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 Abstract: Iris recognition systems have emerged as a pivotal biometric technology, 

providing high reliability for secure authentication systems, especially in the post-

pandemic era where contactless and hygienic identification is critical (e.g., during 

COVID-19). The system uses EfficientNet-B7 to accurately extract features and encrypts 

them using Fully Homomorphic Encryption (CKKS) enabling secure matching without 

decrypting sensitive data. To store templates quickly and privately, the encrypted 

features are indexed via an enhanced Bloom filter with Homomorphic hashing, ensuring 

secure membership Verification. This framework was evaluated using CASIA-Iris-Syn 

and IITD-Iris-V1, achieving an accuracy of 99.98% (EER of 0.001) and 98.98% (EER= 

0.024), respectively, outperforming existing methods in terms of performance and 

security. By combining EfficientNet-B7 indexing, FHE, and Bloom Filter, this work 

bridges the gap between high-performance biometrics and strict data protection, making 

it suitable for use in healthcare, financial, and national identity systems.  

Keywords: Iris Recognition, Data Security, Authentication System, Convolutional 

Neural Network (CNN), EfficientNet-B7, Fully Homomorphic Encryption (FHE), Bloom 

Filter (BF). 

________________________________________________________________________ 

1. Introduction 

Biometric identification technology is a critical field in computing and security sciences, enabling the 

verification of individuals' identities based on unique biological and physiological characteristics, particularly 

iris patterns. These systems are now widely integrated into various applications, including banking, 

smartphones, and airport security [1]. However, despite their increasing adoption, improving the accuracy and 

security of biometric data remains a major concern. Unlike traditional credentials, biometric information 

cannot be easily revoked or modified once compromised. This poses ongoing security risks to users. A 

prominent example of this occurred in 2019, when the BioStar 2 system operated by Suprema, responsible for 
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managing biometric data such as fingerprints and facial recognition was compromised [2]. This breach 

exposed approximately 27.8 million records, compromising sensitive information, including fingerprints, facial 

images, unencrypted passwords, personal details, and access credentials. 

1.1 Problem Statement 

Traditional manual feature extraction methods have evolved significantly over the years. The integration 

of deep learning techniques has led to significant improvements. However, ensuring the security and privacy 

of biometric data templates remains a pressing challenge that requires continuous innovation. 

• Deep learning methods, especially end-to-end approaches, require significant computing time and 

resources [3]. 

• Some security systems are becoming increasingly vulnerable, facilitating unauthorized access to 

sensitive biometric data. Conversely, while implementing robust security mechanisms enhances protection, it 

often poses challenges in maintaining an optimal balance between system performance and security 

complexity [4]. 

1.2 Our Contribution 

To address these challenges, this study proposes a secure and efficient iris recognition framework that 

combines deep learning and advanced cryptographic techniques. Specifically, we use the EfficientNet-B7 

architecture a non-end-to-end approach to extract features accurately [5]. The extracted features are then 

protected using FHE [6] and efficiently regularized via BF [7], before being stored in a database. This approach 

enhances the accuracy and security of the system while reducing computational costs. 

          The rest of this paper is organized as follows: Section 2 provides an in-depth review of the relevant 

literature, highlighting existing approaches and identifying key research gaps. Section 3 provides a detailed 

explanation of the proposed secure iris recognition framework, including its structural components and the 

methodologies it relies on. Section 4 outlines the experimental setup, datasets, and evaluation metrics, 

followed by a comprehensive performance analysis and comparison with state-of-the-art systems. Finally, 

Section 5 concludes the paper by summarizing the key contributions and discussing potential directions for 

future research. 

2.Related Work 

Numerous studies have pioneered innovative methodologies to authenticate and safeguard biometric data 

against threats such as template reversal, theft, and unauthorized access. These approaches have integrated 

deep neural networks, cryptographic techniques, and hybrid frameworks to ensure robust security while 

maintaining high recognition accuracy. 

Soliman et al. (2018) [8] engineered a chaos-based iris recognition system using Comb Filters on CASIA-Iris-

V3-Interval, achieving 99.08% accuracy through linear transformations that ensured irreversibility and 

renewability. However, its security model was fundamentally undermined by PIN dependencies, creating 

critical revocability weaknesses despite its lightweight architecture. 

Chen et al. (2018) [9] pioneered the Deep Secure Quantization (DSQ) framework on CASIA-v4-Interval, 

merging CNN feature extraction with secure binarization to achieve 98.7% accuracy while preserving inter-

class separability. The approach's prohibitive computational demands and mandatory retraining requirements 

for new enrollments severely constrained practical scalability. 
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Wickramaarachchi et al. (2020) [10] devised a cancelable system using 1D Log-Gabor wavelets and block-wise 

transformations on CASIA-Iris-V1/V4, attaining 0.18% EER through XOR-based distortion. Methodological 

fragility emerged from block-size sensitivity, irreversible information loss during thresholding, and significant 

computational latency in key operations. 

Sudhakar et al. (2020) [11] formulated a cloud-based revocable framework for multi-modal biometrics 

(IITD/MMU), achieving 0.04% EER through two-stage transformations. Operational viability was 

compromised by excessive cloud dependency costs, inherent key management vulnerabilities, and 

computational complexity. 

Sandhya et al. (2024) [12] implemented IFO hashing with Partial Sort on CASIA-v3, demonstrating 97.3% 

recognition via P-rank Hadamard products. The system exhibited unvalidated renewability capabilities and 

impractical quadratic computational overhead during modulo threshold operations. 

Punithavathi et al. (2022) [13] enhanced LDA with random permutations across UBIRIS/IITD datasets, 

maintaining recognition efficacy under quality variations. Security relied on vulnerable PIN-based 

mechanisms while demonstrating environmental fragility through unrecoverable accuracy degradation (EER 

>5.43%) under suboptimal conditions. 

Salama et al. (2022) [14] architected a multi-layer encryption framework (DRPE/Bakerian maps) on ORL, 

achieving 0.0035 EER through watermarking and SVD. Deployment feasibility was restricted by foreign-key 

management risks and prohibitive computational costs for chaotic operations. 

Farooq et al. (2022) [15] developed an optimized CNN pipeline with variance-aware loss on CASIA-Iris-

Interval V4/MMU, reducing storage by 40% while maintaining 99.1% accuracy. Resource efficiency claims 

were contradicted by exponential computational requirements and noise amplification vulnerabilities during 

embedded transformations. 

Abdellatef et al. (2023) [16] created a CNN-based system with bio-convolutional layers across four datasets, 

sustaining >95.48% accuracy during revocation. Implementation complexity escalated system integration 

challenges, increasing attack surfaces without compensating security enhancements. 

Singh et al. (2023) [17] proposed a hybrid CNN with embedded non-invertible transformations (IITD/MMU1), 

achieving 98.9% accuracy. Generalizability concerns persisted due to environmental context sensitivity and 

narrow validation across heterogeneous datasets. 

Wu et al. (2025) [18] established a three-party FHE model using enhanced CS-LBP on CASIA-IrisV4, attaining 

0.990 AUC through BGV-encrypted comparisons. Distributed architecture introduced critical latency from 

homomorphic computation overhead and mandatory cloud infrastructure dependencies. 

2.1 Literature Gap 

Despite significant progress, current biometric template protection systems face several limitations. Many 

approaches suffer from significant computational complexity, making them unsuitable for immediate or 

large-scale deployment. Systems that rely on secret keys introduce single points of failure a key leak 

compromises the entire system. Additionally, some encryption methods based on randomness or chaos may 

be vulnerable to brute force or dictionary attacks due to limited key space. Furthermore, some frameworks 

require significant computational resources, increasing operational costs and limiting endpoint compatibility.  

Table 1 provides a comparative summary of existing approaches, including their strengths, weaknesses, and 

performance on benchmark datasets. 
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Table 1. An overview of the most recent biometrics authentication and template protections approaches. 

Ref. 

NO 

Year Authors  Methodology Iris Dataset Performance Metrics Limitations 

[8] 2018 Soliman et al. 

Gabor Filters + 

Chaotic Map 

Encryption 

CASIA-Iris-

V3-Interval 

Accuracy: 99.08% 

 EER: 1.17% 

Dependence on PIN 

weakens security and 

revocability. 

[9] 

 

2018 

 

Chen et al. 

Deep Secure 

Quantization (DSQ) 

+ CNN Features 

CASIA-v4-

Interval 

Accuracy: 98.7% 

 EER ≤1% 

High computational 

cost, retraining needed 

for new users. 

[10] 

  

2020 Wickramarachchi 

et al. 

Block-wise Feature 

Transformation + 1D 

Log-Gabor + XOR 

Key Operation 

CASIA-Iris-V1 GAR:99.43% 

FAR=0.01% 

 EER: 0.18% 

Block-size sensitivity, 

key management, 

information loss and 

computational latency. 

[11] 

 

2020 

 

 

Sudhakar et al. 

Revocable Biometric 

Framework (Deep 

Learning) 

 

MMU& IITD 

and FV-USM 

MMU: AUC=0.92, 

EER=0.14 

IITD: AUC=0.98, 

EER=0.04 ,FV-USM: 

AUC=1.00,EER=0.01 

High cost of cloud 

services. 

High computational 

complexity, cloud 

dependency, key 

management 

challenges. 

[12] 2021 M. Sandhya et al the Indexing-First-

One (IFO) hashing 

technique 

CASIA-v3 

 

Recognition Rate: 

97.3% 

no renewability tests, 

high computational 

overhead. 

[13] 2022 Punithavathi  

et al 

Linear Discriminant 

Analysis (LDA)-

with random 

permutation 

ORL, UBIRIS 

and IITD 

EER =4.21% on ORL, 

5.43% on UBIRIS, and 

6.52% on IITD 

PIN-based, no multi-

cancel testing, sensitive 

to image quality. 

[14] 2022 GM Salama  

et al 

Double Random 

Phase Encoding 

(DRPE) and chaotic 

Baker Map with 

watermarking 

ORL and MIT 

EER 0.0035, FAR 

0.0011, FRR 0.0017 

 

high computational 

costs, reliance on a 

foreign key 

https://www.inderscienceonline.com/doi/abs/10.1504/IJBM.2023.127721
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[15] (2022) Farooq et al.  Optimized CNN 

Architecture + 

Variance-Aware 

Loss Function 

CASIA-Iris-

Interval V4 & 

MMU 

Accuracy: 99.1% 

 Storage Reduction: 

40% 

High computational 

costs, sensitivity to 

noise. 

[16] (2022) E. Abdellatef et 

al 

a (CNN) with a bio-

convolution layer 

(LFW, FERET, 

IITD, and 

CASIA-IrisV3) 

recognition rates of 

99.15%, 98.35%, 

97.89%, and 95.48% 

 Complex system 

integration 

[17] (2023) Singh et al.  Hybrid CNN with 

Integrated Secure 

Transformation 

Layers 

 

IITD & MMU1 

 

 Accuracy: 98.9% 

 EER: 0.8% 

Based on limited data, 

and sensitivity to 

environmental context. 

[18] 

 

(2025) 

 

Wu et al. FHE-Enabled 

Processing + 

Enhanced CS-LBP 

Features 

CASIA-IrisV4 accuracy of 97.0%, 

recall of 96.5%, F1-

score of 96.7%, and an 

AUC of 0.990 

High computational 

costs and Requires 

cloud computation 

Unlike previous methods that rely on secret keys or computationally expensive encryption, the proposed 

framework leverages FHE and Bloom filters to provide secure, scalable, and reversible iris recognition with 

minimal compromise to speed or accuracy. 

3. The proposed system 

 This section outlines the proposed methodology, which is systematically structured into two principal 

stages: preprocessing and feature extraction, data security during the enrollment phase, and the verification 

phase as shown in Fig. 1. Each stage incorporates meticulously designed procedures aimed at ensuring the 

secure processing and reliable verification of biometric information. The following subsections provide a 

detailed overview of each stage along with their constituent components. 
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Fig. 1 Enrollment and verification phases Block diagram 

3.1 ENROLLMENT PHASE 

3.1.1 preprocessing and feature extraction 

        To improve image quality before feature extraction, an effective image preprocessing pipeline has been 

created, as shown in Fig. 2. This pipeline is a series of linked operations designed to improve edge clarity, 

reduce noise, optimize contrast, and fine-tune texture details, all of which contribute to a more accurate and 

efficient extraction of iris characteristics. Each preprocessing step and its significance are explained in depth 

in the section that follows. 

 

Fig. 2 Preprocessing and feature extraction diagram 
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a. The input image is resized to a standardized resolution of 600×600 pixels, aligning with the input 

size requirements of most deep learning architectures. This normalization step ensures consistency 

across all samples and compatibility with fixed-dimension model inputs. 

b.  Generate a color image with three color channels (RGB) from grayscale. We reject any additional 

channels, including alpha channels, from the image and convert it to RGB with just three channels. 

This ensures that the image is prepared for use with procedures that call for three color channels. 

c. To improve contrast, particularly in images with poor lighting, apply CLAHE (Contrast Limited 

Adaptive Histogram Equalization) [11] to the image's luminance channel (L). This technique 

enhances contrast in low-contrast areas while reducing the amplification of noise in uniform zones. 

d.  Use a bilateral filter [20] with precise settings for density and spatial smoothing. This filter is perfect 

for maintaining small details in texture-rich images since it reduces noise but retains edge integrity. 

e. To minimize salt and pepper noise while maintaining edge sharpness, smooth the image with 

a Wiener filter with a kernel size of 5 [21].  

f. To improve edges and highlight parts important to analysis, including borders in iris patterns, use 

unsharp masking [22], which involves removing a blurred version of the picture from the original 

and combining the results. 

g.  Use Gabor filters [23] with particular frequencies and directions to extract texture information. This 

is done in order to capture structures and patterns that are crucial for extracting biometric features, 

including ridges or circular textures in the iris.  

h. The global histogram equation [24] can be utilized to enhance the overall contrast.  

i. Adjust the values of pixels to correspond with the model's expected range (for example, scaling 

values to [0, 1] or [-1, 1]). 

          After enhancing the input images through the proposed preprocessing pipeline, it becomes well-

prepared for feature extraction using the EfficientNet-B7 architecture. 

3.1.2 Feature extractions using EfficientNet-B7 

EfficientNet-B7 is an advanced convolutional neural network (CNN) architecture designed to strike an 

optimal balance between computational efficiency and recognition accuracy. It is particularly well-suited for 

visual recognition tasks such as image classification and biometric feature extraction [5]. The network 

employs a compound scaling method that adjusts depth, width, and input resolution, providing high 

performance with fewer parameters and reduced computational cost. 

The architecture consists of seven key blocks (illustrated in Fig. 3), each incorporating Mobile Inverted 

Bottleneck Convolutions (MBConv) and Squeeze-and-Excitation (SE) modules. These features enable 

EfficientNet-B7 to extract hierarchical and discriminative features while minimizing memory usage, making 

it ideal for deployment in resource-constrained environments such as embedded and mobile systems. 

For feature extraction, the classification head is removed, and a Global Average Pooling (GAP) layer is added 

after the final convolutional block [25]. This configuration produces a compact, high-dimensional feature 

vector that captures the crucial spatial and textural details of the iris image. 

Given a preprocessed iris image                , the model generates a feature vector          using the 

following operation:   
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      (               ( ))          (1) 

Where, v represents the extracted feature vector, which is both compact and discriminative.  This vector is 

then normalized and utilized as the biometric template for secure enrollment and authentication [5]. 

Additionally, fine-tuning the model on iris-specific datasets can further improve the discriminative power of 

the features, enhancing the model's ability to distinguish between individuals as illustrated in Fig. 4. 

      This approach ensures the features are not only accurate but also maintains privacy, enabling secure 

storage and matching through encryption techniques like FHE and Bloom Filter indexing  

.  

Fig. 3 Architecture of EfficientNet-B7 (Cited by [26]) 

 

Fig. 4 Comparison of Extracted Feature Values for Two Different Persons' Iris Datasets Without Applying a Security Phase 

After completing feature extraction, it is time to implement the biometric template security phase. This phase 

aims to enhance the security of biometric data by applying advanced encryption methods, specifically the 
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CKKS algorithm, to the feature vectors extracted using EfficientNet-B7. The encryption is implemented using 

the Tensor Secure Encrypted Arithmetic Library (Tenseal), a specialized framework for integrating 

encryption with 2560 deep learning outputs. The resulting encrypted features are then securely stored in the 

Secure Biometric File (BF).  

Applying CKKS 

         FHE is an encryption method that enables arithmetic operations on encrypted data without decryption. 

This innovative approach provides a robust privacy solution for machine learning and cloud computing 

environments, allowing secure processing of sensitive data while maintaining confidentiality. Among 

various FHE schemes, the Cheon-Kim-Kim-Song (CKKS) scheme, available through the TenSEAL library, is 

specifically designed for secure machine learning applications [28]. CKKS simplifies mathematical operations 

on plaintexts, distinguishing it from other asymmetric encryption methods limited to integer operations. It 

supports floating-point arithmetic and enables approximate operations like addition, multiplication, and 

scaling. This is achieved by encoding input floating-point numbers and scaling them using a predetermined 

scaling factor, effectively converting them to integers. The encryption environment was configured using the 

TenSEAL library as shown below: 

3.1.3.1 Creating a Cryptographic Context: 

The first step creates a cryptographic context using the CKKS algorithm, enabling the system to perform 

operations on encrypted data and generate necessary keys. This includes: 

 Poly modulus degree: Specifies the polynomial degree (32768), chosen to balance computational 

accuracy with memory efficiency for complex mathematical operations. 

 Coeff mod bit sizes: Determines coefficient precision (60 bits for first/last, 40 bits for middle 

coefficients) balancing speed and accuracy. 

 Relinearization keys: Simplify encrypted data after multiplication operations. 

 Galois keys: Enable advanced mathematical operations like rotation on encrypted data without 

decryption. 

 Public/Private keys: Used for encryption and decryption [29]. 

3.1.3.2 Features encryption process: 

 After performing iris feature extraction using EfficientNet-B7, the resulting vector represents the unique 

texture patterns of the iris and can be expressed mathematically as: 

  [               ]                  (  ) 

 Floating-Point to Integer Conversion Since the CKKS encryption scheme operates on integers (not 

floating-point numbers), the first step is to scale the real-valued features using a scaling factor Δ . This 

ensures compatibility with homomorphic operations while preserving numerical precision. 

 ( )     ( )              ( ) 

Where: 

 ( ) : The original feature vector (e.g., from EfficientNet-B7). 



IJT’2025, Vol.05, Issue 02.        10 of 22 
 

 

  : 2²⁰ is the scaling factor. 

 ( ) : The scaled integer version of the vector. 

Example 

  [                        ]                     ( ) 

after Scaling 

 ( )            [                         ]                ( ) 

 

 Encryption Using the CKKS  

Once the feature vector has been converted into an integer polynomial form, it is encrypted using the CKKS 

algorithm. The encryption generates a ciphertext Ct consisting of two components:         , calculated 

as: 

                  ( ) 

        ( )                   ( ) 

                           ( ) 

Where: 

   and  : Polynomials derived from the public key. 

   : A randomly generated polynomial used to blind the message and provide semantic security. 

  : The modulus, which defines the valid range of values in the ciphertext space. 

   : (  ,   ): represents the ciphertext, which consists of two polynomials resulting from the encryption 

process. 

      ,    : Noise/error terms added for semantic security. 

 The final encrypted representation is: 

This encrypted representation can only be decrypted using the corresponding secret key, ensuring that the 

biometric data remains secure throughout its lifecycle. 

Size of 2 polynomials × 32,768 coefficients (  ) ≈4MB total     

         After encryption, mathematical operations—including addition, multiplication, and rotation can be 

applied directly to the encrypted data using specialized keys, such as Galois keys for rotation and linear 

keys to streamline post-operation data (e.g., after multiplication). The encrypted features are then 

forwarded to two places BF for fast reply on query and the other to database further processing 

3.1.4 Using BF  

A Bloom filter is a probabilistic data structure used to test whether an element is a member of a set. It is a 

space-efficient technique that allows for fast membership tests, but it may produce false positives 

(indicating an element is in the set when it is not) but never false negatives (missing an element that is 
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actually in the set [30]. Figure 5 illustrates the workflow from a search item to a result via hash functions 

and the bit array. 

 Core Components: 

o Bit Array (BF): A binary vector of size m, initialized to zero:   [       ](        ) 

o Hash Functions: A set of k independent hash functions {          } , where each hi maps an input 

element to a position in BF:            {         } 

 

Fig. 5 An example for Bloom Filter Workflow 

 Key Characteristics of the Bloom Filter: 

o Space Efficiency: Encodes set membership using O(m) bits, significantly reducing storage overhead 

(e.g., 1 MB can represent ~1 million items). 

o Constant-Time Operations: Insertion and querying exhibit O(k) complexity (effectively O(1) for fixed k), 

ideal for latency-critical systems. 

o Probabilistic Accuracy: 

 No false negatives: If:              ( )       

 Controlled false positives:  (              )  (    
  

 )
 

          ( ) 

Where: 

m: total number of bits in the bit array. 

n: number of inserted elements. 

k: number of hash functions used. 

o Privacy Preservation: Stores only hashed indices; original data cannot be reconstructed from the BF. 

 Integrating the Bloom Filter with CKKS Encryption 

In the described biometric security system, the Bloom Filter is cleverly integrated with the CKKS (Cheon-

Kim-Kim-Song) homomorphic encryption scheme. This combination leverages the privacy ensures of 

CKKS and the speed/efficiency of the Bloom Filter for an initial screening process. 

 

 Workflow: 

o Recording Phase (Storing Encrypted Features): 
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To create a fingerprint suitable for the Bloom filter, a technique called homomorphic-256 hashing is applied 

to the ciphertext    . This type of hash is specifically chosen for its consistency with the encrypted data 

and, more importantly, because it tends to preserve the similarity between the original input vectors 

[31]. This means that similar cryptographic biometric features will produce a similar hash. Standard 

hashing algorithms such as SHA-256 do not have this property. Implementing Bloom filter hash 

functions, the output of the homomorphic hashing step is then passed through independent 

conventional hash functions {          }  

o For each hash function i (where i = 1 to k): 

 Calculate index:            (               (   ))       

 Where m is the size of the Bloom filter bit array 

o Set corresponding bits in (BF) to 1: 

           [      ]        [      ]            [      ]                 (10) 

This operation effectively stores a secure and concise representation of the encrypted biometric data in the 

BF. 

To mitigate false positives while maintaining security ensures, a threshold-based verification approach is 

applied. For example, requiring 90% of the computed bit positions to be set strikes a balance between 

reducing false positives and maintaining acceptable false negative rates. The system uses a 10,000-bit BF 

with SHA-256 hash, designed to store 1,000 cryptographic blocks, achieving an improved false positive 

rate of approximately 1.74%. This configuration reduces the average verification time from 0.7 seconds 

(full similarity calculation) to 0.1 milliseconds (Bloom filter check), representing a 7,000-fold 

improvement in performance. 

3.1.5 Keys Management: 

Encryption keys are considered expired after one week. Using the old keys, the previously encrypted features 

are decrypted first to perform the update. The newly generated keys are then used to re-encrypt the 

features. Both the old encrypted features and the expired keys are deleted according to the renewal 

principle. To ensure synchronization with the updated keys during the registration process, new keys 

are securely sent to users during the request phase. Using the old keys to decrypt the previously 

encrypted feature, the equation for decryption is: 

  [(          )    ]              (11) 

This equation reconstructs an approximation of the original message   by combining the components of the 

ciphertext with the private key, reducing the result modulo q, and finally dividing by the scaling factor Δ 

to recover the plaintext in its expected numeric range, after decrypting the features, the system generates 

new keys and re-encrypts the features using them, as described in Sections 3.1.3.4 and 3.1.3.2. The 

encrypted item is then stored in the BF and DB. 

3.2 Verification Phase 

When a new biometric sample is entered for verification, the same steps as in the registration phase are 

performed: feature vectors are extracted, features are encrypted using the same CKKS parameters, and 

the output is fed into a Bloom filter. The verification phase consists of two verification processes: the first 

using a Membership Queries in a Bloom Filter and the second using encrypted similarity function to 

ensure fast and secure comparison. 
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3.2.1 Membership Queries in a Bloom Filter: 

To verify the presence of an encrypted feature in a Bloom filter, the same homomorphic hash transform is 

applied to the Bloom filter and the encrypted data in the query. This results in identifying the 

corresponding bit positions in the Bloom filter: 

 Positive probability: When all or most of the bits in the computed positions are set to 1, this is considered 

a likely indication of the presence of the encrypted feature in the filter (with the possibility of false 

positives). 

 Negative certainty: If less than 90% of the bits in the specified positions are set to 1, This confirms that 

the feature is not present (or enrolled) in the filter. 

3.2.2 Using encrypted similarity function:  

The calculate encrypted similarity function provides a secure and confidential method for determining the 

similarity of two hashed feature vectors [32]. This function maintains data confidentiality throughout the 

calculation process using the encrypted data. This method, its mathematical basis, and its practical 

benefits will be explained in detail below. 

3.2.3 Mathematical Foundations of Cosine Similarity 

       In machine learning and data analysis, cosine similarity—a measurement of the cosine of the angle 

between two vectors in a dimensional space is frequently used to evaluate how similar two vectors are, 

despite their magnitude [33]. The following is the formula for the cosine similarity between encrypted 

vectors    and   : 

      (     )  
   (         )

   (     )     (      )
           (  ) 

Where: 

               : represent the Euclidean norms (magnitudes) of vectors     and    , respectively. 

           : denotes the dot product of the two vectors. 

         The encrypted features are kept secret during the computation since these operations (dot product and 

Euclidean norm) are applied directly to the encrypted features in homomorphic encryption, without the 

need for decryption.  

3.2.4 Steps of the Process 

o Step 1: Compute the Encrypted Dot Product 

TenSEAL's dot product function is used to immediately calculate the dot product between the two encrypted 

vectors from DB and query after proceeding Membership Queries in a Bloom Filter,     and    (      ), 

on the encrypted feature. Similarly, the squared magnitudes of the vectors are computed by taking the 

dot product of each vector with itself (          and      ) 

 Because these computations are homomorphic, the data is encrypted during the entire process. 

o Step 2: Decrypt the Intermediate Results 

The private key is used to decrypt the encrypted results after the dot product has been calculated.        (the 

product of the two vectors' dot values.)          and       (the vectors' squared magnitudes). 

o Step 3: Compute Cosine Similarity 
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The square roots of the decrypted squared magnitudes (        and       ) are used to calculate the Euclidean 

norms       and     . After that, cosine similarity is computed using the previously stated formula. This 

part will take place after the data has been decrypted since homomorphic operations like division and 

square roots are computationally costly. 

o Step 4: Decision Criteria 

A predetermined threshold (such as 0.9) is compared to the calculated cosine similarity score. Vectors are 

considered to belong to the same person if the similarity score is higher than the threshold, and vectors 

are considered to belong to two different people if the similarity score is lower. 

4. Materials and Results 

To implement the proposed iris recognition system, two widely recognized public databases were 

employed: CASIA-Iris-Syn [34] and IITD-Iris-V1 [35]. These datasets offer distinct characteristics that allow 

for comprehensive evaluation under both synthetic and real-world conditions. All experiments were 

conducted using the Kaggle platform [36], which provided a scalable and flexible computing environment 

suitable for deep learning and cryptographic operations. 

4.1 Datasets and Implementation Details 

For Dataset Description, Table 2 summarizes the key features of the selected databases: 

Table 2. Characteristics of the Databases Used 

Field CASIA-Iris-Syn IITD-Iris-V1 

Number of Images 10,000 10,000 

Individuals Number 1000 225 

Dimensions (Pixels) 640 × 480 320 × 240 

Type of Images 
Synthetic (Generated by 

Computer) 

Natural Near-Infrared 

(NIR) 

Extension .jpg .jpg 

Implementation Platform 
 

Kaggle 

 

4.2 Data Partitioning Protocol 

To ensure robustness and prevent data leakage during model training and testing, a subject-specific 

partitioning strategy was adopted: 

 For CASIA-Iris-Syn, each subject contributed 10 images. Eight images per subject (80%) were used for 

fine-tuning, while the remaining two images (20%) formed the test set. 

 For IITD-Iris-V1, where the number of images per subject varied, 80% of each subject's images were 

allocated for training/fine-tuning, with the remaining 20% reserved for testing. 
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4.3 Experimental Setup: 

The implementation followed the configuration detailed in Table 3. 

Table 3. Experimental Setup Details 

Component Configuration details 

Image Standardization Resized images 600×600 pixels 

EfficientNet-B7 
Pre-trained on ImageNet; fine-tuned for 50 epochs (Adam optimizer, LR=1e-4, 

batch size=32) 

Encryption 
CKKS via TenSEAL (poly modulus degree=32,768; scaling factor=2²⁰; coeff 

modulus bits=[60,40,60]). 

Bloom Filter (BF) 
Size=10,000 bits,k=4 homomorphic hash-256 hash functions, False Positive 

rate=1.74%. 

Hardware/Software Platform: Kaggle (Python 3.10, PyTorch 2.0, TenSEAL 0.3.12). 

4.4 Evaluation Metrics 

The evaluation metrics (FAR, FRR, EER, precision, specificity, recall, F1 score, and accuracy) were calculated 

by comparing the similarity scores between images of the same individual (positive scores) and images of 

different individuals (negative scores) using specific threshold (e.g., 0.9).  

4.5 Computational Performance and Execution Time 

Due to the integration of computationally intensive operations such as encryption and homogeneous 

operations, understanding execution time is essential for practical application. Table .4 shows Average 

Execution Times for Processing a Single Iris Image  

Table 4. Average Execution Times for Processing a Single Iris Image 

Loading the 

image 

Preprocessing 

the images 

Feature 

Extraction 

Encrypting 

the features 

Adding 

to BF 

Check 

in BF 

Calculating 

Encrypted 

Similarity 

Total 

Execution 

Time 

 

4.15 

milliseconds 

 

 

44.25 ms 

 

 

57.75  ms 

 

 

26.80 ms 

 

0.2 ms 

 

 

0.1ms 

 

623.7 ms 

 

756.95ms 

The most time-consuming stage was the encrypted similarity calculation, primarily due to the complexity of 

homomorphic computations. 
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4.6 Evaluation of the proposed system performance on CASIA-Iris-Syn. 

The proposed method performs extremely well with a very low rate of false classifications, as shown by the 

CASIA-Iris-Syn dataset, which has an impressively high accuracy of 0.9980 and a very low error rate of 0.001. 

With a specificity of 0.999, the method is effective at reducing false positives. With an F1-score of 0.9987, which 

indicates superior overall performance, the suggested system records a high recall of 0.9985, indicating that it 

rarely misses real matches. It achieves a good balance between recall and precision. Fig. 6, 7 displays the 

performance analysis of the suggested model on the CASIA-Iris-Syn dataset. A performance comparison 

between the proposed one and other models on CASIA-Iris-Syn is shown in Table 5. Among all the models 

compared, the proposed method has the highest accuracy (.9998), exceeding [37] (.9569). This shows that 

samples were correctly classified with impressive precision. Its score of .99880 put it far ahead of the ViT-based 

models [38] (.9424) and [37] ViT-L16: .9608, ViT-L32: .9465]. With an F-score of .99870, the proposed approach 

exceeds ViT-L16 (.9403) and ViT-L32 (.9388), having the optimum balance between Precision and Recall. The 

suggested method's .99850 recall indicates remarkable true positive detection, exceeding other models such as 

ViT-L16 (.9569) and [38] (.9407). In terms of accuracy, precision, F-score, and recall, the proposed method 

performs better than any other model.  

 

Fig. 6 Performance analysis of the proposed system on CASIA-Iris-Syn 

Table 5. Performance comparison of the proposed model and other models on CASIA-Iris-Syn 

 

 

 

 

 

Ref. No. Accuracy Precision F1-score Recall 

    [73]     

ViT-L16  .1561 .1608 .1403 .1561 

ViT-L32 .1403 .1465 .1388 .1564 

    [73] .1703 .1424 - .1407 

Proposed Method .99980 .9938 .9937 .9935 
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Fig. 7 Performance Metrics Comparison on CASIA-Iris-Syn Dataset 

4.7 Evaluation of the proposed system’s performance on IITD-Iris-V1  

        The proposed method also outperformed the comparable methods in [39], [40], and [41], achieving high 

accuracy (0.9898) and the highest specificity (0.9911), which indicates excellent performance in identifying 

negative cases and reducing false positives. It also achieved the highest precision (0.99035), surpassing [39] 

(0.9703) and significantly outperforming [40], where precision values were very low (0.1333 and 0.1111). The F-

score of the proposed method (0.9716) reflects a strong balance between precision and recall, close to the best 

value in [39] (0.9805), and much higher than the weak F-scores in [40]. Although modified SOM 1 and 2 in [41] 

showed good accuracy (0.980 and 0.984), the lack of precision and F-score data limits their evaluation Fig. 8, 9 

display the performance analysis of the suggested model on IITD-Iris-V1 dataset. A performance comparison 

between the proposed one and other models on IITD-Iris-V1 is shown in Table 6. Overall, the proposed 

method demonstrates the most balanced and reliable performance, making it the most suitable for sensitive 

applications like medical diagnostics. 

 

Fig. 8 Performance analysis of the proposed system on IITD-Iris-V1 
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Table 6. Performance comparison of the proposed model and other models on IITD-Iris-V1 

 

Fig .9 

Performance Metrics Comparison on IITD-Iris-V1 Dataset 

4.3 Security Analysis 

This section evaluates the proposed approach against critical security properties such as Unlinkability, 

Renewability, irreversibility, brute force resistance, key guessing resistance, quantum resistance, and 

confidentiality based on (FHE) and (BF). The implementation uses cryptographic and dynamic data 

processing techniques to ensure strong protection against various security threats [42]. Table 7 shows the 

overall security properties of the proposed system through multidimensional analysis:  

 

 

 

 

 

 

Ref.No Accuracy Specificity Precision 
F-score 

 [31] 0.1142 0.1804 0.1703 0.1805 

 

 

 

 

[ 40]  

 

 

RISNet without 

segmentation 
0.1732 0.1701 0.1333 0.2353 

IRISNet with 

normalized 

 

0.1643 0.1643 0.1111 0.2 

 

[41] 

modified SOM 

1 
.18 0.15 -  

modified SOM 

2 
.184 0.15 -  

Proposed Method .9393 .9911 0.99075 0.9316 
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Table 3. shows the analysis of the Security Phase for each security property. 

Security Property Techniques Used 
Protection 

Level 

Potential 

Attacks 

Defense Mechanism 

Analysis 

Unlinkability 
Dynamic keys, Secure 

Bloom Filter (SBF) 
High 

Correlation 

attacks 

Encrypted data cannot be 

linked across sessions or 

entities due to key rotation 

and hashing [43] 

Renewability 
Dynamic key 

management 
High 

Compromised 

key reuse 

Automatic key rotation 

(weekly) with secure re-

encryption cancelable 

templates [44] 

Irreversibility CKKS  High 
Template 

reconstruction 

Fully homomorphic 

operations prevent 

decryption of raw biometric 

features [42] 

Brute-force 

Resistance 

256-bit cryptographic 

keys 
High 

Exhaustive key 

search 

Computational infeasibility 

(2²⁵⁶ combinations) with 

PBKDF2 key derivation [45] 

Key Guessing 
CKKS with 

PBKDF2/Argon2 
High 

Dictionary 

attacks 

Multi-factor key derivation 

with salt and iterations [28] 

Quantum 

Resistance 
CKKS (Lattice-based) Medium Shor's algorithm 

Currently quantum-

susceptible; future upgrade 

to NIST-approved PQC 

required [46] 

Confidentiality 
CKKS encrypted 

operations 
High 

Eavesdropping, 

MITM 

End-to-end encryption with 

no plaintext exposure 

during processing [47] 

   Unlinkability, Renewability, and Irreversibility represent fundamental requirements when handling 

confidential data such as biometric identifiers, since continuous feature updates prevent cross-referencing and 

correlation between different instances [42]. Quantum Resistance has emerged as a critical necessity given the 
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rapid advancement in quantum computing technologies, which pose significant threats to existing 

cryptographic frameworks and could compromise current encryption methodologies [46]. 

5. Conclusions 

         This research paper aims to develop an improved biometric iris recognition system that combines high 

accuracy with advanced security. The proposed framework addresses the security vulnerability of traditional 

biometric systems by incorporating advanced techniques, including: improving input image quality, 

extracting biometric features using deep neural networks, securing these features with fully homomorphic 

encryption, and storing them in a scalable Bloom data structure. Results demonstrate that the system 

outperforms previous systems in accuracy rates, while meeting international security requirements. The 

framework provides strong resistance to various types of security threats, including data protection during 

processing, storage, and transmission. Despite the achievements, the system faces challenges related to high 

computational complexity, large memory requirements, and scalability challenges with increasing user 

numbers. Therefore, future studies focus on expanding the system to include additional and multiple 

biometric features, reducing the size of encrypted data, improving system performance to reduce response 

time by 30%, and developing intelligent encrypted data management mechanisms that support up to 100,000 

users while maintaining recognition accuracy above 99%.This research represents an important contribution 

to the development of secure and scalable biometric authentication systems, opening new horizons for its 

applications in sensitive sectors that require the highest levels of security and privacy. 
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