a probabilistic estimator employing random samples to estimate non-Gaussian and non-

linear processes, approximates the target distribution through a large set of weighted samples known as parti-

cles. This approach is essential to the system because it provides benefits like the ability to estimate complete 

probability density functions, effective particle guidance towards high-probability areas, and efficient man-

agement of non-linear state and observation models. Understanding the fundamental operations of the PF 

within the system is vital, and the derivation of its basic equations is essential for implementation and com-

prehension. 

 State representation or initialization 

The state values' (probability density function (pdf)) is described using (n-particles) rather than the se-

cond-order statistical description. As a result, the (pdf) is: 

 ( )  ∫     (    )
 

   
                                              (1) 

     : weight of      particle, and  ( ): basis function. If  ( ) assumed to be the Dirac’s delta, so the equation 

will:  

 ( )  
 

 
∫  (    )
 

   
                                                                             (2) 

 Prediction 

 (        ⁄    )  ∫ (      ⁄ ) (      ⁄    )                                    (3) 

 (        ⁄    )  ∑     
 
    (     ̅   ⁄ )                                     (4) 

 

After sampling { ̂   } the equation of prediction will be: 

Figure 3, The flowchart of the proposed system. 
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 (        ⁄    )  ∑
 

 

 
    (    ̂   )                                        (5) 

 Update 

        When the likelihood is concentrated on a few small state values, the new weights may approach zero, 

resulting in a very low probability. To solve this problem, we replace a high-weight particle that is more likely 

to be drawn repeatedly with a low-weight particle that is unlikely to be drawn at all using the resampling step. 

The final equations for the update step can be written as (n-particles) { ̅   }  : 

 (      ⁄    )  ∫
 

 
 (    ̅   )

 

   
                                          (6) 

                         (        ⁄      )  ∫
 

 
 (      ̅     )

 

   
                                  (7)            

 

 Particle Resample 

The To address the degeneracy issue in particle filtering, where a small number of particles carry significant 

weight while the majority have minimal weights, a resampling step is employed. This technique helps mitigate 

the problem by redistributing the particle weights. The severity of this problem can be gauged by estimating the 

effective sample size through a specific equation. 

       
 

∫ (  
 ) 

 

   

                                                  (8)                                          

3.2.2 Performing the Stego-Image Process 

Figure 4 illustrates the process of encrypting secret messages using the AES algorithm 

 

 

 

 

 

 

 

 

 

Figure5 shows the block diagram of the steganography system. The weighted DWT coefficients for the corre-

sponding sub-bands of the cover image are combined with the encrypted secret message using the AES tech-

nique using an adjusted embedding weighting function. This process can be represented as : 

  S (j, k) =β C (j, k) + α M (j, k)                                         (9)                            

where 

β +α =1                                                    (10)                                                        

The DWT of the encrypted confidential message (M) and the cover images (C) have two weighting intensity 

factors, α and β, respectively, and the modified DWT coefficients of the Stego-image are represented by (S). 

 When the Sego-image undergoes transmission through the communication channel, it is susceptible to dis-

tortion caused by various types of noise. To mitigate the impact of this noise diversity without compromising 

the crucial edge details of the Stego-image, a range of filters, both linear and nonlinear, are employed. This 

    

Figure4. (a) Presents the original images like (burned House) that utilized as secret messages, (b) presents the secret 

messages before the encryption process and, (c) presents the encrypted secret message utilizing the (AES) Algorithm 

 

(a) (c) (b) 
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strategy, as illustrated in the block schematic of the proposed system, involves applying the DWT to the cover 

image to create LH, HL, HH, and LL bands 

 

 

 

 

 

 

 

 

 

 

 

Subsequently, the secret message is squeezed through fuzzification, processed using the DWT, and then estab-

lished into the cover image based on a weighted embedding function. The IDWT is then utilized to reconstruct 

the Stego-image, demonstrating the importance of the weighting embedding function in managing noise in-

terference within the system. 

S (j, k) =β C (j, k) + α M (j, k) + N (j, k)                                     (11) 

where (N) is noise model. 

4. Experimental Results and discussion 

      The results were extracted from the proposed method in three stages: 

4.1 The navigational solution for UAV 

The actual data was collected using a 3DR Solo quadcopter equipped with a set of crowd-sensing tools, in-

cluding an inertial measurement unit (IMU), micro-FMCW radar, and a high-resolution camera. An enhanced 

Kalman filter was used to improve the accuracy of sensor data fusion. The experiments were conducted over 

two days, with the radar mounted at a 60-degree angle from the vertical axis of the drone to optimize coverage 

during flight. In the first phase, the GNSS was intentionally disabled to simulate a signal-denied environment, 

and the flight path was recorded without applying the proposed method to serve as a baseline for comparison. 

In the second phase, a flight mission was carried out, involving two full rotations of the drone and traversal 

through 10 predefined waypoints at a maximum speed of 5 m/s, over two durations: 40 seconds and 120 se-

conds. During this mission, the proposed technique—based on crowd-sensing data fusion—was applied to 

compare the drone’s actual forward speed with the radar-derived speed estimates, aiming to validate the 

method’s effectiveness in the absence of GNSS. Table 2 presents a comparison of the root mean square error 

(RMSE) values for position estimates obtained from the standalone inertial navigation system (INS) and the 

proposed navigation method under different durations of GNSS signal loss. This comparison highlights the 

accuracy and efficiency of the proposed approach in enhancing UAV navigation performance in GNSS-denied 

environments. 

 

 

 

 

Figure 5. The block diagram of stenographic system. 
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RMS Error (m) Symbol 
Initial Trip Outage 

(40 sec) (120 sec) 

North direction (m) 

INS Only 138.68 138.68 

Crowd-sensing 

System 

Using EKF 1.05 2.95 

Using PF 0.58 1.47 

East  direction  (m) 

INS Only 140.65 140.65 

Crowd-sensing 

System 

Using EKF 1.89 2.94 

Using PF 1.03 1.49 

Height  direction (m) 

INS Only 219.21 219.21 

Crowd-sensing 

System 

Using EKF 2.19 2.28 

Using PF 1.11 1.55 

Percentage of Improvements from INS % 
Crowd-sensing 

System 

Using EKF 94.66 96.136 

Using PF 96.59 97.94 

 

4.2 Extracting the secret message by the ground control station 

The experiment utilized using a set of standard gray scale images as cover images and secret images en-

crypted using AES with size (256×256). Then, the secret images were hidden inside the cover images to generate 

secure stego-images. The secure stego-images were exposed to various types of noise to simulate noisy com-

munication channels, such as Gaussian white noise (mean=0 and variance = 0.01), salt and pepper and speckle 

noises with (mean = 0 and variance = 0.05). 

To remove noise, a spatial linear filter like (3×33) Average and (3×33) Wiener filters, then spatial nonlinear 

filter like (3×33) median filter. while Figure 6 shows the Stego- images Prior to entering the scrambled commu-

nication channel, where Lena image was utilized as cover and burned House image was utilized as the confi-

dential message with various ESF factors (α=0.1to α=0.6). 

 

α=0.1 

 

α=0.2 

 

α=0.3 

 

α=0.4 

 

α=0.5 

 

α=0.6 

 

 

Figure 7 illustrates the Stego-images after being sent through the scrambled communication channel, subjected 

to various noise classifications (Gaussian, salt-and-pepper, and speckle) and various values of the steganogra-

phy ESF factor. 

Figure 8 illustrates the Stego-images that have been de-noised using filters (Mean, Median, and Wiener) at the 

most common type of noise (Gaussian Noise) with various ESF factor, where the results showed that the me-

dian filter was the most effective compared to the other filters. 

 Lastly, the following equations have been utilized to assess the accuracy, efficacy, and resilience of the sug-

gested system utilizing a variety of scales and parameters, such as MSE, PSNR, COR, and entropy. 

 

 

Figure6. The Stego-image for various amounts of ESF. 

 

Table 2: Comparison of RMSE Values for Location States Recorded by the INS and the Proposed Navigation System 
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 Mean Square Error (MSE): 

    ∑ ∑
( (   )  (   ))

 

   
                   
 

 
   

 
                                     (12) 

where: C (j, k), represents the cover image, S (j, k) represents the stego- image and M, N is the Size of the 

image. 

 

 peak signal to noise ratio(PSNR): 

            
(   ) 

   
                                              (13) 

 Cross Correlation coefficient (COR): 

    
∑ ( (   )   )( (   )   )   
 

√(∑ ( (   )      
 )

 
(∑ ( (   )      
 )

 
                              (14) 

 At ESF=0.1 At ESF=0.2 At ESF=0.3 At ESF=0.4 At ESF=0.6 At ESF=0.8 

Gaussian 

Noise 

      

Salt 

&Pepper 

Noise 

      

Speckle 

Noise 

      

 At ESF=0.1 At ESF=0.2 At ESF=0.3 At ESF=0.4 At ESF=0.6 At ESF=0.8 

Average 

 filter 

      

Median 

 filter 

      

Wiener  

filter 

      

Figure7. Noisy stego-images containing various forms of noise. 

 

Figure8. The Denoised Stego-images 
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where: m1 represented the average  pixel count of the cover image and m2 represented  the average  pixel 

count of the Stego. 

 Entropy 

           ∑       (  )                                         (15) 

where:    refers to the probability of two adjacent pixels.  

Figure 9 presents the entropy of the Stego-images for varying embedding factor values while utilizing the Lena 

image as a cover and the burned house as a confidential message following the passage through the cluttered 

communication channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Performance Comparison with Existing Methods 

Table.2 shows a detailed comparative analysis of the performance of the proposed method with other 

traditional and modern approaches. The proposed method does not rely on GNSS, making it ideal for dis-

aster situations or hostile environments. It provides a dual layer of security: encryption (AES) + data hiding 

(steganography). It uses nonlinear fusion algorithms (EKF + PF) to increase accuracy. It is flexible in dealing 

with loss of communication or interference across wireless channels. This makes the proposed method 

clearly superior in environments with poor GNSS coverage or interference, and it also provides an inte-

grated solution that combines secure navigation and encrypted communication. While traditional methods 

remain limited in performance outside of GNSS coverage, modern methods face challenges related to cost, 

the need for pre-maps, and reliance on suitable lighting conditions. 

 

 

 

Figure10. Stego-image with many noises’ kinds 
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Figure 8 The Denoised Stego- images. 
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5. Conclusion  

This paper introduces a resilient, robust, and inventive method for determining the navigation solution for 

UAVs within contemporary intelligent urban areas amidst natural calamities causing communication break-

downs, such as the absence of GNSS connectivity. This strategy leverages crowd-sensing and banks on both 

linear and nonlinear estimators such as the EKF and PF to anticipate the anticipated trajectory of the UAVs. 

Additionally, this paper also outlines a secure means of communication for sharing data between the UAVs and 

the ground control station by concealing and encrypting the data through DWT steganography and AES tech-

niques, ensuring the confidentiality of data exchange and countering potential subversive activities during 

natural disasters within contemporary intelligent urban environments. 
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Comparison Aspect Proposed Method 
Traditional GNSS-Based 

Methods 

Modern AI-Based 

Navigation Methods 

GNSS Signal 

Dependency 

Low (uses nonlinear 

estimators and 

crowd-sensing) 

High (GNSS-only systems 

fail in signal-denied 

environments) 

Medium (some can fuse 

sensors but rely on training 

data) 

Navigation Accuracy 

(GNSS denied) 

High (uses crowd-sensing + 

estimation techniques) 

Very Low (almost no 

function without GNSS) 

Medium to High (depends on 

model and environment) 

Robustness to 

Signal Jamming 
High Low Medium to High 

Real-Time 

Performance 

Real-time support using 

adaptive estimation 
High (under GNSS signal) 

Depends on model 

complexity 

Communication 

Reliability 

Maintains link even in noisy 

channels 

Often affected by weak 

signal conditions 

Depends on communication 

module used 

Computational 

Complexity 

Moderate (nonlinear 

estimators and data fusion 

required) 

Low High 

Implementation 

Cost 

Moderate (requires UAVs 

with sensors + estimators + 

crowd-input) 

Low High 

Scalability in 

Disaster Scenarios 

High (uses distributed 

UAVs + dynamic data 

sharing) 

Low Medium 

Table.2 Comparative analysis of the proposed method versus existing approaches 
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