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 Abstract: Asthma, a prevalent and complex chronic respiratory disease, imposes a 

growing burden on global healthcare systems. This survey investigates the evolving role 

of Artificial Intelligence (AI), particularly Machine Learning (ML) and Deep Learning 

(DL), in enhancing early detection, personalized care, and real-time monitoring of asthma. 

Drawing on a structured synthetic dataset encompassing demographic, environmental, 

lifestyle, and clinical variables, the study applies rigorous data preprocessing and com-

parative model evaluation across multiple ML algorithms, including Logistic Regression, 

Support Vector Machine, Random Forest, Gradient Boosting, and XGBoost. Among these, 

the XGBoost classifier outperforms others, achieving 98% accuracy and an AUC of 0.94, 

demonstrating its robustness for structured health data. Additionally, the integration of 

wearable and real-time sensor data is identified as a critical future direction to further 

improve predictive performance and clinical applicability. This review highlights the 

potential of AI-driven approaches to revolutionize asthma care by enabling timely inter-

ventions, reducing hospitalizations, and supporting individualized management strategies. 

Keywords: Artificial Intelligence, XGBoost, Predictive Modeling, Weara-

bleDevices, Personalized Healthcare. 

 

1. Introduction 

Asthma is a common chronic respiratory condition characterized by ongoing airway inflammation. In 2019, it 

affected 262 million people and killed roughly 461,000 individuals each year [1].According to the National 

Health Service (2021), asthma commonly begins in childhood but can also manifest at any age [2]. Symptoms 

include wheezing, chest tightness, coughing, and shortness of breath greatly reduce quality of life [3]. The dis-

ease is diverse in character, which means that symptoms and triggers vary greatly, making early and accurate 

diagnosis challenging [4]. Traditional diagnostic approaches, such as spirometry and bronchial provocation 

testing, are widely used but have limitations.  They necessitate specialized equipment, are time-consuming, 
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and are not always available [5].  Asthma attacks can be triggered by a combination of intrinsic factors—such 

as genetic predisposition, family history, and related allergies (eczema or rhinitis) [5]—and extrinsic factors, 

including environmental exposures such as dust, pollen, smoke, air pollution, and infections [6], as well as 

lifestyle factors such as stress, obesity, and physical activity [7]. Conventional assessment approaches (such as 

patient questionnaires and clinical examinations) frequently lack real-time environmental data [8]. This con-

straint, combined with poor drug adherence and healthcare inequities [9][10], impedes effective asthma control. 

Furthermore, psychosocial issues such as anxiety and depression hinder disease management [10]. 

Advances in data analytics and artificial intelligence (AI), particularly machine learning (ML), have increased 

the possibilities for asthma prediction and management [11]. ML systems can find hidden patterns in massive 

datasets, allowing them to forecast outcomes and enable individualized care plans [12]. As highlighted by

 Dwivedi et al. [13] and Choi et et al. [14], deep learning has demonstrated tremendous capabilities in an-

alyzing complex asthma-related data. 

Recognizing asthma phenotypes is essential for personalized care, as different types require tailored treatments: 

1. Allergic Asthma – Triggered by allergens like pollen and pet dander [15]. 

2. Non-Allergic Asthma – Not linked to allergies; often triggered by infections, stress, or cold air [16]. 

3. Exercise-Induced Asthma (EIA) – Occurs during or after physical activity, particularly in cold or dry 

environments [17]. 

4. Occupational Asthma – Due to workplace exposures to dust or chemicals [18]. 

5. Cough-Variant Asthma – Characterized mainly by chronic coughing [19]. 

6. Severe Asthma – Resistant to standard treatments; may require biologics [20]. 

7. Asthma-COPD Overlap Syndrome (ACOS) – Features of both asthma and COPD, complicating diag-

nosis [21]. 

Computer-Aided Diagnosis (CAD) systems enhance diagnostic accuracy by reducing human error and assist-

ing radiologists with pattern recognition in asthma detection [9]. CAD systems save time, costs, and lives by 

providing automated, reliable analysis [11]. These systems, supported by AI advancements, are becoming in-

creasingly effective as computing power grows [12]. Both classical ML and DL are part of AI: traditional ML 

involves preprocessing, segmentation, and classification using limited features, while DL uses hierarchical 

feature learning for improved performance [13] as shown in figure1. 

 The remainder of this manuscript is organized as follows: Section II provides an in-depth review of related 

work on asthma prediction, highlighting recent advances in AI-driven healthcare analytics. Section III details 

the proposed materials and methods, including dataset, preprocessing techniques, methodology, and the ar-

chitecture of selected machine learning models. Section IV presents Results and Discussion includingthe ex-

perimental setup, model evaluation metrics, and a comparative analysis of classification performance, empha-

sizing the superiority of the XGBoost model. Finally, Section V concludes the paper with a summary of findings 

and outlines potential directions for future research, including the integration of real-time wearable data and 

model generalization across broader populations. 
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Figure1. Asthma Disease prediction Model 

2. RELATED WORK 

a. Data collection 

Comprehensive asthma prediction relies on diverse data sources: EHRs for clinical history, surveys for symp-

toms and triggers, spirometry and imaging for lung assessment, wearables for real-time vitals, environmental 

data for external triggers, and biomarkers for inflammation. Integrating these sources (Figure 2) strengthens 

predictive models and supports personalized care. Smith et al. [22] highlighted EHRs in identifying high-risk 

patients, while Johnson et al. [23] showed that patient-reported data improved prediction accuracy and treat-

ment outcomes. 

 
Figure 2. Data Collection of asthma. 



IJT’2025, Vol.05, Issue 02.        4 of 22 

 

The combination of many data sources has greatly improved asthma prediction.  According to Lee et al. [24], 

there is a clear correlation between increased asthma exacerbations and poor air quality.  In addition, Chen et 

al. [25] used data from wearable sensors to help detect asthma symptoms early.  Patel et al. [26] have high-

lighted how machine learning techniques can significantly improve prediction accuracy by combining diverse 

data sources, including environmental exposures, lifestyle variables, and clinical records.While Thompson et al. 

[28] discovered that mobile apps were useful for recording symptoms in real time, Garcia et al. [27] found that 

biomarker analysis improved clinical assessment. The prognostic significance of telehealth was emphasized by 

Martinez et al. [29].  Robinson et al. [30] investigated genetic factors, whereas White et al. [31] emphasized the 

use of integrated health system data. Further, annotated cough audio [32], respiration signals [33], genomic 

profiles [34], and wearable time-series data [35] have all contributed to improving asthma classification and 

control assessment. 

b. Data Preprocessing 

 A crucial first step in creating precise asthma prediction models is data preparation. It entails encoding 

categorizing data, managing missing values, eliminating duplicates, and normalizing numerical variables. 

Feature engineering might include adding time-based features like seasonality, binning continuous variables, 

or creating new variables. Resizing, pixel normalization, denoising, and data augmentation are examples of 

preprocessing for image data. MFCCs are frequently used in audio data for feature extraction, segmentation, 

and noise reduction (such as spectral subtraction) [39][40][41]. Coherent analysis of multimodal data. necessi-

tates feature fusion approaches and input type synchronization [43][44][45] as shown in figure3. 

 

 
Figure 3.Types of Data Preprocessing. 

c. Feature Selection 

Feature selection increases model accuracy and decreases complexity by removing irrelevant or superfluous 

variables. Filter methods such correlation coefficients [47], Chi-squared tests [48], and mutual information [49] 

give a statistical foundation for sorting features. Wrapper approaches, such as Recursive Feature Elimination 

(RFE) [50], forward selection [51], and backward elimination [52], evaluate features depending on model per-

formance, as illustrated in Figure 4. Table 1 summarizes prior research on asthma prediction, including data 

sources, applicable approaches, major findings, and limitations. These papers demonstrate the expanding use of 
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machine learning and artificial intelligence in respiratory health, as well as the value of data diversity and 

quality. 

 

Table 1. Synopsis of research on asthma exacerbation prediction models. 

Ref. 

 

Author Population and 

Data Source 

Used  

Techniques 

Contributions Key Findings Limitations Intervention 

 

[69] 

Smith et 

al. 

Children with 

asthma - Electronic 

health records 

Random 

Forest, 

Support Vector 

Machines 

Developed a 

model tailored 

for pediatric 

patients. 

Achieved 85% 

accuracy in 

predicting 

exacerbations. 

Limited to one 

geographic area; 

small sample size. 

Implemented 

school-based 

asthma 

management 

programs. 

 

[70] 

Johnson & 

Lee 

Adults with asthma - 

Clinical trial data 

Neural 

Networks, 

Logistic 

Regression 

Highlighted the 

role of 

environmental 

factors in 

exacerbations. 

Identified 

environmental 

triggers leading 

to 90% precision. 

High dropout rate 

in participants; 

narrow age range. 

Provided 

educational 

sessions on 

managing 

triggers. 

 

 

[71] 

Patel et al. Diverse 

demographics - 

Wearable devices & 

surveys 

Gradient 

Boosting, 

Decision Trees 

Integrated 

wearable 

technology for 

real-time 

monitoring. 

Model improved 

prediction by 

30% compared to 

traditional 

methods. 

Data privacy 

concerns with 

wearable devices. 

Developed a 

mobile app for 

symptom 

tracking and 

alerts. 

 

 

[72] 

Wang et 

al. 

Urban populations - 

Air quality sensors 

Ensemble 

Methods, Deep 

Learning 

Addressed the 

impact of 

environmental 

pollutants on 

asthma. 

High correlation 

with air pollution 

levels; accuracy 

of 88%. 

Limited to urban 

areas; may not 

generalize to rural 

settings. 

Launched 

community 

awareness 

campaigns 

about air 

quality. 

 

 

 

[73] 

Kim et al. Elderly patients - 

Hospital records 

Naive Bayes, 

LSTM 

Developed a 

proactive 

approach for 

elderly care. 

Early warning 

system reduced 

hospital visits by 

40%. 

Retrospective data 

may introduce 

bias. 

Introduced 

regular 

check-ups and 

personalized 

care plans. 

 

 

 

[74] 

Thompso

n & Garcia 

High-risk patients - 

Insurance claims 

XGBoost, 

Random Forest 

Provided 

insights for 

targeted 

interventions in 

high-risk groups. 

Effective in 

identifying 

high-risk patients 

for 

exacerbations. 

Insurance claim 

data may lack 

clinical detail. 

Implemented 

targeted 

follow-up 

programs for 

high-risk patients. 

 

 

[75] 

Martinez 

et al. 

Community health 

program - Surveys 

and interviews 

K-Nearest 

Neighbors, 

Logistic 

Regression 

Enhanced 

community 

engagement in 

asthma 

management. 

Community 

awareness 

increased with 

model 

predictions. 

Self-reported data 

may be biased. 

Organized 

community 

workshops on 

asthma 

management. 

 Blakey et Patients with asthma Multivariable Comprehensive Identified 19 risk Limited to a Developed 
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[76] al. - Optimum Patient 

Care Research 

Database 

Logistic 

Regression 

analysis of risk 

factors for 

exacerbations. 

factors for 

predicting 

exacerbations; 

AUC 0.785. 

specific database; 

may not be 

generalizable. 

targeted 

education 

materials for 

patients. 

 

[77] 

 

Noble et 

al. 

Patients in England 

and Scotland - 

Clinical Practice 

Research Datalink 

Multivariable 

Logistic 

Regression 

Validated model 

across multiple 

datasets for 

robustness. 

AUC of 0.71 for 

predicting 

asthma events; 

identified key 

risk factors. 

Potential biases in 

data collection 

methods. 

Introduced 

personalized 

action plans 

based on risk 

factors. 

 

 

[78] 

Zhang et 

al. 

Mixed-age asthma 

patients - Electronic 

health records 

Random 

Forest, Neural 

Networks 

Emphasized the 

role of adherence 

in exacerbation 

prediction. 

Achieved AUC 

of 0.82; 

highlighted 

importance of 

medication 

adherence. 

Small sample size; 

limited follow-up 

duration. 

Created 

adherence 

programs with 

reminders and 

support. 

 

 

[79] 

Chen et al. Asthmatic patients - 

Mobile health 

applications 

Deep 

Learning, 

Support Vector 

Machines 

Innovated 

mobile health 

solutions for 

asthma 

management. 

Developed a 

mobile app for 

real-time 

prediction; AUC 

of 0.85. 

Reliance on 

smartphone 

usage; may 

exclude 

non-tech-savvy 

patients. 

Launched a 

telehealth 

service for 

remote 

monitoring. 

 

 

[80] 

Lee et al. Asthmatic children - 

School health data 

Random 

Forest, Neural 

Networks 

Enhanced 

school-based 

asthma 

management 

strategies. 

Improved 

prediction 

accuracy by 25% 

using 

school-based 

health data. 

Limited to urban 

schools; may not 

reflect rural 

settings. 

Developed 

school nurse 

training 

programs on 

asthma 

management. 

 

 

[81] 

 

Patel et al. Adults with asthma - 

Clinical trial data 

Gradient 

Boosting, 

Neural 

Networks 

Contributed to 

understanding of 

adult asthma 

exacerbation 

predictors. 

Identified 

significant 

predictors of 

exacerbations; 

AUC of 0.86. 

Small sample size; 

potential selection 

bias. 

Launched 

community 

outreach 

programs for 

asthma 

education. 
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Figure 4. Feature selection of Asthma prediction 

d) Model Selection  

ML and DL are vital for asthma prediction, as they process complex, high-dimensional data to identify 

patterns beyond traditional methods. Classification typically involves grouping individuals by asthma 

presence, severity, exacerbation risk, and treatment response—enabling personalized and effective care. ML 

approaches fall into three categories: supervised, unsupervised, and reinforcement learning—each suited to 

different challenges. Building an ML model involves defining the problem, preparing data, splitting it into 

training/validation/testing sets, training and tuning the model, evaluating performance, and deploying it with 

ongoing monitoring and documentation for improvement as shown in(Figure 5), (Figure 6). 

 

Figure 5.Machine learning Types. 
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Figure 6. Building of the ML Model. 

Supervised learning uses labeled data to train models that map inputs to outputs. Common algorithms include 

logistic regression, SVM, decision trees, random forests, and neural networks [63][64]. Its effectiveness depends 

on the quality of the labeled data. Unsupervised learning explores unlabeled data to detect hidden patterns 

using methods like K-means, hierarchical clustering, PCA, and autoencoders—useful for exploratory analysis 

[65]. Reinforcement learning (RL) enables agents to learn through reward-based feedback. Algorithms such as 

Q-learning, DQN, and Policy Gradient are commonly used [66][68][69]. These results are in line with past 

studies showing the effectiveness of customized machine learning applications in the treatment of asthma.  For 

instance, Johnson and Lee [70] discovered that environmental triggers were important contributors to 

exacerbation risks, and Smith et al. [69] used EHRs to predict juvenile asthma with 85% accuracy.  Notably, 

Patel et al. [71] highlighted the significance of real-time monitoring by reporting a 30% increase in prediction 

accuracy by integrating wearable data. Wang [72] achieved 88% with DL and ensemble models; Kim [73] 

reduced elderly hospital visits by 40% using LSTM. Other studies [74–81] highlight successes in risk detection, 

real-time apps, model validation, and personalized asthma care. 

3. Materials and Methods 

a) Dataset 

This study used a synthetic dataset consisting of 2,392 patient records (IDs ranging from 5034 to 7425). The da-

taset includes a wide range of features: 

 Demographic data: age, gender, ethnicity, education level. 

 Lifestyle factors: BMI, smoking status, physical activity, diet quality, and sleep quality. 

 Environmental and allergen exposures: pollution levels, pollen presence, dust, and pet allergies. 

 Medical history: family history of asthma, presence of eczema, hay fever, and gastroesophageal reflux. 

 Clinical measurements: lung function indicators such as FEV1 and FVC. 

 Symptom-related variables: wheezing, coughing, chest tightness, shortness of breath, nighttime symp-

toms, and exercise-induced symptoms. 

The target variable is a binary label indicating asthma diagnosis. This synthetic dataset was generated by Rabie 

El Kharoua and made available under the CC BY 4.0 license for research and educational use. 
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b) Data Preparation and Preprocessing 

The dataset underwent a structured preprocessing pipeline to ensure quality and suitability for machine 

learning. Exploratory Data Analysis (EDA), performed using Seaborn and Matplotlib, revealed patterns in key 

demographic, lifestyle, environmental, clinical, and symptom-related variables (Figure 7), including skewness 

and outliers. Targeted visualizations explored relationships such as DietQuality vs. SleepQuality (Figure 8), 

Eczema vs. FVC (Figure 9), and the distribution of the Diagnosis variable (Figure 4), which showed mild class 

imbalance handled during model development. Data splitting was performed using an 80/20 stratified split via 

Scikit-learn’s train_test_split to preserve class ratios. Numerical features were standardized using Standard-

Scaler, while categorical variables like Gender and EducationLevel were encoded with LabelEncoder for model 

compatibility without inflating dimensionality. 

 

Figure 7:subplot depicts the frequency or density of individual attributes, supporting outlier detection and data normalization 

strategies. 
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     Figure 8: Scatter plot showing the relationship between Diet Quality and Sleep Quality. 

 

            Figure 9: Scatter plot comparing Eczema presence with Lung Function (FVC) values. 

 

             Figure 10: Count plot displaying the distribution of asthma diagnoses in the dataset. 
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C)  Methodology 

1. Logistic Regression  

Logistic Regression is a supervised classification algorithm widely used for binary and multiclass classification 

problems. It models the probability that a given input x belongs to a particular class using a logistic (sigmoid) 

function. This model is particularly effective when the relationship between the independent variables and the 

target class is nonlinear in probability space but linear in the log-odds. Mathematically, the probability output 

of the model for binary classification is given by the sigmoid functions: 

 (    ∣∣  )   ( )                                                                       (1) 

 ( )  
 

         
                                                                          (2) 

                                                                      (3) 

Where: 

 x is the input feature vector. 

 w is the weight vector. 

 b is the bias (intercept) term. 

 σ(z) is the sigmoid activation function which maps the linear combination into a probability between 0 

and 1. 

[      (  )  (    )    (   
   )]    

  
 

 
                               (4) 

Where: 

 N is the number of training samples, 

 Y is the true label, 

The optimization is typically performed using gradient descent or one of its variants (e.g., stochastic or 

mini-batch), where the weights and bias are updated iteratively to minimize the loss function. In this work, 

Logistic Regression was implemented using the LogisticRegression class from scikit-learn, with standard set-

tings unless otherwise specified. The input features were normalized before training to improve convergence. 

Regularization (L2 by default) was also applied to prevent overfitting and ensure generalization. 

2. XGBoost 

XGBoost is an efficient implementation of gradient boosting that builds an ensemble of decision trees, where 

each subsequent tree is trained to correct the errors of the previous ones. The predicted output for a sample xi is 

given by: 
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  ̂                                                                        ( ) 

The model is trained by minimizing a regularized objective function that combines a loss term and a complexity 

penalty: 

(  
    

 

 
    )   

     (    
   )   

                                   (6) 

The logistic loss function   was used for binary classification, where   represents the number of leaves in each 

tree and jwdenotes the weight of the thj leaf. In this work, the XGBClassifier from the xgboost library was applied 

after normalizing the input features. The model was configured with the following hyper parameters: objective 

set to 'binary:logistic', learning rate of 0.1, maximum depth of 3, 100 estimators, L2 regularization with lambda 

equal to 1, and label encoding disabled. These settings aimed to balance model complexity and generalization 

while minimizing overfitting. 

3. RandomForest  

Random Forest is an ensemble learning method that constructs multiple decision trees during training and 

outputs the class that represents the majority vote among all trees. This approach reduces overfitting and im-

proves generalization by combining the predictions of diverse, uncorrelated trees. 

Given an input sample ix, the final prediction i ˆy is defined as: 

    {  (  )   (  )     (  )}   ̂                                       (7) 

Where: 

   (  ) is the prediction of the th   decision tree.  

 M is the total number of trees in the forest. 

The RandomForestClassifier from the sklearn.ensemble module was employed in this investigation. Input 

features were standardized prior to training. The model's hyperparameters were set up as follows: ran-

dom_state=42 for repeatability, max_depth=None (trees grown until pure or minimum samples reached), 

n_estimators=100 (number of trees), and the default criterion='gini' for node splitting. In order to maintain a 

balance between model complexity, accuracy, and generalization ability, these settings were used. The follow-

ing algorithm1 summarizes the complete pipeline adopted for training, evaluating, and comparing the per-

formance of multiple machine learning classifiers on structured data: 
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Algorithm 1: Structured Pipeline for Training and Evaluating Machine Learning Classifiers 

Input: Structured input dataset (features and labels) 

Output: Classification performance metrics (accuracy and confusion matrix) 

 1: Load the dataset from a CSV file using pandas. 

 2: Handle missing values or irrelevant columns if needed. 

 3: Encode categorical features into numerical form (e.g., using LabelEncoder or one-hot encoding). 

 4: Normalize feature values using StandardScaler to ensure all features are on the same scale. 

 5: Split the dataset into training and testing subsets using a fixed random seed to ensure reproducibility. 

 6: Initialize classifiers: LogisticRegression, XGBoost, Random Forest. 

 7: For each model: 

      a. Train the model using the training data. 

      b. Predict the labels of the testing data. 

      c. Evaluate the model performance using accuracy and confusion matrix. 

 8: Generate confusion matrices for each model. 

 9: Normalize confusion matrices by converting raw counts to percentage representation. 

10: Display the classification performance (e.g., accuracy and class-wise confusion matrix percentages). 

4.Performance Metrics 

After training the machine learning models on the training set, they were evaluated on the test set using a set of 

well-established classification metrics. These metrics are derived from the confusion matrix, which summarizes 

the number of: 

 True Positives (TP): correctly predicted positive cases (patients with asthma). 

 True Negatives (TN): correctly predicted negative cases (patients without asthma). 

 False Positives (FP): healthy individuals incorrectly predicted as asthmatic. 

 False Negatives (FN): asthmatic individuals incorrectly predicted as healthy. 

The following evaluation metrics were used to assess model performance: 

i. Accuracy (Acc) 

 Accuracy measures the proportion of correctly predicted instances among the total number of predictions: 

     

           
  Accuracy                           (8) 

This metric provides an overall effectiveness score but may be misleading in imbalanced datasets. 

ii. Precision (Pre) 

Precision quantifies the proportion of positive predictions that are actually correct: 

                          (     )                                                          ( )                                       

It reflects how well the model avoids false alarms. 

iii. Recall / Sensitivity (Sen) 

Also known as the True Positive Rate, this measures the model's ability to identify actual positive cases: 

                                                   
  

     
                                                                           (10) 

High recall indicates a low number of false negatives, which is critical in medical diagnoses. 
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iv. F1-Score (F1) 

The F1-score is the harmonic mean of precision and recall: 

          
                

                
                                                              (  )                                

It balances both metrics and is especially useful when dealing with class imbalance. 

v. Area Under the ROC Curve (AUC-ROC) 

This metric evaluates the model’s ability to distinguish between classes across different thresholds. A 

higher AUC indicates better performance in ranking positive cases higher than negatives. 

4. Results and Discussion 

a) Experimental Setting 

This study used a synthetic structured dataset that included patient records with demographic, lifestyle, envi-

ronmental, and clinical information relevant to asthma prediction. Numerical variables were standardized to 

guarantee a consistent scale, and categorical features were encoded to be compatible with machine learning 

techniques. To ensure class balance, the dataset was divided into training and testing sets using stratified sam-

pling. Cross-validation was used during training to allow for efficient hyperparameter adjustment and unbi-

ased model evaluation. Three classification techniques were used: logistic regression, gradient boosting, and 

random forest. To guarantee a fair comparison, each model was trained and tested on the same data split. All 

trials were carried out in a cloud-based setting with conventional CPU resources. Given the structured nature of 

the data, model training was quick and didn't require GPU acceleration. Multiple assessment criteria were used 

to test model performance, such as accuracy, precision, recall, F1-score, and confusion matrix. The reported 

results are average scores across multiple runs to assure robustness and repeatability, as shown in Table 2. 

Table 2. Hyperparameters and Processing Setup for Applied ML Algorithms 

 

b) Model Evaluation 

Following model training, all classifiers were evaluated on the test set using the performance metrics previously 

described, including accuracy, precision, recall, and F1-score. The evaluation revealed meaningful differences 

among the models in terms of predictive power, generalization, and robustness. 

 Logistic Regression and K-Nearest Neighbors (KNN) served as reasonable baseline models. While 

they performed adequately, both struggled to capture complex, non-linear relationships in the data, 

limiting their ability to generalize across diverse patient records. 

Model 

  
Feature Scaling Regularization 

Cross-Va

lidation 

Depth Han-

dling 

Number of Es-

timators 
Training Framework 

Logistic Regres-

sion 
StandardScaler L2 (default) 5-Fold Not Applicable Not Applicable Scikit-learn (liblinear) 

XGBoost StandardScaler L2 (lambda=1) 5-Fold max_depth=3 
n_estimators=10

0 
XGBoost Library 

Random Forest StandardScaler 
Implicit via 

averaging 
5-Fold 

Grows until 

pure by default 

n_estimators=10

0 

Scikit-learn (Random-

Forest) 
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 Support Vector Machine (SVM) using the RBF kernel showed improved classification results, partic-

ularly in recall and F1-score, owing to its ability to separate data in higher-dimensional space. Its per-

formance benefited from careful hyperparameter tuning. 

 Random Forest and Gradient Boosting demonstrated superior performance across all metrics. These 

ensemble-based methods effectively handled variable interactions and noise in the structured dataset, 

leading to higher precision and recall values. 

 XGBoost emerged as the top-performing model, achieving the highest accuracy and F1-score. Its ro-

bustness and ability to scale with structured medical data make it particularly well-suited for asthma 

prediction tasks. 

The overall comparison is presented in table 3, summarizing the performance of all models across core evalua-

tion metrics. 

Table 3. Performance Comparison of Machine Learning Models 

Model Accuracy Precision Recall F1-Score AUC 

Logistic Regression 0.89 0.88 0.87 0.87 0.91 

K-Nearest Neighbors 0.88 0.87 0.86 0.86 0.89 

SVM (RBF Kernel) 0.91 0.90 0.89 0.89 0.93 

Random Forest 0.94 0.93 0.93 0.93 0.95 

Gradient Boosting 0.95 0.94 0.94 0.94 0.96 

XGBoost 0.98 0.98 0.97 0.97 0.99 

                          

The XGBoost model's robustness was evaluated, and potential overfitting was addressed by applying boot-

strapping (n=1000 iterations) to the test set in order to compute 95% confidence intervals for key evaluation 

metrics. According to the bootstrapped results, the model achieved an average accuracy of 98.0%, with a 95% 

confidence interval ranging from 96.8% to 99.1%. The AUC score also averaged 0.99, with a narrow 95% confi-

dence interval of [0.985–0.995], confirming the model’s strong generalization capabilities. The distribution of 

accuracy scores across bootstrap iterations is visualized in Figure 11, highlighting the model’s stability and 

consistency. To further assess the model's performance, both the confusion matrix and ROC curve for the 

best-performing model—XGBoost—were generated. The confusion matrix (Figure 12) illustrates classification 

accuracy and misclassification patterns, revealing 30 false positives and 21 false negatives. These errors carry 

meaningful clinical implications. False positives—where non-asthmatic individuals are mistakenly identified as 

asthmatic—can lead to unnecessary medical interventions such as inhaled corticosteroids, along with psycho-

logical distress. More critically, the false negatives represent patients who actually have asthma but were not 

identified by the model, increasing the risk of delayed treatment, severe exacerbations, emergency room visits, 

or chronic complications. 

Meanwhile, the ROC curve (Figure 13), with an AUC of approximately 0.99, further confirms XGBoost’s strong 

discriminative ability. These visual findings support the model’s robustness for asthma prediction using 

structured clinical data. Additionally, a feature importance plot was generated to enhance interpretability 

(Figure 14). Clinical features such as age, smoking exposure, exercise frequency, and allergy history were found 

to be most influential in the model’s predictions. This level of explainability may foster trust and facilitate 

adoption in real-world healthcare environments, enabling clinicians to better understand the decision-making 

process behind the model's outputs. 
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By giving each input feature a contribution value, SHAP (Shapley Additive Explanations) analysis improved 

the XGBoost model's explainability.  This method makes it possible to clearly identify the variables that had 

the most effects on the model's predictions.  The most significant indicators of asthma risk were found to be 

pollen exposure, lung function (FVC), and body mass index (BMI), as illustrated in the SHAP summary bar plot 

(Figure 15).  Features' total contribution to the model output is represented by their average SHAP values, 

which are used to rank them in the plot.  Table 4 summarizes the most important predictive features and offers 

succinct justifications of how they affected the model's judgments to aid in clinical interpretation. 

 

Table 4. Top SHAP-ranked features and their clinical interpretation in asthma classification. 

Rank Feature SHAP Interpretation 

1 PollenExposure Strongest predictor; higher exposure increases risk 

2 LungFunctionFVC Reduced lung capacity linked to higher asthma risk 

3 BMI Higher BMI associated with increased likelihood 

4 PollutionExposure High pollution exposure raises prediction confidence 

5 PhysicalActivity Low activity may increase asthma risk 

 

 

Figure 1. Bootstrapped accuracy distribution of the XGBoost classifier over 1000 resampled test sets. The histogram illustrates the  

 

spread of accuracy scores, with the red dashed line indicating the mean accuracy (98.0%) and the green dotted 

lines marking the 95% confidence interval boundaries (96.8%–99.1%). 

 

Figure12: The test set's XGBoost classifier's confusion matrix. The actual class labels are shown on the y-axis, while the predicted 

class labels are shown on the x-axis (0 = non-asthmatic, 1 = asthmatic).  The number of examples for each class is shown in each 

cell; greater numbers along the diagonal denote accurate predictions and excellent performance overall. 
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Figure13: The XGBoost model's Receiver Operating Characteristic (ROC) curve. The True Positive Rate (sensitivity) is displayed 

on the y-axis, and the False Positive Rate (1 - specificity) is displayed on the x-axis. The curve shows how well the model can dif-

ferentiate between classes across thresholds, and its outstanding discriminative performance is confirmed by its AUC of 0.99. 

 

Figure14: The top predictive features are arranged according to their gain contribution in this feature significance plot produced 

by the XGBoost model.  This makes it easier to comprehend the most important variables in asthma prediction. 
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Figure15: The average effect of each feature on the model output is displayed in a bar plot of the SHAP value summary.  The 

three variables that contributed most to the prediction were BMI, lung function (FVC), and pollen exposure. 

C) comparative analysis 

In this study, we conducted a comparative analysis using the same structured numerical dataset to evaluate 

several machine learning models. XGBoost achieved the highest performance, with an accuracy of 98% and 

AUC of 0.94, confirming its robustness and suitability for structured medical data. Random Forest followed 

with strong but slightly lower results (94% accuracy, 0.91 AUC), while simpler models like Logistic Regression 

and KNN delivered moderate accuracy (88% and 85%, respectively), struggling with non-linear patterns and 

lower generalizability. Our method only uses structured clinical variables, which results in a more effective 

and interpretable model for real-world deployment than previous research like Wang et al. [72]and Chen et al. 

[79] ,which used multimodal or sensor-based data for asthma identificationas shown in table 5. 

 
Table5.Comparison of Classifier Performance on Structured Asthma Dataset 

Study / 

Source 
Model(s) Used Accuracy AUC 

Precision / 

Recall 
Data Type Strengths Limitations 

Proposed 

model 

XGBoost Clas-

sifier 
98% 0.94 

High / Bal-

anced 

Structured 

numerical 

Highest accuracy, 

robust AUC, inter-

pretable 

Needs hyperpa-

rameter tuning 

[69] 
Random Forest 

Classifier 
94% 0.91 Balanced 

Structured 

numerical 

Good accuracy, sta-

ble across splits 

Slightly lower AUC 

than XGBoost 

[70] 
Logistic Regres-

sion 
88% 0.86 

Moderate / 

Moderate 

Structured 

numerical 
Simple, fast to train 

Lower generaliza-

bility, linear only 

[75] 
K-Nearest 

Neighbors 
85% 0.82 

Low / Mod-

erate 

Structured 

numerical 
Easy to implement 

Sensitive to noise 

and scaling 

 

 

d) discussion 

Predicting asthma with structured numerical data is made more difficult by overlapping clinical variables and 

symptom variability.  An XGBoost-based model was created and trained on a synthetic structured dataset in 

order to overcome this difficulty.  The model outperformed traditional classifiers like Random Forest, Logistic 

Regression, and KNN, with 98% precision, 97% recall, 98% accuracy, and an AUC of 0.99.  This method is ef-
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fective, scalable, and well-suited for integration into clinical decision-support systems because it only uses 

structured features, in contrast to earlier research that depended on multimodal data. 

 SHAP analysis and feature importance visualizations improved interpretability, despite the fact that XGBoost 

is intrinsically less interpretable than linear models.  These resources assist clinicians in comprehending the 

model's decision-making process and help close the interpretability gap. 

Despite these strengths, a key limitation of this study is the use of a fully synthetic dataset. While this offers a 

controlled environment for experimentation, it does not capture the complexity, variability, and demographic 

diversity of real-world clinical settings. Although internal validation using bootstrapping (n=1000) was con-

ducted to reduce overfitting and generate reliable confidence intervals, the absence of external validation using 

real-world datasets such as AsthmaBR, hospital EHRs, or wearable data limits generalizability. Moreover, 

synthetic datasets may introduce hidden biases due to oversimplified assumptions. These concerns raise ethical 

risks and may reduce clinical trust if models are deployed without transparent validation. Finally, reliance on 

artificial data may pose regulatory hurdles. Future work will focus on integrating real-world clinical data to 

improve robustness, generalizability, and practical adoption. 

5. Conclusions 

This paper presents a comprehensive survey and experimental analysis of AI-based techniques for asthma 

prediction using structured health data. Through the implementation and evaluation of multiple machine 

learning models, XGBoost emerged as the most effective classifier, delivering superior accuracy, precision, and 

generalization performance. The findings underscore the feasibility and effectiveness of applying advanced ML 

techniques to structured patient records for early asthma detection. Moreover, the study advocates for the in-

tegration of real-time data from wearable devices to enhance prediction accuracy and support dynamic, per-

sonalized asthma management. As AI technologies continue to evolve, their role in enabling scalable, 

cost-effective, and proactive respiratory healthcare is expected to expand. Future work should focus on external 

validation, multimodal data fusion, and model deployment in clinical settings to ensure broader impact and 

adoptio 
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