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    Testing Random Effects in Linear Mixed Regression Models 

Abstract:  

Linear mixed models are extensions of regression models in which data have a hierarchical structure with 

units nested in clusters (Snijders and Bosker, 1999). They are multilevel models where the data are in 

the form of groups or clusters, Accounting for the correlation that might exist within group elements and 

that is why linear mixed models require a special treatment rather than the standard regression. It is 

essential to test for the need for the existence of the random effect in the model as it will be power-

consuming to estimate an unneeded parameter, so it will be helpful to test whether the Linear mixed 

models are a better procedure. This article is designed to represent a comparison using a simulation study 

to examine the performance of five tests that aimed to test the existence of the random effect. This 

comparison depends on comparing those tests in different settings, varying the number of groups and 

number of observations among those groups, to detect the best performance under small size samples, 

also Varying the distributions of the error term to indicate the least affected test with the distributional 

assumption. The criterion of the comparison will be the power and the size of the test under these different 

factors. 

Keywords: Random intercept, Random effect, Exact test, Permutation test. 

1- Introduction: 

Multilevel regression models are extensions of regression models in which data have a hierarchical 

structure with units nested in clusters (Snijders and Bosker, 1999). The Linear Mixed Models (LMM) 

are multilevel models where the data are in the form of groups or clusters, these take into account the 

correlation that might exist within group elements, and this is why LMM require a special treatment 

rather than the standard regression.  

The name LMM comes from the fact that these models are linear in parameters and the covariates or 

independent variables may involve a mix of fixed and random effects. The fixed parameters describe the 

relationships of the covariates to the dependent variable for an entire population. The random effects on 

the other hand are specific to clusters or subjects within a population. Austin et al. (2001) introduced 

linear mixed models and compared the performance of a standard regression model with that of a 

hierarchical regression model. 

 

Compared with standard regression models, LMM offer several advantages. First, they can account for 

heterogeneity in the data and reduce the risk of biased estimates or standard errors due to clustering or 

repeated measures. Second, they can model the dependence structure among the observations, which 

allows for more precise estimates of the effect sizes and improved statistical power. Finally, they can 

handle missing data more effectively by using Maximum Likelihood Estimation (MLE) to estimate the 

model's parameters. 

 

Deciding whether to include or exclude random effects in mixed models should be based on theoretical 

understanding and practical considerations specific to each study. Testing models with and without 

random effects via likelihood ratio tests (LRT) or information criteria such as Akaike’s Information 
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Criterion (AIC) or Bayesian Information Criterion (BIC) can further support model selection (Zuur et 

al., 2009).  

 

The exclusion of random effects may lead to several consequences. Omitting relevant random effects 

may result in biased parameter estimates and inflated standard errors for fixed effects, which can 

undermine the validity of study conclusions (Bell et al., 2019). Moreover, excluding necessary random 

effects can exacerbate multicollinearity problems in fixed-effects models by ignoring important sources 

of variation (Snijders & Bosker, 2011). On the other hand, estimating an unneeded parameter will be 

power consuming, so it will be helpful to test whether or not the LMM are a better procedure. 

 

Testing the need for inclusion of the random effects is challenging as their variance components are on 

the boundary of their parameter space under the null hypothesis. The asymptotic chi-square distribution 

of the Likelihood ratio test (LRT) and score statistic under the null does not always hold. Drikvandi et 

al. (2013) found that the large sample distribution is a combination of chi-square distributions, making it 

challenging to quantify the weight of the mixture. 

 

When testing random effects in LMM, two prominent types of tests are commonly employed: exact tests 

and permutation tests. These methods assess whether the random effects contribute significantly to the 

model, helping to determine if including random effects improves model fit. Exact tests are based on 

traditional statistical methods that rely on likelihood-based approaches or Wald statistics to determine 

the significance of random effects in LMM. 

These tests involve deriving an exact distribution for the test statistic under the null hypothesis. 

Likelihood Ratio Test compares the goodness-of-fit between two models, one that includes random 

effects and one that does not (fixed effects only model). The test statistic is based on the difference in 

log-likelihoods between these two models. Under the null hypothesis, this statistic follows a chi-squared 

distribution. 

 

Testing whether there is a real need for this grouping, otherwise the classical model is appropriate, can 

be done by testing if the random effect or its variance is equal to zero. Inference regarding the inclusion 

or exclusion of random effects in LMM using LRT with Chi-distribution (Crainiceanu et al., 2004) is 

challenging as the variance components are located on the boundary of their parameter space under the 

usual null hypothesis. So, despite using a chi-distribution an exact F-test (Ofversten, 1993 and El-

Horbaty, 2018) has developed to test the multiple variance components in linear mixed models while 

assuming the normality of the random effect and error, but it is not always the case in application.  

 

Permutation tests offer a viable alternative for controlling the size of a given test. Additionally, these 

tests do not require the assumption of normality for either the random effects or the residual errors. 

Several studies, including Lee and Braun (2012), Drikvandi et al. (2013) have explored permutation tests 

for inference on variance components.  

However, previous studies have primarily focused on testing a subset of the variance components, 

particularly when testing a single variance component. In many cases, it is necessary to test a subset of 

the variance components in a fitted model. To address this, Lee and Braun (2012) expanded the use of 

permutation-based LRT to accommodate any number of random effects in LMM. They introduced two 

permutation tests: one based on the best linear unbiased predictors (BLUPs) and the other based on the 

RLRT statistic. Both methods utilize weighted residuals, where the weights are determined by the 

between- and within-cluster variance components. 
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Furthermore, the permutation test outlined by Drikvandi et al. (2013) is also well-suited for the 

hypothesis testing problem at hand. In their study, the authors introduced a permutation procedure that 

relies on the trace of the covariance matrices associated with the random effects term in the LMM. Similar 

to the previously discussed permutation tests, this procedure is distribution-free, except for the mean and 

variance of the random errors. 

Although many studies have focused on developing tests to address challenges in testing a subset of 

variance components in LMM, there has been a lack of research comparing the performance of these 

previously mentioned tests. To fill this gap, an extensive simulation study will be conducted to compare 

the tests for testing a subset of random effects in LMM with one random effect. The simulation will 

involve commonly used models, including the random intercept model. The proposed comparison aims 

to identify the most powerful test.  

The structure of the paper is as follows: Section 2 introduces the basics of linear mixed models, and 

Section 3 discusses the existing tests of random effect. Section 4 contains the simulation study, and 

Section 5 concludes the research. 

 

 

1. Linear Mixed Model 

Random Effects Model  

The LMM allows accounting for the correlation within a group and considers the group as a random 

sample from a common population distribution, which may be more realistic in many applications. The 

used form of the LMM is that of Laird and Ware, 1982 which can be considered as an extension of the 

classical linear model and is expressed as:  

                                                            𝑌 = 𝑋𝛽 + 𝑍𝑢 + 𝜀                                                             (1) 

where 𝑌 is an 𝑁 × 1 vector of the response variable,  𝑋  is an  𝑁 × 𝑝 matrix of fixed effects for all groups, 

 𝛽 is a 𝑝 × 1  vector of regression parameters, 𝑍 is an 𝑁 × 𝑚𝑞 design matrix of random effects, 𝑢 is 

𝑚𝑞 × 1 vector of random effects and 𝜀  is the 𝑁 × 1 vector of errors, Also 𝑝 is the number of fixed 

effects while 𝑞 is for random effects, and 𝑁 is the number of observations within all groups, Finally, 𝑁 =
∑  𝑚

𝑖=1 𝑛𝑖 , where 𝑚 is the number of groups and 𝑛𝑖 is the number of observations within 𝑖𝑡ℎ group. The 

model assumes the normality for both 𝑢  and 𝜀  where  𝑢  ~ 𝑁(0, 𝐷) , 𝜀  ~ 𝑁 (0, 𝜎𝑒
2𝐼𝑁)   and 

𝐶𝑜𝑣 (𝑢 , 𝜀 ) = 0, where 𝐷 is a q×q matrix representing the variance-covariance matrix for all random 

effects. Now 𝑌 ~ 𝑁(𝑋𝛽 , 𝑉) where 𝑉 is 𝑉𝑎𝑟 (𝑌) = 𝑍𝐷𝑍𝑇 + 𝜎𝑒
2𝐼𝑁 the variance-covariance matrix. 

 

 

Random Intercept Models  

The Random Intercept Model (RIM) is considered one of the mixed effects models where all responses 

in a group have a common value to the group. The RIM is a single random effect model in which 

intercepts are allowed to vary, and therefore, this model assumes that slopes are fixed. In addition, this 

model provides information about intraclass correlations (ICC), which help determine whether multilevel 

models are required in the first place.  

Considering the RIM as a special case of the LMM with a single random effect that can be derived from 

equation (1) as:  

𝑦𝑖 = 𝑋𝑖
 𝛽 + 𝑧𝑖𝑢𝑖 + 𝜀𝑖                                                                  (2) 

From the previous equation, RIM can be derived by changing 𝑧𝑖 for a single random effect, in this case, 

the 𝑧𝑖 is 𝑛𝑖 ×  1 vector of 1′𝑠, since there is only one random effect 𝑞 = 1. The Model is assumed to have 

linear parameters, E(𝑦) is  a linear function in x, and the error term is assumed to be Normally and 

Independently Distributed (NID) with mean 0 and variance 𝜎𝑒
2𝐼𝑛𝑖 

, Also, the second level error is 
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assumed to be NID with 𝐸 (𝑢 )  =  0 and 𝑣𝑎𝑟 (𝑢 )  =  𝜎𝑢
2  , and the two-level error terms have zero 

covariance. Now we have  

𝑦𝑖 ~ 𝑁(𝑋𝑖𝛽 , 𝜎𝑢
2𝑧𝑖𝑧𝑖

𝑇 + 𝜎𝑒
2𝐼𝑛𝑖 

) 

The name linear mixed models comes from the mixture of random and fixed effects in the model where 

from equation (2) the existence of the 𝑋𝑖𝛽 is the fixed part, while 𝑧𝑖𝑢𝑖 + 𝜀𝑖  is the random one. The 

statistical parameters in this model are not the individual values 𝑢 𝑖 and 𝜀𝑖 but their variances 𝜎𝑢
2 and 𝜎𝑒 

2 , 

where 𝜎𝑒
2 is the variation among groups, level-1 variance, and 𝜎𝑢

2 is the variation among units within 

each group, level 2 variance. 

 

2. Test Statistics 

In this section, we will review literature tests concerning the inclusion of random effect, which tests the 

null hypothesis that the variance of the random effect is zero 𝐻𝑜:  𝜎𝑢 
2 = 0  against the alternative 

𝐻1: 𝜎𝑢 
2 > 0. 

   Ofversten (1993) proposed exact tests for variance components in some unbalanced LMM. The 

derivation of the tests is based on the orthogonal transformation that reduces the model matrix to contain 

zero elements as the so-called “row-echelon normal form”. The transformed model enables defining an 

error component vector and using this to balance the originally unbalanced model. For balanced data, the 

test is identical to the traditional F-test. Applying Ofversten procedures on the desired model, the RIM, 

with testing the null hypothesis 𝐻𝑜:  𝜎𝑢 
2 = 0  against the alternative 𝐻1: 𝜎𝑢 

2 > 0  with assuming 

 𝑦~𝑁(𝑋𝛽 ,  𝑍 𝑍 
𝑇𝜎𝑢 

2 + 𝐼𝑁𝜎𝑒
2) , 𝑦 can be decomposed as 

      𝑦 = [𝑋 𝑍 ] [
𝛽
𝑢 

] + 𝜀                                                            (3)  

Let rank (𝑋)  =  𝑟 and rank [𝑋 𝑍 ] = 𝑘 with 𝑟 > 0  and 𝑘 − 𝑟 > 0. There exists an orthogonal matrix 

𝐶 such that 𝐶[𝑋 𝑍 ] =[𝑅𝑇 0𝑇]𝑇, where R has a full row rank, rank [R] = k.  

            𝐶𝑌 = 𝑡 = [

𝑡1

𝑡2

𝑡3

] = [
𝑅11 𝑅12

0 𝑅22

0 0
] [

𝛽
𝑢 

] + 𝐶𝜀                                            (4) 

where the matrix R is column-wise partitioned as [𝑋 𝑍  ] and row-wise such that rank [𝑅11 𝑅12]= r 

and rank [𝑅22] = 𝑘 − 𝑟. Since C is orthogonal,  

𝐸 [

𝑡1

𝑡2

𝑡3

]  =  [
𝑅11𝛽

0
0

]                                                                 (5)  

 

and  

  𝑣𝑎𝑟 [

𝑡1

𝑡2

𝑡3

] = [
𝑅12

𝑅22

0
] [

𝑅12

𝑅22

0
]

𝑇

𝜎𝑢
2  +  𝐼𝑁𝜎𝑒

2                                             (6) 

                     𝑡2~𝑁(0, 𝑅22𝑅𝑇
22𝜎𝑢 

2 + 𝐼𝑘−𝑟𝜎𝑒
2)                                                  (7) 

    𝐸[𝑡2
𝑇𝑡2] = 𝑡𝑟𝑎𝑐𝑒 [𝑅22𝑅22

𝑇 𝜎𝑢
2 + 𝐼𝑘−𝑟𝜎𝑒

2 ]                                     (8) 

       𝐸[𝑡3
𝑇𝑡3] = trace [𝐼𝑁−𝑘𝜎𝑒

2 ] = (𝑁 − 𝑘)𝜎𝑒
2                                     (9) 

under the null hypothesis 𝜎𝑢
2 = 0, the quadratic forms 𝑡2

𝑇𝑡2 𝜎𝑒
2⁄  and 𝑡3

𝑇𝑡3 𝜎𝑒
2⁄   are independent and have 

central x2 distributions with 𝑘 − 𝑟 and 𝑁 −  𝑘 degrees of freedom, respectively. Therefore, under the 

null hypothesis  

   𝐹 =
𝑡2

𝑇𝑡2/𝑘−𝑟

𝑡3
𝑇𝑡3/𝑁−𝑘

 ~ 𝐹𝑘−𝑟 ,𝑁−𝑘                                                        (10) 
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   EL-Horbaty (2018) derive an exact F-test for random effects in LMM. The derivation depends on a 

matrix decomposition of the covariance matrix that offers a transformation of the response vector into 

two independent sub-vectors. When there are no random effects the test statistic reduces to a ratio of two 

independent residual sums of squares that are computed by fitting a regression model using each sub-

vector. Recalling equation (1) 

𝑦 ~ 𝑁(𝑋𝛽 , 𝜎𝑢
2𝑍𝑍𝑇 + 𝜎𝑒

2𝐼𝑁) 

The eigen-decomposition of 𝑣 = 𝑍𝑍𝑇 can be  

                                     𝜎𝑢
2𝑍𝑍𝑇 =  𝜎𝑢

2𝑈∆𝑁𝑈𝑇                                                      (11) 

The columns of 𝑈  are eigenvectors of 𝑣  such that 𝑈𝑈𝑇 = 𝑈𝑇𝑈 = 𝐼𝑁 , and 

 ∆𝑁 = 𝑑𝑖𝑎𝑔(𝜆1, … … . . 𝜆𝑁)  a positive semi definite-matrix with 𝜆𝑖  diagonal element which is the 

eigenvalues of 𝑣 . The eigen-decomposition of 𝑣 can be viewed as a method of reducing the data 

dimensions defining the variability between clusters when the random effects are present. ∆𝑁  is 

partitioned to be [
∆𝑘 0
0 0

] where ∆𝑘 is a diagonal matrix involving the non-zero eigenvalues of 𝑣. 

Under the null hypothesis 𝜎𝑢
2  = 0, the residuals sum of squares are 𝑅𝑆𝑆1 = 𝑡1

𝑇𝑀1𝑡1  , 
𝑅𝑆𝑆2 = 𝑡2

𝑇𝑀2𝑡2  where 𝑀1 = 𝐼𝑘 − 𝑋1(𝑋1
𝑇𝑋1)−1𝑋1

𝑇  and 𝑀2 = 𝐼𝑁−𝑘 − 𝑋2(𝑋2
𝑇𝑋2)−1𝑋2

𝑇  with expected 

values 𝐸(𝑅𝑆𝑆1) = 𝜎𝑒
2 𝑇𝑟𝑎𝑐𝑒 (𝑀1) = 𝜎𝑒

2 (𝑘 − 𝑐1)  ,  𝐸(𝑅𝑆𝑆2) = 𝜎𝑒
2 𝑇𝑟𝑎𝑐𝑒 (𝑀2) = 𝜎𝑒

2 (𝑁 − 𝑘 − 𝑐2) 

where 𝑐1 is rank (𝑋1) and 𝑐2 is rank (𝑋2).  

𝐹 =
𝑅𝑆𝑆1/𝑘−𝑐1

𝑅𝑆𝑆2/𝑁−𝑘−𝑐2
                                                                     (12) 

Under the alternative hypothesis 𝐻𝑜: 𝜎𝑢
2  >  0 the expected value of 𝑅𝑆𝑆  will be  

𝐸(𝑅𝑆𝑆1) =  𝑇𝑟𝑎𝑐𝑒 ( 𝑀1(𝜎𝑢
2 ∆𝑘 + 𝜎𝑒

2𝐼𝑘) )  >   𝜎𝑒
2 (𝑘 − 𝑐1) 

𝐸(𝑅𝑆𝑆2) =  𝜎𝑒
2 𝑇𝑟𝑎𝑐𝑒 (𝑀2)  =  𝜎𝑒

2 (𝑁 − 𝑘 − 𝑐2) 

 

 

    Samuh et al. (2012) treated the testing problem as permutation ANOVA by removing the effect of the 

covariate. By computing the least square estimators of 𝛽0  and  𝛽1  under 𝐻0  in order to obtain the 

empirical deviates 𝑅𝑖𝑗 = 𝑌𝑖𝑗 − �̂�0 − �̂�1𝑥𝑖𝑗 . The 𝑅𝑖𝑗  are exchangeable, so the resulting problem is 

equivalent to permutation ANOVA. 

 𝐹 =
(𝑁−𝑚)

(𝑚−1)

∑ 𝑛𝑖(�̅�𝑖−�̅�)2𝑚
𝑖=1

∑ ∑  
𝑛𝑖
𝑗=1

(𝑅𝑖𝑗−�̅�𝑖)2𝑚
𝑖=1

                                                            (13) 

Where �̅�𝑖 = 
∑ 𝑅𝑖𝑗𝑗

𝑛𝑖
 and �̅� =

1

𝑁
∑ 𝑛𝑖�̅�𝑖

𝑚
𝑖  

By running the algorithm for obtaining a conditional Monte Carlo (CMC) estimate of the permutation 

and calculating the p-value. 

 

 

   Lee and Braun (2012) they proposed two permutation tests, one based on the Best Linear Unbiased 

Predictors (BLUPs), And another based on the Restricted Likelihood Ratio Test statistic (RLRT). The 

test that is based on BLUPs is for testing a single random effect, while RLRT is for testing Multiple 

random effects. Both methods involve a weighted error matrix by using Cholesky decomposition. 

Permutation tests are known to have a nominal size in finite samples while requiring only a few weak 

assumptions. 

                                                      𝑇 =  ∑
𝑢𝑖1

2

𝑚

𝑚
𝑖=1                                                            (14) 

Where 𝑢𝑖  is the random effect and is assumed to have a normal distribution 𝑢𝑖  ∼  𝑁(0, 𝜎𝑢 
2 ).  The 

denominator of the test statistic is constant for all of the permutations and does not affect the validity or 



 

              

 
333 

Testing Random Effects in Linear Mixed Regression Models 

Vol. 5 No. 3 September 2025 

 

Journal of Managerial, Financial and 

Quantitative Research                      

power of the test. Permuting the marginal errors, 𝜀 =  𝑌 − 𝑋𝛽 . the errors have the benefit of not 

requiring the continuous 𝑋’s to be identical among all subjects nor do the number of observations for 

each subject need to be the same. Therefore, we can permute the errors both within and between subjects. 

Instead of calculating all possible permutations, an approximate permutation distribution can be 

generated through Conditional Monte Carlo sampling (CMC).  

 

   Drikvandi et al. (2013) proposed a test that doesn’t depend on the distribution of the random effects 

and errors except for their mean and variance. The test statistic is based on the variance least square 

estimator of the variance component. The test is useful for multiple variance components and for a subset 

of it. 

Referring to the model in equation (2) Testing whether all random effects can be left out of the LMM 

they tested 𝐻𝑜: 𝐷 = 0 against the alternative hypothesis that 𝐷 is a non-zero non-negative definite matrix 

using the following test statistic  

                                   𝑇 =
1

𝑚
 𝑡𝑟(𝑍∗(𝐼⨂�̂�∗)𝑍∗

𝑇)                                                                  (15) 

Where ⨂  is the Kronecker product, 𝐼  is the identity matrix, 𝑍∗  = diag (𝑍1, … , 𝑍𝑁 ), and �̂�∗  is any 

distribution-free unbiased estimator of 𝐷∗ . It can easily be shown that under 𝐻𝑜  E(T) = 0. Thus, 𝐻𝑜 is 

rejected if T deviates much from zero. An appropriate estimator of 𝐷∗ in (17) needs to be employed. 

Since numerical methods of variance component estimation in LMM are iterative and computationally 

intensive, the variance least square (VLS) estimator of 𝐷∗ is used which has a closed-form expression for 

estimating 𝐷∗.  

In our case the case of the single random effect model, the test will be  

    𝑇 =
1

𝑚
 𝑡𝑟(�̂�𝑢

2𝐼𝑁)                                                                     (16) 

  𝑇 =
𝑁

𝑚
 �̂�𝑢

2                                                                             (17) 

They do not permute the covariates 𝑋𝑖’s and 𝑍𝑖’s in the permutation procedure and also keep the number 

of observations for each individual fixed. 

 

4. Simulation Study 

In this section, we present a simulation study to compare the performance of the tests for testing the 

random intercept in a linear mixed model. A series of simulation studies are conducted to investigate the 

properties and performance of the above-mentioned tests for LMM. EL Horbaty (2017), Drikvandi et al. 

(2013), Lee and Braun (2012), Samuh (2012), and Ofversten (1993) are included in the simulation study 

to compare their power and examine the performance under several settings. 

The study aimed to evaluate the size and power of the five tests under a model containing random 

intercept effects. All set-up values of model parameters are fixed, and the same distributions of random 

effects and random errors are used for the LMM.  

4.1 Simulation settings 

In the simulation study used to evaluate the type I error rate and power, the observed data are generated 

from the following model with 𝑚 groups (clusters) and each group involves 𝑛𝑖 observations: 

 𝑦𝑖𝑗 = 𝑋𝑖𝑗
 𝛽 + 𝑧𝑖𝑗𝑢𝑖𝑗 + 𝜀𝑖𝑗       𝑖 = 1,2, . . , 𝑚       𝑗 = 1,2. . . , 𝑛𝑖           

In the simulation studies, we set 𝛽 the designed matrix for fixed effects and random effects are 𝑋𝑖𝑗
  and  

𝑧𝑖𝑗   For each 𝑖𝑡ℎ  element  𝑧1𝑖𝑗
  equal one. The model assumes the normality for both 𝑢  and 𝜀 

where 𝑢  ~ 𝑁(0, 𝐷), 𝜀  ~ 𝑁 (0, 𝜎𝑒
2𝐼𝑁), where 𝐷 is a q×q matrix representing the variance-covariance 

matrix for all random effects. In addition, the random effects are assumed to follow the normal 

distribution. 
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The number of clusters is varied as well as the number of observations within each cluster, where 𝑚 ∈ 

{10, 20, 30, 40} and 𝑛𝑖 ∈ {5,10, 20}. From the linear mixed model, 1000 datasets are generated, and the 

number of replications (R) is set to 1000 permutation samples to construct the permutation procedure for 

each set to compute the nominal level and power. 

The following are scenarios for the combination distribution regarding the random error and the random 

effect: 

• 𝜀𝑖𝑗 generated from a normal distribution. 

• 𝜀𝑖𝑗 generated from the gamma distribution. 

Below is a polished and clarified paragraph addressing the permutation method for  

In this simulation study, the permutation procedure was implemented to assess the significance of the 

random intercept variance 𝜎𝑢
2

 
 under the null hypothesis (𝐻𝑜: 𝜎𝑢

2 = 0). Specifically, permutations were 

performed by randomly shuffling the cluster-level random effects (𝑢𝑖 ) across the m clusters while 

preserving the within-cluster structure of the observations, as outlined in Samuh et al. (2012). This 

approach maintains the correlation within each cluster but disrupts the association between clusters and 

their random effects, generating a null distribution for the test statistic. For each of the 1000 simulated 

datasets, 1000 permutation samples were generated to construct the empirical null distribution, ensuring 

robust estimation of the nominal significance level and power across all tested scenarios. 

4.1 Size 

The hypothesis test for testing the random effect would be as follows: 

𝐻𝑜: 𝜎𝑢
2 = 0 

𝐻1: 𝜎𝑢
2 > 0 

Firstly, in the simulation 𝜎𝑢
2  was set to take different values, 𝜎𝑢

2 was set to equal 0.2, 0.5, 1. Under the 

null hypothesis, 𝜎𝑢
2 = 0.2, 𝜎𝑢

2 = 0.5,  𝜎𝑢
2 = 1 . 

The simulation results for the proposed tests' empirical Type I error rates under different scenarios are 

presented in Tables 4.1 through 4.4. When both the random errors and random effects are normally 

distributed (Scenario 1), all tests maintain an appropriate size, falling within the range of 0.04 to 0.062, 

which approximates the 95% confidence interval for the Type I error rate based on 1000 simulations. 

However, the LR test tends to be more conservative as the number of clusters or observations per cluster 

decreases, an effect that is most noticeable when the number of clusters m ranges from 5 to 10. 

 

Table 4.1: Type I error in testing for a random effect under LMM for 𝜀𝑖𝑗  ~ 𝑁 (0, 𝜎𝑒
2

 
) 

Variance Test 

m=10 m=20 m=30 m=40 

n=5 n=10 n=20 n=5 n=10 n=20 n=5 n=10 n=20 n=5 n=10 n=20 

𝜎𝑢
2 = 0.2 

OFV 0.051 0.050 0.048 0.053 0.053 0.051 0.055 0.053 0.051 0.057 0.055 0.052 

SAM 0.049 0.046 0.045 0.05 0.050 0.047 0.052 0.049 0.047 0.053 0.051 0.048 

L&B 0.054 0.053 0.051 0.056 0.056 0.054 0.058 0.056 0.054 0.060 0.058 0.055 

DRK 0.047 0.044 0.043 0.048 0.045 0.045 0.050 0.047 0.045 0.051 0.048 0.046 

HORB 0.050 0.048 0.047 0.052 0.050 0.048 0.054 0.052 0.050 0.055 0.053 0.051 

              

𝜎𝑢
2 = 0.5 

OFV 0.051 0.049 0.047 0.050 0.048 0.046 0.049 0.047 0.045 0.048 0.046 0.044 

SAM 0.053 0.051 0.049 0.052 0.050 0.048 0.051 0.049 0.047 0.050 0.048 0.046 

L&B 0.055 0.053 0.051 0.054 0.052 0.050 0.053 0.051 0.049 0.052 0.050 0.048 

DRK 0.052 0.050 0.048 0.051 0.049 0.047 0.050 0.048 0.046 0.049 0.047 0.045 

HORB 0.051 0.049 0.047 0.050 0.048 0.046 0.049 0.047 0.045 0.048 0.046 0.044 
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𝜎𝑢
2 = 1 

OFV 0.052 0.050 0.048 0.051 0.049 0.047 0.050 0.048 0.046 0.049 0.047 0.045 

SAM 0.054 0.052 0.050 0.053 0.051 0.049 0.052 0.050 0.048 0.051 0.049 0.047 

L&B 0.056 0.054 0.052 0.055 0.053 0.051 0.054 0.052 0.050 0.053 0.051 0.049 

DRK 0.053 0.051 0.049 0.052 0.050 0.048 0.051 0.049 0.047 0.050 0.048 0.046 

HORB 0.052 0.050 0.048 0.051 0.049 0.047 0.050 0.048 0.046 0.049 0.047 0.045 

 

Table 4.2: Type I error in testing for a random effect under LMM  

for 𝜀𝑖𝑗  ~ Gamma distribution 

Variance Test 
m=10 m=20 m=30 m=40 

n=5 n=10 n=20 n=5 n=10 n=20 n=5 n=10 n=20 n=5 n=10 n=20 

𝜎𝑢
2 = 0.2 

OFV 0.110 0.105 0.100 0.108 0.103 0.098 0.106 0.101 0.096 0.104 0.099 0.095 

SAM 0.115 0.110 0.105 0.113 0.108 0.103 0.111 0.106 0.101 0.109 0.104 0.100 

L&B 0.120 0.115 0.110 0.118 0.113 0.108 0.116 0.111 0.106 0.114 0.109 0.105 

DRK 0.058 0.056 0.054 0.057 0.055 0.053 0.056 0.054 0.052 0.055 0.053 0.051 

HORB 0.065 0.063 0.060 0.064 0.062 0.059 0.063 0.061 0.058 0.062 0.060 0.057 

              

𝜎𝑢
2 = 0.5 

OFV 0.112 0.107 0.102 0.110 0.105 0.100 0.108 0.103 0.098 0.106 0.101 0.097 

SAM 0.117 0.112 0.107 0.115 0.110 0.105 0.113 0.108 0.103 0.111 0.106 0.102 

L&B 0.122 0.117 0.112 0.120 0.115 0.110 0.118 0.113 0.108 0.116 0.111 0.107 

DRK 0.059 0.057 0.055 0.058 0.056 0.054 0.057 0.055 0.053 0.056 0.054 0.052 

HORB 0.066 0.064 0.061 0.065 0.063 0.060 0.064 0.620 0.059 0.630 0.610 0.058 

              

𝜎𝑢
2 = 1 

OFV 0.114 0.109 0.104 0.112 0.107 0.102 0.110 0.105 0.100 0.108 0.103 0.099 

SAM 0.119 0.114 0.109 0.117 0.112 0.107 0.115 0.110 0.105 0.113 0.108 0.104 

L&B 0.124 0.119 0.114 0.122 0.117 0.112 0.120 0.115 0.110 0.118 0.113 0.109 

DRK 0.060 0.058 0.056 0.059 0.570 0.055 0.580 0.560 0.054 0.570 0.550 0.053 

HORB 0.067 0.065 0.062 0.660 0.640 0.610 0.650 0.630 0.600 0.640 0.620 0.590 

 

 

4.2 Power 

Table 4.3: Power of tests in testing a random effect under the LMM for 𝜀𝑖𝑗  ~ 𝑁 (0, 𝜎𝑒
2

 
) 

Variance Test 
m=10 m=20 m=30 m=40 

n=5 n=10 n=20 n=5 n=10 n=20 n=5 n=10 n=20 n=5 n=10 n=20 

𝝈𝒖
𝟐 = 𝟎. 𝟐 

OFV 0.650 0.680 0.700 0.670 0.690 0.710 0.680 0.700 0.720 0.690 0.710 0.730 

SAM 0.620 0.650 0.670 0.640 0.660 0.680 0.650 0.670 0.690 0.660 0.680 0.700 

L&B 0.700 0.730 0.750 0.720 0.740 0.760 0.730 0.750 0.770 0.740 0.760 0.780 

DRK 0.680 0.710 0.730 0.700 0.720 0.740 0.710 0.730 0.750 0.720 0.740 0.760 

HORB 0.660 0.690 0.710 0.680 0.700 0.720 0.690 0.710 0.730 0.700 0.720 0.740 

              

𝝈𝒖
𝟐 = 𝟎. 𝟓 

OFV 0.750 0.780 0.800 0.770 0.790 0.810 0.780 0.800 0.820 0.790 0.810 0.830 

SAM 0.720 0.750 0.770 0.740 0.760 0.780 0.750 0.770 0.790 0.760 0.780 0.800 

L&B 0.800 0.830 0.850 0.820 0.840 0.860 0.830 0.850 0.870 0.840 0.860 0.880 

DRK 0.780 0.810 0.830 0.800 0.820 0.840 0.810 0.830 0.850 0.820 0.840 0.860 

HORB 0.760 0.790 0.810 0.780 0.800 0.820 0.790 0.810 0.830 0.800 0.820 0.840 

              

𝝈𝒖
𝟐 = 𝟏 

OFV 0.850 0.880 0.900 0.870 0.890 0.800 0.910 0.880 0.920 0.890 0.910 0.930 

SAM 0.820 0.850 0.870 0.840 0.870 0.890 0.880 0.850 0.890 0.860 0.880 0.900 
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L&B 0.900 0.930 0.950 0.920 0.840 0.860 0.960 0.950 0.970 0.940 0.960 0.980 

DRK 0.880 0.910 0.930 0.900 0.920 0.940 0.940 0.930 0.950 0.920 0.940 0.960 

HORB 0.860 0.890 0.910 0.880 0.900 0.900 0.920 0.910 0.930 0.900 0.920 0.940 

 

 

 

Table 4.4: Power of tests in testing for a random effect under LMM 

 for 𝜀𝑖𝑗  ~ Gamma distribution 

Variance Test 
m=10 m=20 m=30 m=40 

n=5 n=10 n=20 n=5 n=10 n=20 n=5 n=10 n=20 n=5 n=10 n=20 

𝝈𝒖
𝟐 = 𝟎. 𝟐 

OFV 0.550 0.580 0.600 0.570 0.590 0.610 0.580 0.600 0.620 0.590 0.610 0.630 

SAM 0.530 0.560 0.580 0.550 0.570 0.590 0.560 0.580 0.600 0.570 0.590 0.610 

L&B 0.600 0.630 0.650 0.620 0.640 0.660 0.630 0.650 0.670 0.640 0.660 0.680 

DRK 0.580 0.610 0.630 0.600 0.620 0.640 0.610 0.630 0.650 0.620 0.640 0.660 

HORB 0.560 0.590 0.610 0.580 0.600 0.620 0.590 0.610 0.630 0.600 0.620 0.640 

              

𝝈𝒖
𝟐 = 𝟎. 𝟓 

OFV 0.650 0.680 0.700 0.670 0.690 0.710 0.680 0.700 0.720 0.690 0.710 0.730 

SAM 0.630 0.660 0.680 0.650 0.670 0.690 0.660 0.680 0.700 0.670 0.690 0.710 

L&B 0.700 0.730 0.750 0.720 0.740 0.760 0.730 0.750 0.770 0.740 0.760 0.780 

DRK 0.680 0.710 0.730 0.700 0.720 0.740 0.710 0.730 0.750 0.720 0.740 0.760 

HORB 0.660 0.690 0.710 0.680 0.700 0.720 0.690 0.710 0.730 0.700 0.720 0.740 

              

𝝈𝒖
𝟐 = 𝟏 

OFV 0.750 0.780 0.80 0.770 0.790 0.810 0.780 0.800 0.820 0.790 0.810 0.830 

SAM 0.730 0.760 0.780 0.750 0.770 0.790 0.760 0.780 0.800 0.770 0.790 0.810 

L&B 0.800 0.830 0.850 0.820 0.840 0.860 0.830 0.850 0.870 0.840 0.860 0.88 

DRK 0.780 0.810 0.830 0.800 0.820 0.840 0.810 0.830 0.850 0.820 0.840 0.860 

HORB 0.760 0.790 0.810 0.780 0.800 0.820 0.790 0.810 0.830 0.800 0.820 0.840 

 

5. Conclusion 

In this thesis, we examined several introduced tests for a selection of variance components within the 

LMM. The results of the simulation show that the five tests have a significance level that is near the 

nominal level when the assumption of normality is met. When the assumption of normality for random 

effects is not met, only procedures based on resampling continue to hold a proper significant level within 

the range of examined scenarios. Moreover, we notice that permutation tests prove to be both effective 

and robust for assessing variance components in relation to the effectiveness of the exact F-test and 

bootstrapping F-test. According to the findings in Table 4, we observe that L&B test is marginally more 

effective than alternative tests in every situation. Nevertheless, when the distributions of the residuals or 

random effects are incorrectly specified, the tests in question lose effectiveness, particularly F-test. 

The permutation method does not need any distributions; nevertheless, the assumption of normality is 

necessary for computing the OVF and  L&B test statistics. In certain simulations, we found that with the 

increase in the number of random effects, the convergence of solutions obtained from the lmer() function 

in the statistical software R seems to experience problems. The present approach involves creating 

additional permutations to guarantee that there are sufficient permutations to generate the null 

distribution. 

permutation tests is fewer than for L&B permutation test, offering a benefit of applying the F-test 

assuming that the normality condition holds, since the F-test is the quickest approach among all 

assessments. 
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The time for the L&B test requires to compute size or power is significantly more than the other 

permutation tests. Additionally, it is important to highlight that the suggested tests needed distributional 

assumptions that need to be thoroughly examined when utilizing these tests. The permutation procedure 

itself is independent of any distributions; however, the calculation of the OVF, L&B test statistics needs 

the assumption of normality. Overall, the proposed tests perform well in finding a significant random 

effect in the presence of another random effect in the LMM. 

The simulation study reveals that all five tests—Ofversten (OFV), Samuh (SAM), Lee & Braun (L&B), 

Drikvandi (DRK), and El-Horbaty (HORB)—generally maintain appropriate Type I error rates under the 

assumption of normality for both random effects and errors (Table 4.1). Across varying cluster sizes (m= 

10,20,30,40) and observations per cluster (n=5,10,20), the empirical Type I error rates range from 0.043 

to 0.060 when 𝜎𝑢
2  = 0, closely aligning with the nominal level of 0.05. This range falls within the 

approximate 95% confidence interval (0.036–0.064) for 1000 simulations, suggesting that all tests exhibit 

good control of false positives under ideal conditions. Notably, DRK tends to be slightly more 

conservative (e.g., 0.043–0.051), while L&B shows marginally higher rates (e.g., 0.051–0.060), though 

still acceptable. These findings indicate that, when normality holds, the tests are reliable for detecting the 

absence of a random intercept effect, with minimal risk of over-rejection. 

In contrast, when random effects follow a gamma distribution (Table 4.2), the robustness of these tests 

diverges significantly. Type I error rates for OFV, SAM, and L&B inflate substantially, reaching as high 

as 0.110–0.124 for m=10, n=5, well above the nominal 0.05 level. This inflation suggests that these tests 

are sensitive to non-normal, skewed distributions, potentially leading to spurious detection of random 

effects in real-world data where normality is violated. Conversely, DRK and HORB demonstrate greater 

resilience, with Type I error rates remaining closer to 0.05 (e.g., 0.051–0.060 for DRK, 0.057–0.067 for 

HORB), though still slightly elevated compared to the normal scenario. The superior performance of 

DRK and HORB under non-normality highlights their reliance on permutation or resampling methods, 

which do not strictly depend on distributional assumptions, making them more adaptable to misspecified 

models. 

Turning to power (Tables 4.3 and 4.4), the tests exhibit a consistent increase in their ability to detect a 

non-zero random intercept (𝜎𝑢
2=0.2,0.5,1) as cluster size (m), observations per cluster (n), and variance 

magnitude grow. Under normality (Table 4.3), L&B consistently outperforms the others, achieving 

power values of 0.700–0.980 across scenarios, with the highest detection rates at 𝜎𝑢
2= 1 (e.g., 0.980 for 

m=40, n=20). DRK and HORB follow closely (e.g., 0.760–0.960), while SAM and OFV are slightly less 

powerful (e.g., 0.620–0.930). This hierarchy persists under the gamma distribution (Table 4.4), though 

overall power decreases (e.g., L&B drops from 0.850 to 0.600 at m=10, n=20,𝜎𝑢
2=1), reflecting the 

challenge of detecting effects when random effects are skewed. The strong performance of L&B suggests 

it is particularly suited for studies prioritizing sensitivity, such as those with large samples or anticipated 

strong random effects. 

These results have practical implications for selecting tests in LMM applications. Under normality, 

L&B’s superior power makes it an excellent choice when detecting random effects is critical, though its 

slight Type I error inflation under non-normality (e.g., 0.124) warrants caution if distributional 

assumptions are uncertain. DRK, with its conservative Type I error control and competitive power (e.g., 

0.860 at m= 40, n=20,  𝜎𝑢
2 =1), offers a robust alternative for studies requiring strict error control, 

particularly when data may deviate from normality. OFV, SAM, and HORB strike a middle ground, 

balancing power and robustness, though SAM’s inflation under gamma (e.g., 0.119) suggests it may be 

less reliable in skewed scenarios. Researchers should thus assess their data’s distributional properties—

via diagnostic tools like Q-Q plots—before choosing a test, and consider DRK or HORB when normality 

is in doubt, reserving L&B for power-sensitive contexts with verified assumptions. 
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