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 Automatic Spoken Language Identification (ASLID) is essential for effective 

multilingual communication, especially in real-world environments characterized by 

noise and acoustic variability where noise significantly impacts performance. This 

research introduces a robust ASLID framework that highlights the significance of 

feature reduction via principal components analysis (PCA) integrated with linear 

discriminant analysis (LDA) to enhance classification performance in noisy 

environments. The system utilizes OpenSMILE to extract extensive audio features, 

capturing diverse speech characteristics necessary for accurate language discrimination. 

To address the high dimensionality and redundancy inherent in the feature set, PCA is 

employed to reduce the feature space, preserving the most significant variance and 

enhancing computational efficiency. Following PCA, LDA is applied to maximize class 

separability, further refining the feature space for effective language classification. The 

proposed approach is evaluated on a benchmark dataset under various noise levels and 

test set proportions. Extensive experiments conducted on the IIIT-H Indic speech dataset 

demonstrate that the proposed PCA-LDA approach outperforms traditional methods, 

achieving an accuracy of up to 99.92% in noisy conditions, even with reduced feature 

dimensions. Experimental results demonstrate that integrating PCA with LDA 

significantly improves accuracy and robustness, outperforming conventional feature 

selection and classification techniques. The findings affirm that the combined PCA-

LDA strategy effectively enhances the resilience of ASLID systems in challenging 

acoustic environments, making it a promising solution for practical multilingual speech 

processing applications. 
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1. Introduction 

In an increasingly interconnected world, the ability to accurately identify spoken languages from audio signals 

plays a vital role in facilitating seamless communication across diverse linguistic borders. ASLID systems are essential 

for numerous applications, including multilingual voice assistants, automated transcription services, security systems, 

and cross-cultural communication platforms [1,2,3]. The core challenge in ASLID lies in extracting meaningful 

features from raw speech data that can reliably discriminate between languages, even under adverse environmental 

conditions such as background noise [4,5,6]. 
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Despite significant advancements, one of the prominent challenges faced by ASLID systems is the degradation of 

performance in noisy environments [7,8]. Background noise, reverberations, and other acoustic interferences distort 

speech signals, making it difficult for traditional feature extraction and classification methods to accurately identify 

the spoken language. This challenge is particularly critical in real-world scenarios where controlled, noise-free 

conditions are rarely present. In particular, high-dimensional feature spaces extracted from speech signals tend to 

include irrelevant or correlated information, increasing computational load and potentially degrading classifier 

performance. Therefore, enhancing system robustness in such conditions is imperative for practical deployment. 

The ASLID involves several stages, each critical to the successful identification of spoken language from audio 

input, particularly when leveraging machine learning techniques. The first stage of ASLID is data collection, which 

entails gathering diverse audio samples across multiple languages. This phase is essential for training robust models 

capable of generalizing well across different accents, dialects, and speaking styles. High-quality datasets contribute 

significantly to the model's performance, as they provide a rich variety of linguistic features for analysis. 

The second stage is feature extraction, where specific characteristics of the audio signals are identified and 

quantified distinguish between different languages. Linear Predictive Analysis (LPC) is one of the most commonly 

utilized feature extraction approaches [9], Mel-Frequency Cepstral Coefficients (MFCCs) [10], Perceptual Linear 

Predictive Coefficients (PLPC) [11] that are used to capture distinctive speech characteristics. These features enable 

machine learning (ML) algorithms to distinguish between languages. However, their high dimensionality often 

introduces redundancy and noise, which can degrade classification accuracy, particularly in noisy environments. 

OpenSMILE (Open-source Media Interpretation by Large feature-space Extraction) [12] is a robust toolkit made 

to extract features from speech and audio inputs developed by the International Audio Laboratories Erlangen. It is 

particularly renowned for its application in emotion recognition, speech analysis, and other multimedia processing 

tasks. Because the toolkit is open-source, researchers and developers are free to alter and expand its features to suit 

their needs. OpenSMILE offers a comprehensive set of features that cater to various audio processing requirements. 

Some of the primary feature types include: MFCCs, spectral features, prosodic features, formant frequencies, energy 

and amplitude features, voice quality features and emotional features. OpenSMILE extracts a substantial number of 

features, totaling 6,373. Due to the numerous and diverse features extracted by OpenSMILE, which include those 

obtained from various feature extraction methods, this research chose to utilize it for feature extraction.  

Some of these features may be irrelevant, potentially impacting the accuracy of ASLID. Therefore, Feature 

reduction stage is necessary to identify the most relevant features while eliminating redundant or irrelevant ones. 

Feature reduction techniques, such as PCA, present effective solutions to these challenges by transforming high-

dimensional feature sets into lower-dimensional subspaces that retain the most significant variability in the data. PCA 

reduces computational complexity while simultaneously improving feature discrimination by reducing redundancy 

and noise components. This transformation enables classifiers to more effectively distinguish between languages, 

especially in noisy environments where irrelevant variations can obscure critical features. 

The final stage is classification, where ML algorithms, PCA is highly effective, but its combination with 

categorization algorithms such as LDA, Support Vector Machines (SVM), and deep learning (DL) [13] models can 

further enhance ASLID performance. This integrated approach ensures that noise-reduced features are optimally 

exploited for discriminative classification, making the system more resilient to environmental distortions. Prior 

research suggests that combining feature reduction with robust classifiers significantly improves accuracy in 

challenging acoustic environments. 

This paper emphasizes the critical role of feature reduction through PCA in refining the correctness and strength 

of spoken language identification systems under challenging acoustic conditions. By systematically applying PCA 

prior to classification, the proposed approach reduces feature space dimensionality, enhances class separability, and 

mitigates the adverse effects of noise. This emphasis on feature modification and reduction seeks to create a 

computationally efficient, noise-resistant ASLID system that can retain high accuracy across a wide range of settings 

and resource restrictions. 

The present work emphasizes the application of PCA for feature reduction in an ML-based speech language 

identification system and evaluates its effectiveness under noisy conditions. By systematically reducing the feature 

space dimensionality, the proposed methodology aims to improve classification accuracy and computational efficiency 

simultaneously. The research leverages the large-scale IIIT-Hindustan dataset, which encompasses diverse Indic 

languages and offers a comprehensive testbed for evaluating robustness in noisy scenarios. 

In practical settings, speech signals are rarely clean, necessitating systems that can maintain high recognition 

performance despite acoustic disturbances. The globally diverse linguistic landscape, especially in regions like India, 
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further underscores the need for resilient language identification systems capable of functioning reliably in various 

environmental contexts. Implementing effective feature reduction strategies like PCA directly addresses these 

challenges by distilling salient speech features and enhancing model robustness. 

The study opens with a detailed review of comparable research in the field of speech and language processing, 

emphasizing the strengths and limitations of existing systems. Subsequently, it describes the proposed methodology, 

including the feature extraction process using openSMILE, PCA-based feature reduction, and classification via Linear 

Discriminant Analysis. The experimental setup, including datasets, noise simulation, and evaluation metrics, is then 

discussed, followed by the presentation and analysis of experimental results. 

2. Related Works 

Robust ASLID in noisy environments remains a challenging task, prompting researchers to explore advanced 

feature extraction and dimensionality reduction techniques [8]. While many studies address SLID in clean conditions, 

fewer focus on noisy scenarios. PCA has emerged as an effective method for reducing feature dimensionality, 

eliminating redundancy, and enhancing classification accuracy. 

Fathoni et al. [14] demonstrated that combining feature extraction methods (e.g., MFCC, GFCC, LFCC) for 

capturing relevant acoustic information. While feature combination enhances recognition accuracy, it also leads to 

increased feature dimensionality. To address this, PCA is applied to reduce redundancy features and determine the 

optimal feature set, followed by classification and evaluation using SVM. PCA can maintain high recognition accuracy 

(99.38%). Similarly, Ramoji et al. [15] showed that supervised i-vector modeling, when followed by PCA, 

significantly improves discriminative power.  

Noteworthy, the effective feature extraction is critical in noisy environments. Thimmaraja et al. [16] proposed a 

noise-resilient LPC encoding method enhanced with spectral subtraction and VAD. Experiments are executed using 

various noisy speech data types affected by musical noise, factory noise, car noise, and F16 noise. 

Nassif et al. [17] improved speaker identification by integrating a noise reduction module based on Computational 

Auditory Scene Analysis (CASA) with a GMM-CNN classifier, achieving high accuracy on emotionally and 

environmentally varied datasets. Kantamaneni et al. [18] introduced a DNN-based Kalman filter for better LPC 

estimation in noisy conditions. Biswas et al. [19] addressed multilingual identification with noise-augmented datasets. 

They designed a model to identify both foreign and Indian languages. To enhance the robustness of the system in 

noisy environments, various types of everyday noise were incorporated into the datasets. Following the extraction of 

macro-level features from the supplemented dataset's MFCC time series, the FRESH (Feature Extraction based on 

Scalable Hypothesis Tests) algorithm was used to pick features. An artificial neural network (ANN) was then trained 

using the chosen features. When the model was tested on three datasets, it demonstrated remarkable accuracy: Eight 

languages from the VoxForge dataset had a 98.43% success rate, six languages from the IIT-M IndicTTS speech 

database had a 99.93% success rate, and seven languages from the IIIT-H Indic speech database had a 99.94% success 

rate. The time-series feature extraction process is very difficult, although the model performs better than many earlier 

methods in this area. Notably, it took almost four days to extract the final features from the 240-hour audio sample 

using an Intel i7 processor and 32 GB of RAM. In contrast, both training and testing on the GPU were relatively quick, 

taking only about 6–7 hours. Nonetheless, the feature extraction phase remained computationally intensive. 

These studies highlight the critical role of PCA and robust preprocessing techniques in enhancing ASLID 

performance under noisy conditions. Building on this, this research aims to develop an ASLID system that leverages 

PCA to achieve high accuracy in noisy environments while also prioritizing computational efficiency by reducing 

processing and training time. 

3. Methodology 

Automatic spoken language identification in noisy environments presents major challenges in speech 

processing, primarily due to the degradation of audio quality. The ASLID involves several stages—data 

collection, feature extraction, feature reduction, and classification—that are essential for accurately 

identifying the spoken language from audio input, particularly when using machine learning techniques. 

These stages, illustrated in Figure 1, form a comprehensive framework for building robust ML- based ASLID 

systems. Optimizing each stage is critical for enhancing ASLID performance and supporting more effective 

multilingual communication and accessibility in a globalized world. While ASLID systems typically 
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perform well under clean acoustic conditions, this paper proposes a system specifically designed to maintain 

high language recognition accuracy even in the presence of significant background noise. 

3.1. Data Collection 

The proposed model begins with collecting speech samples across multiple languages. The quality and 

diversity of this data plays a critical role in determining the performance of the identification system. These 

recordings may be from public multilingual corpora or custom datasets comprising diverse speakers and 

dialects. This stage is vital for training robust models that can generalize well across various accents, dialects, 

and speaking styles. 

 

3.2. Data Augmentation 

To simulate real-world conditions, clean audio samples are artificially augmented with different types of 

environmental noise, including white noise, babble noise, street noise, or Gaussian noise [20] at different 

Signal-to-Noise Ratios (SNRs) [21]. This augmentation enables the model to generalize well in noisy 

environments. 

In this research, background noise was artificially generated using Gaussian white noise with a mean of 

zero, applied through Ocenaudio software, and adjusted to an intensity of -24 dB, as illustrated in Figure 2. 

This approach effectively simulates real-world noisy environments while allowing the system to maintain 

its language identification accuracy under adverse acoustic conditions. In ASLID or other speech processing 

applications, Gaussian white noise is often added to audio samples to simulate real-world noise conditions, 

including background conversation, mechanical vibrations, or environmental noise. The mathematical 

expression for the discrete-time Gaussian white noise signal is as follows [20]: 

𝑥[𝑛] = 𝜇 + 𝜎. 𝑧[𝑛] 
where: 

𝑥[𝑛] represents the noise level at time step 𝑛. 

𝜇 is the mean (often zero). 

𝜎 is the standard deviation, which controls the amplitude's spread. 

Data Collection 

Augment speech data with noise 

Extract features by openSMILE 

Feature Reduction using PCA 

Train the model by LDA 

 

Test performance of model 

Figure 1 A Flowchart for the proposed model 
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𝑧[𝑛] consists of a series of independent random variables selected from a standard normal distribution. 

If 𝑦[𝑛] represents the original speech signal and 𝑥[𝑛] is the noise value at time step 𝑛, then the speech signal 

with the expression for Gaussian white noise is: 

𝑦′[𝑛] = 𝑦[𝑛] + 𝑥[𝑛] 

3.3. Feature Extraction using openSMILE 

Acoustic features are extracted using the openSMILE [12] toolkit, a widely-used feature extractor in 

speech processing. The toolkit robust low-level descriptors (LLDs) such as MFCCs, pitch, formants, energy, 

spectral features, voice quality features, emotion-related features, prosodic features, which serve as the input 

feature vectors for further processing, and other high-level features derived from the speech signal [12,22]. 

The openSMILE supports three standard feature sets for audio feature extraction: ComParE 2016, 

GeMAPS, and eGeMAPS [12] as illustrated in Table 1. OpenSMILE was chosen as the feature extraction 

tool in this research for its capability to extract a diverse set of features using various signal processing 

techniques. 

 
(a) 

 
(b) 

Figure 2 (a) Original speech signal. (b) Speech signal with gaussian white noise. 
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Table 1. Number of features according to feature sets for each level [12] 

Feature sets 

Number of features 

LDD LLD 
Functionals 

level 

ComParE_2016 65 65 6373 

GeMAPSv01a 18 - 62 

GeMAPSv01b 18 - 62 

eGeMAPSv01a 23 - 88 

eGeMAPSv01b 23 - 88 

eGeMAPSv02 25 - 88 

 

3.4. Feature Reduction using PCA 

PCA [23] is a commonly used statistical method for dimensionality reduction. It transforms a high-

dimensional feature space into a lower-dimensional subspace while preserving the most significant 

variability present in the original data. To do this, PCA finds a set of orthogonal basis vectors, or principle 

components (PCs), that are linear combinations of the original variables and are arranged based on how 

much variance they represent. In speech and language processing tasks, PCA helps reduce noise, minimize 

computational complexity, and enhance classifier performance by eliminating redundant or less informative 

features. PCA not only enhances the robustness of the system in noisy environments but also reduces 

computational overhead during training and inference. Figure 3 illustrate a flowchart for PCA algorithm. 

 

3.5. Training the Model using LDA 

Normalize the Data  
(Center data to have mean of 0 and variance of 

1) 

Compute Covariance Matrix 

(Measure how features vary with respect to 
other) 

Calculate Eigenvectors and Eigenvalues 

(Find maximum variance directions) 

Sort Eigenvectors by decreasing Eigenvalues, 

then select Top-𝒌 Components 

Project Data onto principal components  
(Transform data to Lower Dimensional Space 

i.e., new coordinate) 

Figure 3 A Flowchart for PCA algorithm 
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The reduced features are used to train a LDA classifier. When training an ASLID model, selecting the 

appropriate machine learning model is crucial for achieving accurate and efficient language classification. 

LDA is chosen for its efficiency in maximizing class separability in a low-dimensional space and minimizing 

the within-class variance that making classes more compact and well-separated and making it suitable for 

language classification tasks with limited data [24,25]. So, this research considers the LDA classifier to be 

an effective machine learning model for achieving high performance in noisy environments.  

Algorithm 1. Linear Discriminant Analysis (LDA) Classifier 

Given a dataset with 𝑁 samples and 𝑀 features, where each sample 𝑥𝑖 belongs to one of 𝐾 

classes, LDA computes the following: 

1. Determine the Mean Vectors. 

Calculate the mean vector corresponding to each class as well as the overall mean vector of 

all samples. 

2. Within-Class Scatter Matrix (𝐒𝐖). 

Measures how much the samples within each class deviate from the class mean. 

𝑆𝑊 = ∑ ∑ (𝑥 − 𝜇𝑖)

𝑥𝜖𝐷𝑖

𝑐

𝑖=1

(𝑥 − 𝜇𝑖)
𝑇 

         where: 

𝑐 refers to the quantity of classes, 

𝐷𝑖  represents the class 𝑖 data, 

𝑥 is a data point in class 𝑖, 
𝜇𝑖 is the mean vector of class 𝑖. 

3. Between-Class Scatter Matrix (𝑺𝑩). 

Calculates how far apart the class means are from the overall mean. 

𝑆𝐵 = ∑ 𝑁𝑖

𝑐

𝑖=1

(𝜇𝑖 − 𝜇)(𝜇𝑖 − 𝜇)𝑇 

Where: 

𝑁𝑖 is the number of samples in class 𝑖, 
µ is the overall mean of all classes. 

4. Calculate the Linear Discriminants (Optimal Projection). 

The goal is to find a projection matrix that maximizes the ratio of the between-class variance 

to the within-class variance by solving the following generalized eigenvalue problem. 

𝑆𝑊
−1 𝑆𝐵 𝜔 = 𝜆𝜔 

Where: 

𝜔 is the matrix of linear discriminants (i.e., the directions that maximize class 

separability), 

𝜆 is the eigenvalue. 

5. Projection of Data. 

Project the data points onto the new axes defined by the eigenvectors corresponding to the 

largest eigenvalues. For two classes, this will be a single line, while for multiclass problems, 

it may be several dimensions. 
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6. Classify a new observation. 

In order to classify a new observation 𝑥 , LDA evaluates the discriminant score 

corresponding to each class and allocates 𝑥 to the class exhibiting the maximum score. The 

discriminant function for every class 𝑘 is articulated as: 

𝑔𝑘(𝑥) = 𝑥𝑇Σ−1𝜇𝑘 −
1

2
𝜇𝑘

𝑇Σ−1𝜇𝑘 + ln(𝑃𝑘) 

Where: 

Σ is the common covariance matrix, 

𝜇𝑘is the mean vector for class 𝑘, 

𝑃𝑘 is the prior probability of class 𝑘. 

4. Results and Discussion 

The task of ASLID in noisy environments poses a significant challenge for automatic systems. It is crucial 

to differentiate between languages despite interference from background noise, which can severely impact 

the accuracy of the system. The experimental findings of the suggested system are shown in this part along 

with an analysis of how well it performs in noisy environments. The IIIT-H dataset was used to start the 

experiment. 

4.1. Performance Evaluation Metrics 

The language identification system performance is assessed using the following [26]: 

1. Accuracy: The percentage of correct language identifications out of all test samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of correct language identifications

Total number of test samples
 

2. Confusion Matrix: To analyze the misclassifications and understand which languages are most 

commonly confused by the system. 

4.2. IIIT-H Indic Speech Dataset 

The IIIT-H Indic voice dataset is a useful resource for advancement in the field of speech processing, 

especially in the context of the Indian subcontinent’s linguistic diversity. By providing a large and varied 

dataset across multiple languages, it provides an opportunity to build more accurate, robust, and 

comprehensive speech recognition systems, and supporting the development of AI-driven applications that 

can cater to the diverse languages spoken in India. 

The dataset contains speech samples across a diverse range of Indic languages, including Telugu, Tamil, Hindi, 

Bengali, Kannada, Malayalam, and Marathi [27]. Theses languages were selected based on two main criteria: each 

language had over 10,000 Wikipedia articles, and native speakers were readily available on campus. The text corpus 

consisted of Wikipedia articles in Indian languages, from which 1,000 sentences were selected to cover the 5,000 most 

frequently occurring words in each language's corpus. The text data is provided in two formats: IT3 (a transliteration 

technique) and Unicode (UTF-8). Native speakers of each language recorded their speech in a studio setting with a 

typical headset microphone attached to a Zoom handy recorder. The choice of a handy recorder was driven by its 

portability and ease of use, while the headset microphone ensured that the distance between the mouth and microphone 

remained constant, helping maintain consistent recording levels. 

4.2.1. Results and Performance of IIIT-H Dataset in a Clean Environment 

Table 2 and Figure 4 present the classification performance of the proposed system in a clean environment 

under varying numbers of principal components and test set proportions 0.2 to 0.5. The optimal range of 

principal components is from 1000 to 2500 because of the proposed system consistently achieves near-
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perfect performance (≥99.9%) across all test proportions. This provides that the essential variance required 

for accurate classification is captured within the first 2500 components. As the number of principal 

components increases beyond 2500, a gradual degradation in classification accuracy is observed, particularly 

at higher test proportions 0.4 and 0.5. This indicates that including too many components may reintroduce 

noise or overfit the model to the training data, especially in smaller training sets. 

For the impact of test proportion, Table 2 shows that lower test proportions 0.2 or 0.3 are more resilient 

to increases in dimensionality, maintaining high accuracy even with up to 4000 components. Whilst, higher 

test proportions 0.4 or 0.5 show significant sensitivity, with accuracy sharply declining as the number of 

components increases. For instance, at 5000 components and a test proportion of 0.5, performance drops to 

9.31%, indicating severe overfitting and loss of generalization. 

In short, achieving robust performance for the proposed model necessitates the careful selection of an 

optimal number of principal components. Empirical results indicate that retaining approximately 1500 to 

2500 components offers an effective trade-off between preserving discriminative information and 

suppressing noise across different test proportions. This range consistently yields high classification 

accuracy while minimizing the risk of overfitting. Therefore, dimensionality must be judiciously tuned in 

relation to the available training data to ensure strong generalization and reliable model performance. 

Table 2. The accuracy of the proposed system in a clean environment at various test set proportions and various 

number of PCs 

 Test proportions 

N
u

m
b

er
 o

f 
p

ri
n

ci
p

a
l 

co
m

p
o
n

en
ts

 

 0.2 0.3 0.4 0.5 

1000 100% 100% 100% 100% 

1500 100% 100% 100% 99.97% 

2000 100% 100% 99.96% 99.94% 

2500 100% 100% 99.96% 99.88% 

3000 100% 99.90% 99.89% 99.48% 

3500 100% 99.90% 99.78% 41.08% 

4000 99.78% 99.76% 95.82% 24.25% 

4500 99.85% 98.57% 28.14% 12.25% 

5000 99.28% 32.76% 12.42% 9.31% 

5500 81.14% 12.85% 8.25% 8.97% 

 
Figure 4 Accuracy for the proposed model in a clean environment vs number of PCs at various test proportions 

Figures 5 to 8 show the confusion matrices generated by the proposed system in a clean environment for 

identifying 7 languages, using different test set proportions and numbers of principal components. 
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4.2.2. Impact of Noise on Language Identification 

After incorporating background noise into the audio files, it is essential to reiterate the methodologies 

employed, beginning with feature extraction and progressing through classification, followed by a 

comprehensive analysis of the impact of noise on the system performance.  

Table 3 and Figure 9 illustrate the classification accuracy of the proposed language identification system 

under noisy conditions, evaluated at various test set proportions 0.2 to 0.5 and numbers of principal 

components ranging from 1000 to 5500. The results demonstrate that the system maintains high accuracy 

when the number of principal components is kept between 1000 and 2500, with accuracy consistently 

exceeding 99% across all test proportions. This indicates strong robustness of the system to noise within this 

dimensionality range. 

 
Figure 5 Confusion matrix of the proposed system in a clean environment for identifying 7 languages, with a test set 

proportion of 0.5 and 1000 PCs used 

 
Figure 6 Confusion matrix of the proposed system in a clean environment for identifying 7 languages, with a test set 

proportion of 0.4 and 1000 PCs used 
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Figure 7 Confusion matrix of the proposed system in a clean environment for identifying 7 languages, with a test set 

proportion of 0.4 and 1500 PCs used 

 
Figure 8 Confusion matrix of the proposed system in a clean environment for identifying 7 languages, with a test set 

proportion of 0.3 and 2500 PCs used 

 

In summary, the experimental results underscore the critical role of dimensionality reduction and precise 

parameter optimization in enhancing system performance under noisy conditions. The optimal number of 

principal components lies in the range of 1000 to 2500, within which the system consistently achieves high 

and stable classification accuracy across varying test set proportions. Beyond this range, the performance 

degrades markedly, particularly in the presence of increased noise and larger test partitions, likely due to the 

adverse effects of overfitting and the inclusion of noise-sensitive features. Notably, the same optimal range 

of principal components was observed to be effective in both clean and noisy environments. This consistency 

highlights the robustness and generalizability of the proposed model, which demonstrates comparable 
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performance regardless of environmental conditions, thereby confirming its efficacy in noise-resilient 

speaker recognition. 

Figures 10 to 13 show the confusion matrices generated by the proposed system in a noisy environment for 

identifying 7 languages, using different test set proportions and numbers of principal components. 

Table 3. The accuracy of the proposed system in a noisy environment at various test set proportions and various 

number of PCs 

 Test proportions 

N
u

m
b

er
 o

f 
p

ri
n

ci
p

a
l 

co
m

p
o
n

en
ts

  0.2 0.3 0.4 0.5 

1000 99.78% 99.61% 99.75% 99.62% 

1500 99.71% 99.85% 99.71% 99.60% 

2000 99.92% 99.85% 99.78% 99.31% 

2500 99.92% 99.85% 99.71% 99.08% 

3000 99.85% 99.57% 99.17% 96.57% 

3500 99.78% 99.42% 98.03% 25.34% 

4000 99.64% 98.47% 80.50% 25.20% 

4500 99.50% 92.90% 29.89% 13.57% 

5000 97.50% 32.80% 13.64% 9.28% 

5500 66.14% 13.19%   9.03% 7.51% 

 

 

Figure 9 Accuracy for the proposed model in a noisy environment vs number of PCs at various test 

proportions 
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Figure 10 Confusion matrix of the proposed system in a noisy environment for identifying 7 languages, with a test 

set proportion of 0.5 and 1000 PCs used 

 
Figure 11 Confusion matrix of the proposed system in a noisy environment for identifying 7 languages, with a test 

set proportion of 0.4 and 2000 PCs used 
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Figure 12 Confusion matrix of the proposed system in a noisy environment for identifying 7 languages, with a test 

set proportion of 0.3 and 2000 PCs used 

 
Figure 13 Confusion matrix of the proposed system in a noisy environment for identifying 7 languages, with a test 

set proportion of 0.2 and 2000 PCs used 

4.2.3. Performance Evaluation 

Table 4 presents a comparative analysis of various SLID techniques applied to the IIIT-H dataset in both 

clean and noisy environments. The table includes established methods from prior research, such as the use 

of traditional feature extraction techniques (e.g., LPC and MFCC) coupled with classical classifiers (e.g., 

SVM and Random Forest) by Gupta et al. [28], as well as more recent deep learning approaches, including 

CNN-based architectures [29], ensemble learning [30], and LSTM-based sequence classification models 

[31]. 
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Among the models tested in clean environments, deep learning approaches generally demonstrate high 

accuracy, with results ranging from 99.50% to 99.94%. Notably, Paul et al. [31] achieved 99.80% using 

LSTM, and Biswas et al. [19] achieved 99.94% with MFCC-based time series features and neural networks 

in noisy conditions, representing the strongest performance among prior studies under adverse conditions. 

The proposed model, which integrates PCA for dimensionality reduction and LDA for classification, 

outperforms all previously reported methods. It achieves a perfect accuracy of 100% in clean environments 

across multiple test proportions (0.20, 0.30, 0.40, and 0.50), demonstrating exceptional robustness and 

consistency. Even under noisy conditions, the proposed system achieves 99.92% accuracy at a 0.20 test 

proportion, surpassing other noise-robust systems such as that of Biswas et al. [19]. 

These results highlight several key insights. First, the proposed model effectively balances computational 

efficiency and classification performance through PCA-based feature reduction, which reduces redundancy 

and enhances discriminative capability. Second, LDA proves to be a highly suitable classifier for ASLID 

tasks, providing strong generalization in both clean and noisy environments. Finally, the model’s superior 

performance across varying test proportions and noise levels confirms its robustness, scalability, and 

suitability for real-world applications where environmental variability is a critical factor. 

Table 4. Performance measures obtained from various SLID techniques and the proposed model of IIIT-H 

Dataset in a clean and noisy environment 

Reference Technique 
Test 

Proportional 
Accuracy Noise 

Gupta et al. (2017) [28]  LPC and MFCCs for features 

extraction and SVM and Random 

Forest (RF) as classification 

techniques for language identification  

0.30 92.60% no 

Athira et al. (2019) [29] Deep Learning by CNN  99.50% no 

Mukherjee et al. (2020) 

[30] 

Line Spectral Frequency (LSF) 

features combined with an ensemble 

learning-based classification approach 

 99.71% no 

Paul et al. (2021) [31] MFCC and Pitch feature extraction 

methods and a Long Short-Term 

Memory (LSTM) sequence 

classification 

0.20 99.80% no 

Biswas et al. (2023) [19] MFCC based time series features and 

NN 
0.05 99.94% yes 

Proposed Model  PCA for Feature reduction and LDA 

for language identification 

0.20, 0.30, 

0.40, 0.50 
100.00% no 

Proposed Model  PCA for Feature reduction and LDA 

for language identification 
0.20 99.92% yes 

Table 5 presents a comparative evaluation of language identification performance in a noisy environment 

using several CNN architectures—modified ResNet50, VGG16, and Inception-v3—combined with classical 

ML classifiers and synthetic voice data augmentation and PCA.  

The application of PCA across all architectures contributes to improved accuracy in most cases by reducing 

feature dimensionality and enhancing class separability. Among the classical classifiers, LR, and KNN show 

notably high performance when paired with VGG16 and Inception-v3 features, reaching up to 94.80% and 

97.00%, respectively. Modified versions of Inception-v3 and VGG16 achieve strong standalone results with 

97.00% and 97.10% accuracy, indicating that deep convolutional features combined with PCA can be highly 

effective for language identification in noisy environments. 

However, the modified ResNet50 model demonstrates comparatively lower performance, with most 

classifiers achieving below 70% accuracy, except for Random Forest 90.70% and its standalone use 93.30%. 

This suggests that ResNet50 features may be less suited to capturing language-specific acoustic patterns in 

noisy conditions, even with PCA applied. 
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Despite the strong performance of CNN-based models, the proposed model—utilizing PCA for feature 

reduction and LDA for classification— surpasses all CNN-based methods with an accuracy of 99.92%, 

significantly outperforming all tested configurations. This result underscores the effectiveness of the 

proposed approach, which achieves superior robustness and generalization without the computational 

complexity of DNNs. 

Furthermore, the proposed model achieves this performance with significantly lower computational 

complexity than deep CNNs, which require substantial training time, data, and processing resources. This 

highlights a key strength of the proposed system: it provides state-of-the-art accuracy with greater efficiency 

and interpretability, making it highly suitable for real-time or resource-limited applications. 

Overall, these results validate the efficacy of PCA as a preprocessing step and confirm the superiority of 

the proposed model framework in noisy environments, making it a highly competitive and computationally 

efficient alternative to deep learning-based ASLID systems. 

Table 5. Performance measures for the modified RESNET50, VGG16, and Inception-v3 models with PCA [32] 
alongside the proposed model, evaluated on the IIIT-H Dataset in a noisy environment 

Classifier 
Classical Augmentation 

with PCA 

Synthetic Voice Data Augmentation with modified VGG16 

 RF 85.40% 

Support Vector Machine  91.40% 

Decision Tree (DT)  76.90% 

K-Nearest Neighbors  92.90% 

Logistic Regression (LR)  94.80% 

Naïve Bayes (NB)  83.20% 

modified VGG16 97.10% 

Synthetic Voice Data Augmentation with modified RESNET50 

RF 90.70% 

Support Vector Machine  69.80% 

Decision Tree (DT)  69.80% 

K-Nearest Neighbors  56.70% 

Logistic Regression (LR)  62.70% 

Naïve Bayes (NB)  69.80% 

modified RESNET50 93.30% 

Synthetic Voice Data Augmentation with modified Inception-v3 

RF 96.30% 

Support Vector Machine  95.00% 

Decision Tree (DT)  74.00% 

K-Nearest Neighbors  97.00% 

Logistic Regression (LR)  94.00% 

Naïve Bayes (NB)  84.90% 

modified Inception-v3 97.00% 

Proposed Model  99.92% 
 

5. Conclusion 

This paper presents a robust framework for automatic spoken language identification in noisy environments 

by integrating PCA and LDA. The proposed approach leverages OpenSMILE for comprehensive feature 

extraction, followed by PCA to reduce the dimensionality and enhance computational efficiency. LDA is 

subsequently applied to maximize class separability, improving the system’s ability to distinguish between 

languages even under challenging acoustic conditions. Experimental results demonstrate that the proposed 

model outperforms various classification techniques, achieving high accuracy across varying noise levels, 

test set proportions, and number of principal components. The proposed model achieves an accuracy of 

99.92% on the IIIT-H Indic speech dataset in a noisy environment. These findings highlight the model’s 
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effectiveness in maintaining high accuracy despite the presence of noise, reinforcing its applicability in real-

world multilingual speech processing tasks. The paper establishes the proposed model as a promising 

solution for ASLID, with potential future enhancements through deep learning-based feature representations 

and advanced noise adaptation strategies to further enhance performance in challenging acoustic 

environments. 
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