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Abstract: 

This research explores the foundational structures and theoretical framework of 𝐴∞-algebras and 

𝕃∞-algebras within the wider setting of homological algebra and higher category theory. These 

"infinity" algebras extend classical associative and Lie algebras by encoding operations that 

satisfy generalized coherence relations up to homotopy. Their flexible and homotopically rich 

structure provides a unifying language for dealing with complex algebraic phenomena that are 

not accessible through traditional means. 

The study begins by reviewing some definitions and algebraic properties of 𝐴∞- and 𝕃∞-

algebras, emphasizing their realization as differential graded structures governed by an infinite 

sequence of multilinear operations. This hierarchy of operations is structured via higher 

associativity or higher Jacobi-type identities, which hold up to coherent homotopies. Operads 

are introduced as essential organizing tools that capture and formalize these intricate patterns of 

relations. 

The homological dimensions of these algebras are developed through constructions such as the 

bar complexes, as well as the theory of Maurer–Cartan elements, which serve as central objects 

in encoding deformations. A special emphasis is placed on Hochschild and Chevalley–Eilenberg 

cohomology, which classify extensions and control deformation theory in these settings. 

Furthermore, the notion of homotopy equivalence between infinity morphisms is investigated to 

understand equivalence classes of algebraic structures. This provides a natural framework for 

studying moduli problems and organizing higher algebraic invariants in a coherent way. 
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1. Introduction 

Homology theory is a fundamental branch of mathematics that studies algebraic structures 

associated with topological spaces, allowing for the classification and analysis of their 

properties. The origins of homology trace back to the 19th century when Bernhard Riemann 

investigated the connectivity of surfaces, laying the groundwork for what would later become 

algebraic topology. His work, particularly in relation to Green’s theorem, established that 

homologous curves produce  the same integral values, thus introducing a concept that would be 

extensively developed in the following decades (Hatcher, 2002). 

The formalization of homology as an algebraic tool began in the 20th century with an important 

work of Gerhard Hochschild, who introduced homology theory in the context of associative 

algebras over fields in 1945. Hochschild's contributions were essentialin establishing 

homological techniques to study algebraic structures, leading to the modern framework of 

homological algebra (Hochschild, 1945). Subsequently, Henri Cartan and Samuel Eilenberg 

extended homology theory to more general algebraic contexts, particularly in noncommutative 

rings and module categories. Their work introduced derived functors, such as Ext and Tor, 

which became indispensable tools in algebra and topology (Cartan, Eilenberg, 1956). 

A major advancement in homotopy theory came in the 1960s with Jim Stasheff’s introduction 

of 𝐴∞-spaces and 𝐴∞-algebras. Stasheff originally developed these concepts to study higher 

homotopy associativity in topological spaces, leading to the formulation of 𝐴∞-algebras as 

structures that generalize associative algebras by incorporating higher homotopy relations 

(Stasheff, 1963). These algebras play an essential role in areas such as derived algebraic 

geometry, category theory, and mathematical physics. The concept of 𝐴∞-operads further 

extends this framework, offering an approach to describing deformations in homotopy theory 

and enabling deeper connections between homological algebra and geometry (Loday & 

Vallette, 2012). 

Parallel to the development of 𝐴∞-algebras, the study of 𝕃∞-algebras (or strong homotopy Lie 

algebras) gained prominence due to their applications in deformation theory and mathematical 

physics. 𝐿∞-algebras, introduced in the 1990 and generalized Lie algebras by incorporating 

higher-order brackets that satisfy homotopy-invariant versions of the Jacobi identity (Lada 

&Stasheff, 1993). These structures arise in string field theory, where they govern the 

interactions of fields in a way that respects higher homotopy structures. Moreover, 𝕃∞-algebras 

are essential in Poisson geometry, derived brackets, and the study of deformation quantization, 
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linking them to modern research in theoretical physics and symplectic geometry (Kontsevich, 

2003). 

One of the most significant applications of 𝐴∞- and 𝕃∞-algebras lies in their role within 

homological mirror symmetry. Which introduced by Maxim Kontsevich in 1994, homological 

mirror symmetry conjectures a deep duality between the derived Fukaya category of a 

symplectic manifold and the derived category of coherent sheaves on a mirror complex variety. 

In this setting, 𝐴∞-categories and 𝐴∞-modules provide the necessary algebraic structures to 

describe the deformation theory of holomorphic objects, while 𝐿∞-algebras govern the 

deformation spaces of Poisson structures (Kontsevich, 1994). These ideas had major effects in 

both mathematics and theoretical physics, influencing the study of Calabi-Yau manifolds, Floer 

homology, and topological field theories. 

In addition to their theoretical importance, 𝐴∞- and 𝕃∞-algebras have found an applications in 

computational algebra, category theory, and even data analysis. The flexibility of these 

structures allows for the encoding of complex homotopy information in algebraic terms, 

enabling more accurate methods in homological computations and derived categories. The 

connection between these algebras and operadic structures has led to new insights into higher-

category theory, making them fundamental tools in modern mathematical research (Keller, 

2001). 

This paper aims to further explore 𝕃∞-algebras and their homological properties, particularly 

their applications in deformation theory and mathematical physics. Through this study, we seek 

to contribute to the broader understanding of homotopical and categorical algebra, emphasizing 

the deep connections between these advanced algebraic structures and their applications in 

topology, geometry, and physics. 

 

2. Hochschild of an infinity algebras 

This part provides definitions of an infinity algebras and the Hochschild homology theory for 

𝐴∞-algebras. 

A graded algebra is a module 𝐴 =⊕
𝑖∈ℤ

𝐴𝑖, where the unit 1 is in𝐴0, and the grading kept intact 

by multiplication. A map 𝜕: 𝐴 → 𝐴 with degree +1, where 𝜕2 = 0, defines a differential graded 

algebra. The degree of an element 𝑥 is written as either |𝑥| or 𝑑𝑒𝑔 𝑥. 

The classical operad in a multi-category 𝒞 includes: 
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• 𝒞0, which is the set of objects 𝑎, 𝑎1, 𝑎2, ⋯. 

• For each 𝑛 ∈ ℕ, the set of morphisms  𝐻𝑜𝑚(𝑎1,⋯ , 𝑎𝑛; 𝑎), 

• A composition map 𝛾𝑘1,...,𝑘𝑛 that combines morphisms as follows:  

(𝜃; 𝜃1, ⋯ , 𝜃𝑛) ↦ 𝜃 ∘ (𝜃1, ⋯ , 𝜃𝑛). 

𝐻𝑜𝑚(𝑎1, ⋯ , 𝑎𝑛; 𝑎) × 𝐻𝑜𝑚(𝑎11, ⋯ , 𝑎1𝑘1; 𝑎) × ⋯× 𝐻𝑜𝑚(𝑎𝑛1,⋯ , 𝑎𝑛𝑘𝑛; 𝑎)

→ 𝐻𝑜𝑚(𝑎𝑛1, ⋯ , 𝑎𝑛𝑘𝑛; 𝑎). 

The operad ensures that the composition is associative and has an identity, where each 

component 𝑎 has identity morphism 1𝑎 ∈ 𝐻𝑜𝑚(𝑎, 𝑎), this known as an operad (Mahmoud et 

al., 2024). 

The non-symmetric operad 𝐿 includes: 

• A sequence (ξ(𝑛))𝑛∈ℕ of unique 𝑛-ary operations on 𝜉. 

• A composition map 𝛾𝑘1,...,𝑘𝑛for integers 𝑛, 𝑘1, ⋯ , 𝑘𝑛which combines operations as: 

𝜉(𝑛) × 𝜉(𝑘1) ×···× 𝜉(𝑘𝑛) → 𝜉(𝑘1 +··· +𝑘𝑛), 

with composition (𝜃; 𝜃1, ⋯ , 𝜃𝑛) ↦ 𝜃 ∘ (𝜃1, ⋯ , 𝜃𝑛). 

For each identity 1 ∈ 𝜉(1), the operad satisfies: 

- Associativity: 𝜃 ∘ (𝜃1 ∘ (𝜃1,1, ⋯ , 𝜃1,𝑘1),⋯ , 𝜃𝑛 ∘ (𝜃𝑛,1, ⋯ , 𝜃𝑛,𝑘𝑛)) 

= (𝜃 ∘ (𝜃1, ⋯ , 𝜃𝑛)) ∘ (𝜃1,1, ⋯ , 𝜃1,𝑘1 , ⋯ , 𝜃𝑛,1, ⋯ , 𝜃𝑛,𝑘𝑛), 

- Unity:  𝜃 ∘ (1,⋯ ,1) = 𝜃 = 1 ∘ 𝜃. 

2.1 Definition 

In terms of the monoidal structure ∘, the operad is both a monad in the category 𝒞 and a monoid 

in the category 𝐸(𝒞). Specifically, the operad  𝜉 is an element of 𝐸(𝒞), which is represented 

by the functor 𝜉 ∶ 𝒞 → 𝒞. This functor includes the natural transformation maps 𝛾: 𝜉 ∘ 𝜉 → 𝜉 

and 𝑖: 𝐼 → 𝜉. Both of these maps satisfy the conditions for associativity and unity, as shown by 

the following commutative diagrams: 

𝜉 ∘ (𝜉 ∘ 𝜉) ≃ (𝜉 ∘ 𝜉) ∘ 𝜉
   𝛾⊗𝑖𝑑   
→     𝜉 ∘ 𝜉

 𝛾 ⊗ 𝑖𝑑 ↓ ↓  𝛾

𝜉 ∘ 𝜉
        𝛾       
→     𝜉

          ,

𝐼 ∘ 𝜉  𝑖⊗𝑖𝑑  
→    𝜉 ∘ 𝜉

   ↓ 𝛾
 𝜉

  𝑖𝑑⊗𝑖  
→       𝜉 ∘ I

 

In (Abo-Quota et al., 2023), has given that ℓ is a linear map and 𝒞 is a vector space, the 

composition ∘  of two endo-functors 𝜉, 𝜏 ∈ 𝐸(𝒞) can be written as: 

(𝜉 ∘ 𝜏)(ℓ) = 𝜉(𝜏(ℓ)),    (𝜉 ∘ 𝜏)(𝒞) = 𝜉(𝜏(𝒞)). 

≃ ≃ 
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Additional operations on endo-functors within 𝑉, such as direct sums and tensor products, can 

be described as: 

(𝜉 ⊗ 𝜏)(ℓ) = 𝜉(ℓ)⊗ 𝜏(ℓ), (𝜉 ⊗ 𝜏)(𝒞) = 𝜉(𝒞) ⊗ 𝜏(𝒞) 

and 

(𝜉 ⊕ 𝜏)(ℓ) = 𝜉(ℓ)⊕ 𝜏(ℓ), (𝜉 ⊕ 𝜏)(𝒞) = 𝜉(𝒞)⊕ 𝜏(𝒞). 

2.2 Definition  

Just as associative algebras are algebras over the naturally generated non-symmetric operad, 

𝐴∞-algebras are algebras over a specific non-symmetric operad 𝐴∞ (Karar et al., 2024). 

Let (𝐴,𝑚1, 𝑚2, ⋯ ), where 𝑚𝑘 ∈ 𝐻𝑜𝑚(𝐴⊗𝑘, 𝐴)and  𝑑𝑒𝑔𝑚𝑘 = 𝑘 − 2  define the 𝐴∞-algebras.  

The relation for 𝑛 = 1  can be written as: 

∑ (−1)𝑞𝑟+𝑝𝑚𝑘 (𝑖𝑑,⋯ , 𝑖𝑑⏟    
(𝑝)

, 𝑚𝑞 , 𝑖𝑑,⋯ , 𝑖𝑑⏟    
(𝑟)

) = 0
𝑘=𝑝+1+𝑟
 𝑛=𝑝+𝑞+𝑟
 𝑘,𝑞≥1

      , 𝑛 ≥ 1 

For a graded vector space 𝐴, the chain complex structure implies 𝑚1 ∘ 𝑚1 = 0, where 𝑑:=

−𝑚1 ∈ 𝐸𝑛𝑑−1(𝐴). Therefore, 𝐴⊗𝑛 represents the chain complex with the differential:  𝑑𝐴⊗𝑛 =

∑ (𝑖𝑑⊗𝑝 ⊗𝑑⊗ 𝑖𝑑⊗𝑟)𝑛=𝑝+1+𝑟 . 

Thus, the differential  𝜕 = [𝑑,−] = [−𝑚1, −] has a chain complex described by 

𝐻𝑜𝑚(𝐴⊗𝑛, 𝐴). The relation for 𝜕𝑚𝑛given by: 

𝜕𝑚𝑛 = −𝑚1(𝑚𝑛) + (−1)𝑛−2𝑚𝑛 ( ∑ (𝑖𝑑⊗𝑝 ⊗𝑚1 ⊗ 𝑖𝑑⊗𝑟)

𝑛=𝑝+1+𝑟

) 

and for 𝑛 ≥ 2, we have: 

𝜕𝑚𝑛 = ∑ (−1)𝑝+𝑞𝑟𝑚𝑘(𝑖𝑑
⊗𝑝 ⊗𝑚𝑞 ⊗ 𝑖𝑑⊗𝑟)

𝑛=𝑝+𝑞+𝑟
𝑘=𝑝+1+𝑟
k,q≥2

. 

Since the 𝐴∞-algebra is a chain complex (𝐴, 𝑑) equipped with operations 𝑚𝑛 ∈ 𝐻𝑜𝑚(𝐴⊗𝑛, 𝐴) 

for 𝑛 ≥ 2 with degree (𝑛 − 2), it shows that the graded operad 𝐴∞ is a non-symmetric 

differential operad, which properly handles the relations described. 
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2.3 Definition 

A graded vector space 𝕃, together with a degree-preserving anti-symmetric linear map 

[⋅,⋅]: 𝕃 ⊗ 𝕃 ⟶ 𝕃, defines a graded Lie algebra. The Lie bracket satisfies the Jacobi identity, 

given by: 

[𝑎, [𝑏, 𝑐]] = [[𝑎, 𝑏], 𝑐] ± (−1)|𝑎||𝑏|[𝑏, [𝑎, 𝑐]] = 0 ,    ∀ 𝑎, 𝑏, 𝑐 ∈ 𝕃  are homogeneous. 

If 𝕃 is ungraded, this leads to the standard concept of Lie algebras. Note that the derivation of 

graded algebras (𝕃, [⋅,⋅])simply given by [𝑥,⋅]. 

If the elementary algebras are Lie algebras that are graded, then the differential graded algebras 

referred to as differential graded Lie algebras. 

2.4 Definition 

In a graded Lie algebra (𝕃, [⋅,⋅], 𝑑), the element of degree 1 called the Maurer-Cartan element. 

The Maurer-Cartan equation given by: 

 (𝑎) +
1 

2
[𝑎, 𝑎] = 0. 

2.5 Definition 

𝕃∞-algebras are a combination of a graded vector space 𝕃 and anti-symmetric linear maps 

𝑙𝑘: 𝕃
⊗𝑘 → 𝕃 for higher degree brackets, where |𝑙𝑘| = 2 − 𝑘. For 1 ≤ 𝑘 < ∞, the generalized 

Jacobi identity given by: 

∑ ∑ (−1)𝑖(𝑗−1)𝑎(𝜎)

𝜎∈𝑆ℎ2,1
−1𝑖+𝑗=𝑛+1

, 𝑙𝑗(𝑙𝑖(𝑎1,⋯ , 𝑎𝑖), 𝑎𝑖+1, ⋯ , 𝑎𝑛) =  0, 

which holds for all 𝑛 ≥ 1 and homogeneous elements 𝑎1, ⋯ , 𝑎𝑛 ∈ 𝕃. 

2.6 Theorem (Noreldeen et al., 2024) 

For each  𝑝 ∈ ℤ, the anti-symmetric linear maps 𝑙: 𝒮⨂𝑛 → 𝒮 with degree (𝑝 − 𝑛 + 1) and the 

symmetric linear maps 𝛿: (𝒮 [1])⨂𝑛 → 𝒮 [1] with degree 𝑝 have a one-to-one correspondence, 

given by the formulas: 

𝑙 = ↑ ∘ 𝛿 ∘ ↓⨂𝑛, 𝛿 = (−1)
 𝑘(𝑘−1)

2 ↓ ∘ 𝑙 ∘ ↑⨂𝑛. 

Since 𝒮 is a graded vector space, let the differential 𝑑: 𝒮 → 𝒮 be a degree one linear map such 

that 𝑑2 = 0. The pair (𝒮, 𝑑) called a differential graded vector space. 

The linear map 𝑓: 𝒮 → 𝐻 preserves degree, and the differential graded vector spaces (𝒮, 𝑑) and 

(𝐻, 𝑑′) are homomorphisms if 𝑑′ ∘ 𝑓 = 𝑓 ∘ 𝑑. Chain complexes refer to differential graded 

vector spaces, and if (𝒮, 𝑑) is a chain complex, we define: 
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• when 𝑑(𝓈) = 0, 𝓈 ∈ 𝒮𝑛 is an 𝑛-cycle element. 

• when 𝓈 = 𝑑(ℎ), 𝑠 ∈ 𝒮𝑛−1 is an 𝑛-boundary for some ℎ ∈ 𝒮𝑛−1. 

The graded vector space: 

𝐻(𝒮) =
𝑘𝑒𝑟(𝑑)

𝑖𝑚(𝑑)
 

checks if the sequence is non-exact: 

… 
    𝑑    
←   𝒮𝑛−1

    𝑑    
←   𝒮𝑛

    𝑑  
←  𝒮𝑛+1

   𝑑   
←  … , 

which is called the homology of (𝒮, 𝑑) and is denoted by: 

𝐻𝑛(𝒮) =
𝑛 − 𝑐𝑦𝑐𝑙𝑒𝑠

𝑛 − 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠
 

the nth homology group (Kozae et al., 2022). 

2.7 Definition 

Recall that the degree one symmetric map 𝛿𝑘: 𝑆
𝑘(𝕃[1]) → 𝐿[1] is equivalent to the 

degree (2 − 𝑘) anti-symmetric map 𝑙𝑘: 𝕃
⊗𝑘 → 𝕃, where 𝑙𝑘 =↑∘ 𝛿𝑘 ∘↓

⊗𝑘. 

Next, the generalized Jacobi identity for the 𝕃∞-structure expressed as: 

∑ ∑ (−1)𝑖(𝑗 − 1)𝑎(𝜎)

𝜎∈𝑆ℎ2,1
−1𝑖+𝑗=𝑛+1

𝑙𝑗(𝑙𝑖(𝑎1,⋯ , 𝑎𝑖), 𝑎𝑖+1, ⋯ , 𝑎𝑛) = 0 

In terms of the 𝛿𝑘-sections, the 𝕃∞-structure of 𝕃 in the symmetric bracket parts described by: 

∑ ∑ (−1)(𝑗−1)𝑖𝑙𝑗(𝑙𝑖 ⊗ 𝑖𝑑𝕃
⊗(𝑗−1)

)�̂�(Ω) = 0

Ω∈𝑆ℎ𝑖,𝑛−𝑖
−1𝑗+𝑖=𝑛+1 

, 

This is equivalent to the following expression with isomorphisms ↓ and ↑⊗𝑛: 

0 = (−1)
𝑛(𝑛−1)

2 ∑ ∑ (−1)(𝑗−1)𝑖 ↓∘ 𝑙𝑗 (𝑙𝑖 ⊗ 𝑖𝑑𝕃
⊗(𝑗−1)

) �̂�(Ω) ∘↑⊗𝑛

Ω∈𝑆ℎ𝑖,𝑛−𝑖
−1𝑗+𝑖=𝑛+1

 

By substituting 𝛿𝑗for 𝑙𝑖, this becomes: 

= (−1)
𝑛(𝑛−1)

2 ∑ ∑ (−1)(𝑗−1)𝑖𝛿𝑗 ∘↓
⨂𝑗 (𝑙𝑖 ⊗ 𝑖𝑑𝕃

⊗(𝑗−1)
) ↑⊗𝑛∘ 𝜀̂(Ω)

Ω∈𝑆ℎ𝑖,𝑛−𝑖
−1𝑗+𝑖=𝑛+1

 

Finally, this leads to: 

= (−1)
𝑛(𝑛−1)

2 ∑ ∑ 𝛿𝑗((↓∘ 𝑙𝑖) ⊗  ↓⊗(𝑗−1)) ↑⊗𝑛∘ 𝜀̂(Ω)

Ω∈𝑆ℎ𝑖,𝑛−𝑖
−1𝑗+𝑖=𝑛+1

 

= ∑ ∑ 𝛿𝑗 (𝛿𝑖 ⊗ 𝑖𝑑𝕃[1]
⊗(𝑗−1)

) 𝜀̂(Ω)

Ω∈𝑆ℎ𝑖,𝑛−𝑖
−1

.

𝑗+𝑖=𝑛+1
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2.8 Corollary 

Assumed the graded vector space 𝕃, the 𝕃∞-structure is related with the linear 

map 𝛿: 𝑆̅(𝕃[1]) → 𝕃[1]of degree one. This map satisfies the condition: 

𝛿 ∘ µ𝑆(𝛿 ⊗ 𝑖𝑑𝑆)∆𝑆 = 0. 

2.9 Definition (Reinhold, 2019) 

Let 𝕃 be ℤ≤0-graded finite 𝕃∞-algebra, and let 𝐸 be a trivial, finite-dimensional space in 

negative degrees. The differential graded algebras 𝑆(𝕃[1])∗ and (𝑆(𝕃[1]) ⊗ 𝒮∗)∗ defined as 

follows: 

𝑆(𝕃[1])∗ ≅ 𝑆(𝕃[1]∗) , 𝒮 ≅ 𝒮∗∗, (𝑆(𝕃[1]) ⊗ 𝒮∗)∗ ≅ 𝑆(𝕃[1]∗) ⊗ 𝒮. 

Assume 𝑑𝒞𝒮 = −𝑑∗, defining a differential on 𝑆(𝕃[1]∗). The left 𝑆(𝕃[1]∗)-module given by 

the term  𝑆(𝕃[1]∗) ⊗ 𝒮 from the maps: 

𝑆(𝕃[1]∗) ⊗ (𝑆(𝕃[1]∗) ⊗ 𝒮) → 𝑆(𝕃[1]∗) ⊗ 𝒮 

where 

(𝜇 ⊗ (Ω⊗ 𝓈)) ↦ (𝜇 ∨ Ω)⊗ 𝓈. 

The linear map 𝐷𝒞𝒮: 𝑆(𝕃[1]
∗) ⊗ 𝒮 → 𝑆(𝕃[1]∗) ⊗ 𝒮 is a degree one derivation. Expanding 𝐷𝐶𝒮

, for any 𝜇, Ω ∈ 𝑆(𝐿[1]∗)  , 𝑒 ∈ 𝒮 homogeneous, we get: 

𝐷𝒞𝒮(𝜇 ∨ (Ω⊗ 𝓈)) = 𝐷𝒞𝒮  𝜇 ∨ (Ω⊗ 𝓈) + (−1)|𝜇|𝜇 ⋁𝐷𝒞𝒮(Ω⊗ 𝓈). 

2.10 Proposition 

The 𝕃∞-algebras 𝕃 on 𝒮 has a representation  𝜌 given by the derivation: 

𝐷𝒞𝒮: 𝑆(𝕃[1]
∗) ⊗ 𝒮 →∶ 𝑆(𝕃[1]∗) ⊗ 𝒮, 

which extends 𝑑𝒞𝒮 and satisfies 𝐷𝒞𝒮
2 = 0. 

For example, setting D𝒞𝒮 = −D∗, where 𝐷 a co-derivation is extending  𝑑, we see that 𝐷 

generated by the two-way representation 𝜌𝒮. Given a representation 𝜌 of the 𝕃∞-algebra 𝕃 

on 𝒮, we obtain the complex  𝑆(𝕃[1]∗) ⊗ 𝒮, which closely resembles the generalized 

Chevalley–Eilenberg complex, with 𝐷𝒞𝒮 acting as a co-boundary operator. 

2.11 Definition (Noreldeen, 2020) 

Let 𝒮 be Lie algebra over a field ℱ with bracket operation [·,·]. This bracket defines a linear 

map: 

⋀2𝒮 → 𝒮 

due to its anti-symmetry. Now, let ℳ be an 𝒮-module, and define the space of 𝑛-cochains as: 

𝒞𝑛(𝒮,ℳ) = 𝐻𝑜𝑚(⋀𝑛𝒮,ℳ) 
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which consists of 𝑛-multilinear anti-symmetric functions on 𝒮 with values in ℳ. This structure 

provides a degree 𝑛-cochain module on 𝒮 with values in ℳ. 

The co-boundary operator for Lie algebra cohomology given by: 

𝑑𝜑(𝓈1,···, 𝓈𝑛+1)

= ∑ (−1)𝑖+𝑗−1𝜙 ([𝓈𝑖, 𝓈𝑗], 𝓈1,···, �̂�𝑖,···, �̂�𝑗 ,···, 𝓈𝑛+1)

1≤𝑖<𝑗≤𝑛+1

+ ∑ (−1)𝑖𝓈𝑖 · 𝜙(𝓈1,···, �̂�𝑖,··· , 𝓈𝑛+1)

1≤𝑖≤𝑛+1

.        

The cohomology of 𝒮 with coefficients in ℳ then defined as 

𝐻𝑛(𝒮,ℳ) =
ker(𝑑: 𝒞𝑛(𝒮,ℳ) → 𝒞𝑛+1(𝒮,ℳ))

𝑖𝑚(𝑑: 𝒞𝑛−1(𝒮,ℳ) → 𝒞𝑛(𝒮,ℳ))
 . 

A special case occurs when ℳ = 𝒮, in which case we write 𝒞𝑛(𝒮, 𝒮) as 𝒞𝑛(𝒮) and denote 

the cohomology as 𝐻𝑛(𝒮). Here, the adjoint action givethe action of 𝒮 on itself. 

3. Main results 

This work delves into key aspects of algebraic topology and homology in 𝐿∞-algebras, 

emphasizing how homology isomorphisms hold under certain conditions. It introduces 

simplicial and bar homology with module coefficients, explores 𝐻-unitality, and examines the 

connections between homological structures and quasi-isomorphisms. 

The first theorem focuses on excision in 𝕃∞-algebras, proving that homology isomorphisms 

remain intact through inclusion maps. The proof relies on chain complexes and homotopy 

equivalence arguments. 

3.1. Theorem 

Let ℰ be a subset of an 𝕃∞-algebra such that ℰ ⊂ 𝒜 ⊂ 𝒳. Then, for all 𝑛, the 

inclusion (𝒳\ℰ,𝒜\ℰ) ↪ (𝒳,𝒜) induces the isomorphism: 

ℋ𝑛(𝒳\ℰ,𝒜\ℰ)
  ≅   
→  ℋ𝑛(𝒳,𝒜). 

If 𝒳 is covered by the interiors of the subspaces 𝒜 and ℬ, where 𝒜,ℬ ⊂ 𝒳, then the inclusion 

(ℬ,𝒜 ∩ ℬ) ↪ (𝒳,𝒜) similarly induces the isomorphism: 

ℋ𝑛(ℬ,𝒜 ∩ ℬ)
  ≅   
→  ℋ𝑛(𝒳,𝒜), 

for all 𝑛, where ℬis defined as ℬ = 𝒳\ℰ. 

Proof: Using (Noreldeenet al., 2021), we consider 𝒳 as the union of 𝒜 and ℬ with their 

interiors covering 𝒳. This setup provides natural inclusion maps: 
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𝒞•(𝒳)

𝚤 ↑
𝒞•(𝒜) + 𝒞•(ℬ)

 

 

𝒞•(𝒜) 𝒞•(ℬ) 

 

𝒞•(𝒜 ∩ ℬ) 

From this, we obtain the equivalence:  

𝒞•(𝒳)/𝒞•(𝒜) = 𝒞•(ℬ)/𝒞•(𝒜 ∩ ℬ), 

whenever 𝜄 is an isomorphism. However, some simplices may intersect nontrivially with both 

(𝒜 −𝒜 ∩ ℬ) and (ℬ −𝒜 ∩ ℬ), which prevents 𝜄from being an isomorphism. 

To resolve this, we use the chain map 𝜉: 𝒞•(𝒳)
 
→ 𝒞•(𝒜) + 𝒞•(ℬ) to decompose problematic 

simplices into smaller, well-behaved ones without altering homology. We show that 𝒞•(𝒜) +

𝒞•(ℬ) is a homotopy retract of 𝒞•(𝒳), satisfying 

𝜉 ∘ 𝚤 = 𝐼𝑑 and 𝚤 ∘ 𝜉 = 𝒹𝔇 +𝔇𝒹 for some chain homotopy 𝔇. 

Choosing 𝔇 appropriately preserves the subcomplexes 𝒞•(𝒜) and𝒞•(ℬ), leading to the chain 

homotopy equivalence: 

𝒞•(𝒳)/𝒞•(𝒜)
 
→ 𝒞•(ℬ)/𝒞•(𝒜 ∩ ℬ). 

Finally, we establish simplicial homology isomorphisms within 𝕃∞-algebras, focusing on 

their behavior under subspace inclusions. 

3.2. Definition  

For a space 𝒳 and a subset ℰ in an 𝕃∞-algebra, where  ℰ ⊂ 𝒜 ⊂ 𝒳, the inclusion 

(𝒳\ℰ,𝒜\ℰ) ↪ (𝒳,𝒜) induces simplicial homology isomorphisms for all 𝑛: 

ℋℋ𝑛(𝒳\ℰ,𝒜\ℰ)
    ≅    
→   ℋℋ𝑛(𝒳,𝒜). 

Setting ℬ = 𝒳\ℰ and assuming 𝒳 covered by the interiors of 𝒜 and ℬ with 𝒜, ℬ ⊂ 𝒳, the 

equivalent statement follows from the inclusion  (ℬ,𝒜 ∩ ℬ) ↪ (𝒳,𝒜): 

ℋℋ𝑛(ℬ,𝒜 ∩ ℬ)
 
→ℋℋ𝑛(𝒳,𝒜)    ∀𝑛.                              (7) 

Next, we define the bar homology of 𝕃∞-algebras with module coefficients and describe the 

corresponding boundary maps.  

3.3.Definition  

Let ℐ be an 𝕃∞-algebra, possibly non-unital, and let ℛ be a right ℐ-module. The homology 

ℋ𝐵∗
′(ℐ, ℛ) corresponds to the bar homology of ℐ with ℛ as its coefficients: 
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(ℛ ⊗ ℐ⨂∗, 𝜌∗
′):= ℛ

𝜌1
′

←ℛ⊗ ℐ
𝜌2
′

←ℛ⊗ ℐ⊗ ℐ
𝜌3
′

←ℛ⊗ ℐ ⊗ ℐ ⊗ ℐ
𝜌4
′

←…  

A tensor product defined over 𝕃∞-algebras, with the boundary map expressed as: 

𝜌𝑛
′ (𝒶0 ⊗…⊗𝒶𝑛) = ∑ (−1)𝑖𝒶0 ⊗…⊗𝒶𝑖𝒶𝑖+1 ⊗…⊗𝒶𝑛

𝑛−1
𝑖=0 . 

The following definition introduces the simplicial homology of complexes and examines 

the associated boundary maps, highlighting their relationship with bar homology. 

3.4. Definition  

The homology of complexes ℋℋ∗(ℐ, ℛ) describes the simplicial homology of ℐ with 

coefficients in ℛ, represented by the sequence: 

(ℛ ⊗ ℐ⨂∗, 𝜌∗):= ℛ
𝜌1
←ℛ⊗ ℐ

𝜌2
←ℛ⊗ ℐ ⊗ ℐ

𝜌3
←ℛ⊗ ℐ⊗ ℐ ⊗ ℐ

𝜌4
←… , 

where the boundary map is defined as: 

𝜌𝑛(𝒶0 ⊗…⊗𝒶𝑛) = 𝜌𝑛
′ (𝒶0 ⊗…⊗𝒶𝑛) + (−1)𝑛𝒶𝑛𝒶0 ⊗𝒶1 ⊗…⊗𝒶𝑛−1. 

Additionally, we derive a corollary linking 𝐻-homology and bar homology, exploring their 

connections in 𝕃∞-algebras and the exact sequences that appear. 

3.5. Corollary  

The 𝕃∞-algebras derived from ℐ by adding unity denoted as ℐ̃ = 𝑘 × ℐ. The 𝐻-homology 

𝐻∗(ℐ)is given by ℋ∗(ℐ):= ℋ∗(ℐ, ℐ), while the bar homology ℋ𝐵∗(ℐ) is defined by ℋ𝐵∗(ℐ): =

ℋ𝐵∗
′(ℐ, ℐ). Additionally, the simplicial homology of ℐ is represented by ℋℋ∗(ℐ):= ℋ̅∗(ℐ, ℐ̃), 

where ℋ̅𝑛(ℐ, ℐ̃) = ℋ𝑛(ℐ, ℐ̃)for 𝑛 > 0andℋ̅0(ℐ, ℐ̃) = ℋ0(ℐ, ℐ̃)/𝑘. Furthermore, the homology 

ℋℋ∗(ℐ) corresponds to the homology of the associated double complex: 

𝒞𝒞(ℐ)|2| ≔ (ℐ ⊗ ℐ⨂∗, 𝜌∗)
   1−𝑡   
←    (ℐ ⊗ ℐ⨂∗, −𝜌∗

′).                            (8) 

As a result, an exact sequence arises: 

…
 
←𝐻𝑛−1(ℐ)

 
←ℋ𝐵𝑛−1(ℐ)

 
←ℋℋ𝑛(ℐ)

 
←𝐻𝑛(ℐ)

 
←ℋ𝐵𝑛(ℐ)

 
←ℋℋ𝑛+1(ℐ)

 
←…. 

The following definition explores the notion of ℋ-unitarity in 𝕃∞-algebras, highlighting the 

criteria that determine when a module ℛ that classified as ℋ-unitary. 

3.6. Definition  

Let ℛ be an ℐ-bimodule, where ℐ is an 𝕃∞-algebra. If every 𝕃∞-module 𝒢 admits an exact 

complex (ℛ ⊗ ℐ⨂∗, 𝜌∗) ⊗ 𝒢, then ℛ is considered ℋ-unitary. 

An algebra ℐ is ℋ-unital when ℛ = ℐ, making ℛ a left ℐ-module. Consequently, if ℐ is ℋ-

unital, then ℛ⊗ ℐ is also ℋ-unitary. 
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Next, we present a theorem on quasi-isomorphisms between complexes in the framework 

of 𝕃∞-algebras and bimodules, establishing results based on specific conditions related to ℋ-

unitarity. 

3.7. Theorem  

Consider the extension of 𝕃∞-algebras given by the exact sequence: 

0
 
→ ℐ

 
→𝒜

 
→ℬ

 
→ 0, 

Let 𝒢 be an 𝕃∞-module and ℛ an 𝒜-bimodule. The following canonical inclusions: 

𝑖: (ℛ ⊗ ℐ⨂∗, 𝜌∗) ⊗ 𝒢 ↪ (ℛ⊗𝒜⨂∗, 𝜌∗) ⊗ 𝒢,                                  (9) 

𝑖′: (ℛ ⊗ ℐ⨂∗, 𝜌∗
′) ⊗ 𝒢 ↪ (ℛ ⊗𝒜⨂∗, 𝜌∗

′) ⊗ 𝒢                                 (10) 

are quasi-isomorphisms provided that ℛ, as an ℐ-bimodule, is ℋ-unitary. 

Proof: To prove that the inclusions 𝑖 and 𝑖′ are quasi-isomorphisms, we consider the filtration 

𝐹ℓ of the complex(ℛ ⊗𝒜⨂∗, 𝜌∗) and analyze its graded components. Define the filtration as 

follows: 

𝐹ℓ = {ℛ
𝜌1
←ℛ⊗𝒜

𝜌2
←ℛ⊗𝒜⊗2

𝜌3
←…

𝜌ℓ
←ℛ⊗𝒜⊗𝑝

𝜌ℓ+1
←  ℛ ⊗ ℐ⊗𝒜⊗ℓ

𝜌ℓ+2
←  ℛ ⊗ ℐ⊗2

⊗𝒜⊗ℓ
𝜌ℓ+3
←  … } 

For all ℓ ≥ 0.The associated graded terms satisfy: 

(𝐹ℓ+1 ⊗
𝒢

𝐹ℓ
⊗𝒢)

∗
= (ℛ ⊗ ℐ⨂ ∗−ℓ−1, 𝜌∗

′) ⊗ ℬ⊗𝒜⊗ℓ ⊗𝒢,              (11) 

Since ℛ is ℋ-unitary, this sequence is exact. Using the long exact sequence 

0
 
→ 𝐹𝑛 ⊗𝒢

 
→ 𝐹𝑛+1 ⊗𝒢

 
→

𝐹𝑛+1⊗𝒢

𝐹𝑛⊗𝒢

 
→ 0                             (12) 

we see that 𝐹0
 
→ 𝐹ℓ is a quasi-isomorphism for every ℓ, which implies that ℓ is a quasi-

isomorphism. By a similar argument, ℓ′ also follows as a quasi-isomorphism, thus proving the 

theorem. 

Remark: It is important to note that Theorem (3.7) above can also be proven in the case where 

ℐ is a right ideal of 𝒜 rather than a two-sided ideal. 

The following corollary offers additional understanding of quasi-isomorphisms within the 

context of extensions of 𝕃∞-algebras, particularly regarding modules and the criteria for ℋ-

unitarity. 

3.8. Corollary  

Consider the exact sequence  0
 
→ℐ

 
→𝒜

 
→ℬ

 
→0 of the 𝕃∞-algebras where 𝒢 is a 𝑘-

moduleand ℐ ⊂ 𝒜 ⊂ ℬ. The canonical arrows: 
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𝜋: (ℬ ⊗𝒜⊗∗, 𝜌∗) ⊗ 𝒢
 
→(ℬ ⊗ℬ⊗∗, 𝜌∗) ⊗ 𝒢, 

𝜋′: (ℬ ⊗𝒜⊗∗, 𝜌′
∗
) ⊗ 𝒢

 
→(ℬ ⊗ℬ⊗∗, 𝜌′

∗
) ⊗ 𝒢, 

remain quasi-isomorphisms, when ℐ is ℋ-unital. 

Proof: To prove that the canonical maps 𝜋and 𝜋′ are quasi-isomorphisms, we consider the 

quotient complex �̃�ℓ for (ℬ ⊗𝒜⊗∗, 𝜌∗), defined as follows: 

�̃�ℓ ≔ ℬ
𝜌1
←ℬ⊗ℬ

𝜌2
←ℬ⊗ℬ⊗2

𝜌3
←… 

𝜌ℓ
←ℬ⊗ℬ⊗ℓ

𝜌ℓ+1
←  ℬ ⊗ℬ⊗ℓ ⊗𝒜

𝜌ℓ+2
←  ℬ ⊗ℬ⊗ℓ ⊗

𝒜⊗2
𝜌ℓ+3
←  … . 

Next, check if 𝜋 is a quasi-isomorphism, we analyze the canonical projections 𝜋ℓ: 

𝜋ℓ: �̃�ℓ ⊗𝒢 → �̃�ℓ+1 ⊗𝒢. 

Since ℬ(ℓ) = ℬ ⊗ ℬ⊗ℓ ⊗ ℐ, a simple calculation shows that: 

𝐾𝑒𝑟(𝜋ℓ) = (ℬ(ℓ)⊗𝒜⊗∗−ℓ−1 , 𝜌∗) ⊗ 𝒢. 

By applying Theorem (3.7), we deduce that 𝐾𝑒𝑟(𝜋ℓ) is quasi-isomorphic to: 

(ℬ(ℓ)⊗ ℐ⊗∗−ℓ−1 , 𝜌∗) ⊗  𝒢 = (ℬ(ℓ)⊗ ℐ⊗∗−ℓ−1 , 𝜌∗
′) ⊗ 𝒢,                (13) 

this is exact by assumption. A similar proof holds for 𝜋′, confirming that both 𝜋 and 𝜋′ are 

quasi-isomorphisms. 

Now, we complete with a theorem that connects 𝐻-unitality, excision, and homology 

conditions for 𝕃∞-algebras, highlighting their equivalence. 

3.9. Theorem  

Let ℐ be an 𝕃∞-algebra. Then, the following statements are equivalent: 

1. ℐ is 𝐻-unital. 

2. ℐ satisfies the 𝐻-homology excision property. 

3. ℐ satisfies the excision property for bar homology. 

4. ℐsatisfies the excision property for simplicial homology. 

Proof:  To establish the equivalence of the given propositions, we analyze the homological 

properties of the 𝕃∞-algebra ℐ. Consider the short exact sequence of 𝕃∞-algebras  0 → ℐ →

𝒜 → ℬ → 0,where 𝒜is a pure extension, and let  𝒢 be a 𝑘-module. The canonical projection 

defined as: 

𝜋: (𝒜 ⊗𝒜⨂∗, 𝜌∗) ⊗ 𝒢 → (ℬ ⊗ℬ⨂∗, 𝜌∗) ⊗ 𝒢 

This projection induces the following commutative diagram of short exact sequences: 
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0

0

→

→

(ℐ ⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢
|𝑗

𝑘𝑒𝑟 (𝜋)

→

→

(𝒜⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢
| =

(𝒜 ⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢

→

 𝜋 
→

(ℬ⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢
|𝜋1

(ℬ ⊗𝒜⨂∗ , 𝜌∗) ⊗ 𝒢

→
 
→

0

0
 

Using Corollary (3.8), we know that 𝜋1 is a quasi-isomorphism. As a result, 𝑗 must also be a 

quasi-isomorphism, proving the equivalence of (1) and (2). A similar argument applies to show 

that (1) and (3) are equivalent. 

Furthermore, considering the long exact sequence of homology: 

⋯ ← 𝐻𝑛−1(ℐ) ← ℋ𝐵𝑛−1(ℐ) ← ℋℋ𝑛(ℐ) ← 𝐻𝑛(ℐ) ← ℋ𝐵𝑛(ℐ) ← ℋℋ𝑛+1(ℐ) ← ⋯ 

we conclude that (2) and (4) are equivalent. 

To establish the equivalence of (2) and (1), we assume that 𝒜 = ℐ ⊕ 𝒢 is a 𝑘-algebra with a 𝑘-

module 𝒢, and define the projection: 

𝜋: (𝒜 ⊗𝒜⨂ ∗, 𝜌∗) → (𝒢 ⊗ 𝒢⨂∗, 𝜌∗), 

where the multiplication is given by(𝑢, 𝑣)(𝑢′, 𝑣′) = (𝑢𝑢′, 0). 

Since the kernel of π satisfies: 

ker(𝜋) =  𝒢 ⊗ (ℐ ⊗ ℐ⨂ ∗−1, 𝜌∗
′) ⊕ (ℐ ⊗ ℐ⨂∗, 𝜌∗

′), 

it follows that ℐ satisfies the excision property for𝐻-homology, ensuring exactness in the 

associated complexes. By similar reasoning, we establish the equivalence of (3) and (1). 

For (4) and (1), we introduce the canonical projection: 

�̅�: 𝒞∗∗(𝒜) → 𝒞∗∗(𝒢), 

and define a sub-complex 𝛽 in 𝑘𝑒𝑟 (�̅�) consisting of elements (𝒶0 ⊗⋯⊗𝒶𝑛, 𝒶
′
0 ⊗⋯⊗

𝒶′𝑛−1) that include some 𝒶𝑖 and 𝒶′n in 𝒢. The exactness of 𝛽 ensures that: 

𝑘𝑒𝑟(�̅�) = 𝒞∗∗(ℐ) ⊕ 𝛽, 

Proving that ℐ satisfies the simplicial homology excision property. 

Finally, assuming that ℐ is not 𝐻-unital leads to a contradiction. Suppose there exists 𝑥 ∈ 𝒢 ⊗

ℐ⨂𝑛representing a cycle that does not represent a boundary under 𝜌𝑛
′ . Then, the 

element(0, 𝑁(𝑥))forms a cycle of degree 𝑛 + 1 that is not a boundary, contradicting the 

exactness of  𝛽. This contradiction confirms that all four propositions are equivalent, 

completing the proof. 

Conclusion 

We have thoroughly examined the homological behavior of ∞-algebras through various 

frameworks, including excision, simplicial, and bar homologies. Our findings highlight the 

preservation of homological structures under certain algebraic mappings and inclusions. The 
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relationship between different types of homology has been made clear, with particular 

emphasis on their preservation under quasi-isomorphisms. Additionally, we have discussed the 

conditions required for 𝐻-unit and the implications of these conditions for the broader theory 

of ∞-algebras. The results of this paper contribute to a deeper understanding of how these 

algebraic structures interact with homological properties, with potential applications in the 

study of algebraic topology and homotopy theory. 
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