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Abstract 

The Power Inverted Topp Leone Power Series (PITLPS) class represents a novel three-

parameter iteration of the Power Inverted Topp Leone (PITL) distribution. Formed by combining 

a power series distribution with the PITL distribution, this compounding technique enables the 

creation of versatile distribution classes with significant applications in fields like biology and 

engineering. The PITLPS class exhibits various hazard rate shapes. Acceptance sampling plans 

are devised for the PITLPS class model, assuming the life test concludes at a specific time. The 

truncation time, representing the median lifetime of the PITLPS class distribution with the selected 

variables, is considered. The minimal sample size necessary to achieve the specified life test under 

a defined consumer's risk is determined. Ultimately, the PITL Poisson model is employed in the 

context of Reliable Renewable Energy Sources to Reduce CO2 Emissions, and it is fitted using 

the provided statistical model. 
Key words: Acceptance sampling plans, Power inverted Topp-Leone, Power series, Poisson model, 

Renewable energy. 

1. Introduction 

Acceptance sampling, a fundamental aspect of quality assurance, involves inspecting and 

making decisions about batches of products and stands as one of the oldest techniques in this field. 

A common scenario where acceptance sampling is applied is when a company receives a shipment 

of products from a vendor, often components or raw materials vital to the manufacturing process. 

The process typically unfolds as follows: 

1. Sampling: A sample is extracted from the received lot, and the pertinent 

quality characteristic of the units within the sample is examined. 

2. Decision-Making: Based on the information obtained from the sample, a 

decision is reached concerning whether to accept or reject the entire lot. 

• For accepted samples, the lots proceed to production. 

• For rejected samples, the lots may be returned to the vendor or subjected to 

other predetermined actions. 

Recently, researchers have shown a growing interest in exploring new univariate 

distributions due to their practical applications in modeling various types of data. Numerous 

strategies for generating novel distributions have been proposed and investigated in the statistical 

literature. One particularly valuable approach is the compounding method, which involves 
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combining useful lifetimes with truncated discrete distributions. In this context, a non-negative 

random variable (𝑋), determined by either the minimum or maximum values, is employed to 

represent the lifetime of 𝑋𝑖 (𝑖 = 1,2, . . . , 𝑁) in a system with 𝑁 components, depending on whether 

these components are arranged in series or in parallel. The continuous random variables 𝑋𝑖 are 

independent of 𝑁. The Power Series (PS) distribution emerges as a significant discrete distribution 

in this framework. The PS distribution encompasses various distributions such as Poisson, 

logarithmic, geometric, and binomial distributions (truncated at zero). The probability mass 

function (PMF) of the PS distribution is given by 

𝑃(𝑁 = 𝑛; 𝛾) =
𝑎𝑛𝛾𝑛

𝐴(𝛾)
, 𝑛 = 1,2,3, …                                                           (1) 

In the given context, the variable 𝑎𝑛 is dependent solely on 𝑛, where 𝑎𝑛 is greater than 0, 

representing the scale parameter. Furthermore, 𝐴(𝛾) = ∑ 𝑎𝑛
∞
𝑛=1 𝛾𝑛. 

Researchers have recently explored diverse classes and distributions by compounding well-

established continuous distributions with discrete random variables. Some noteworthy examples 

include the Weibull-PS class by Morais and Barreto-Souza (2011), the generalized exponential PS 

class proposed by Mahmoudi and Jafari (2012), and the extended Weibull-PS class introduced by 

Silva et al.  (2013). Other notable models include the Burr XII-geometric distribution by Korkmaz 

and Erisoglu (2014), the complementary Poisson Lindley-PS class by Hassan and Nassr (2019), 

and the Lindley-PS family by Warahena-Liyanage and Pararai (2015). Silva and Corderio (2015) 

presented the Burr XII-PS family, while Jafari and Tahmasebi (2016) introduced the Gompertz PS 

class. Further contributions include the generalized modified Weibull-PS class by Bagheri et al. 

(2016) and the generalized extended Weibull-PS class by Alkarni (2016). Elbatal et al. (2017) 

presented the exponential Pareto-PS class. Hassan and Abd-Alla (2017) introduced the 

exponentiated Lomax geometric distribution class, and Oluyede et al. (2018) contributed the Burr-

Weibull PS class. The diverse range continues with models like the Marshall-Olkin generalized-G 

Poisson family (Korkmaz et al., 2018), the power Lomax Poisson distribution (Hassan and Nassr, 

2018), and the odd log-logistic class (Alizadeh et al., 2018), among numerous others. This ongoing 

research effort showcases the richness and versatility of compounding methods in creating novel 

distributions for various statistical applications. 

Inverted distributions have garnered significant attention and found wide applications in 

medical, economic, and engineering sciences, prompting various authors to delve into their study. 

Notable contributions include works by Calabria and Pulcini (1990), Al-Dayian (1999), Sharma et 

al. (2015), Abd AL-Fattah et al. (2017), Tahir et al. (2018), Hassan and Abd-Alla (2019), Hassen 

and Mohammed (2019), and Hassan and Nassr (2021). Recently, Hassan et al. (2020) proposed 

the inverted Topp-Leone (ITL) distribution, characterized by its probability density function (PDF) 

and cumulative distribution function (CDF) formulated as follows: 

𝑔(𝑥; 𝜑) = 2𝜑𝑥2 (1 + 𝑥)−2𝜑−1(1 + 2𝑥)𝜑−1 ; 𝑥, 𝜑 > 0, 
and 

𝐺(𝑥; 𝜑) = 1 − {
(1 + 2𝑥)𝜑

(1 + 𝑥)2𝜑
}. 

where 𝜑 is the shape parameter. In the context of estimating parameters from a censored 

sample, particularly focusing on the shape parameter, researchers have explored various 

approaches to enhance the goodness of fit. One such approach involves the utilization of the power 

transformation, as proposed by Box and Cox (1964). This method provides an additional option 
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that enhances the flexibility of hazard functions, making them more adept at describing different 

types of real data. Addressing this, Abushal et al. (2021) introduced the power inverted Topp-

Leone (PITL) distribution. The probability density function (PDF) of the PITL distribution, as 

presented by Abushal et al. (2021), is given by  

𝑔(𝑥; 𝛿, 𝜑) = 2𝛿𝜑𝑥2𝛿−1 (1 + 𝑥𝛿)−2𝜑−1(1 + 2𝑥𝛿)𝜑−1 ; 𝑥, 𝛿, 𝜑 > 0                    (2) 

where 𝛿 and 𝜑 are shape parameters. The CDF associated with (2) is given by: 

𝐺(𝑥; 𝛿, 𝜑) = 1 − {
(1 + 2𝑥𝛿)𝜑

(1 + 𝑥𝛿)2𝜑
}                                                                (3) 

In comparison to the inverted Topp-Leone (ITL) distribution, the power inverted Topp-

Leone (PITL) distribution boasts several distinctive characteristics. Notably, it introduces added 

flexibility to both density and hazard rate functions, along with an impact on kurtosis. Building 

upon this, a novel compound class named the PITLPS distribution is introduced, considering a 

system with parallel components and amalgamating the PITL and Power Series (PS) distributions. 

The introduction of this class is motivated by its ability to (i) manifest a spectrum of hazard rate 

shapes, (ii) encompass a new compound class and several new compound distributions, and (iii) 

yield superior fits compared to certain other distributions. 

Before delving into a specific distribution within the class, we compile the key attributes 

of the PITLPS distribution. The estimation methodology utilized is Maximum Likelihood (ML), a 

frequentist approach. Additionally, for the PITL Poisson (PITLP) distribution, an acceptance 

sampling plan is conducted. The overarching objective of this research is to formulate a sampling 

plan, define its operating characteristic function, and articulate the corresponding decision rule. 

This entails establishing a systematic approach to guide decisions regarding lot acceptance or 

rejection based on inspection outcomes, ultimately contributing to the enhancement of efficiency 

and reliability in quality control processes within manufacturing and supply chain management. 

In the final phase, the study evaluates the efficacy of the PITLP distribution as a sub-model using 

real data, aiming to improve energy reliability and significantly reduce CO2 emissions. The PITLP 

distribution emerges as a promising sub-model, illustrating its potential impact on both energy 

systems and environmental sustainability. 

The remainder of this paper is structured as follows. Section 2 establishes the definitions 

for the density and limiting behavior. Moving on to Section 3, we derive the ML estimator for the 

class. Section 4 is dedicated to exploring the acceptance sampling plans of the PITLP distribution. 

Section 5 offers real-world data examples to illustrate the versatility of the PITLP distribution, 

applied specifically to energy reliability and the substantial reduction of CO2 emissions. The 

conclusions of the paper are presented in the final section. 

2. The Power Inverted Topp-Leone Power Series Class 

El-Saeed et al. (2023) proposed the power inverted Topp Leone power series (PITLPS) class. 

Considering independent and identically distributed (iid) random variables 𝑋1, … , 𝑋𝑁 with PDF 

(2) and CDF (3), and assuming that 𝑁 is a discrete random variable following a PS distribution 

(truncated at zero) with PMF (1), the density function of the PITLPS distribution is computed 

given 𝑋 =  max{𝑋𝑖}𝑖=1
𝑁 , the conditional CDF of 𝑋|𝑁 is given by: 

𝐹𝑋|𝑁=𝑛(𝑥) = [𝐺(𝑥; 𝛿, 𝜑)]𝑛 =  {1 −
(1 + 2𝑥𝛿)𝜑

(1 + 𝑥𝛿)2𝜑
}

𝑛
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The PITLPS distribution is characterized by the marginal CDF of 𝑋, which is expressed as:                

𝐹(𝑥; 𝛿, 𝜑, 𝛾) = ∑
𝑎𝑛𝛾𝑛

𝐴(𝛾)

∞

𝑛=1

(1 −
(1 + 2𝑥𝛿)𝜑

(1 + 𝑥𝛿)2𝜑
)

𝑛

=
1

𝐴(𝛾)
𝐴 (𝛾 (1 −

(1 + 2𝑥𝛿)𝜑

(1 + 𝑥𝛿)2𝜑
)).                (4) 

Moreover, the CDF of the PITLP distribution is derived by selecting 𝐴(𝛾) = 𝑒𝛾 − 1, where 𝛾 ∈
(0, ∞), and is expressed as follows: 

𝐹(𝑥; 𝛿, 𝜑, 𝛾) =
1

(𝑒𝛾 − 1)
(𝑒

𝛾{1−
(1+2𝑥𝛿)𝜑

(1+𝑥𝛿)2𝜑
}

− 1)                                               (5) 

A random variable with CDF (5), adhering to the PITLPS distribution with parameters 𝛿, 𝜑, and 𝛾, 

is represented as 𝑋 ~ PITLPS (𝛿, 𝜑, 𝛾). The PDF of the PITLPS family associated with (5) is 

expressed as follows: 

𝑓(𝑥; 𝛿, 𝜑, 𝛾) =
2𝛿𝜑𝛾𝑥2𝛿−1(1+𝑥𝛿)−2𝜑−1(1+2𝑥𝛿)𝜑−1

(𝑒𝛾−1)
𝑒

𝛾{1−
(1+2𝑥𝛿)𝜑

(1+𝑥𝛿)2𝜑}
                          (6)

  

  

 The survival function and hazard rate function (HRF) of the class are given by 

𝑆(𝑥; 𝛿, 𝜑, 𝛾) = 1 −
1

(𝑒𝛾 − 1)
(𝑒

𝛾{1−
(1+2𝑥𝛿)𝜑

(1+𝑥𝛿)2𝜑
}

− 1). 

and 

ℎ(𝑥; 𝛿, 𝜑, 𝛾) = 2𝛿𝜑𝑦2𝛿−1𝛾 (1 + 𝑥𝛿)−2𝜑−1(1

+ 2𝑥𝛿)𝜑−1𝑒
𝛾{1−

(1+2𝑥𝛿)𝜑

(1+𝑥𝛿)2𝜑
}

(𝑒𝛾 − 𝑒
𝛾{1−

(1+2𝑥𝛿)𝜑

(1+𝑥𝛿)2𝜑
}
)

−1

 

Fig 1 illustrates the PDF and HRF plots of the PITLP distribution. The PDF plots exhibit right 

skewness, unimodality, and variations in the increasing and decreasing patterns for different 

parameter values, as depicted below. Additionally, the HRF forms for the PITLP distribution, 

corresponding to the specified parameter values, demonstrate an initial increase followed by a 

decrease (increasing-decreasing) and an upside-down shape. 

 

 

Figure 1: The PDF and HRF plots of the PITLP distribution 
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3. Maximum Likelihood Estimation 

Consider a random sample 𝑋1, 𝑋2, . . . , 𝑋𝑛from the PITLP distribution. The log-likelihood 

function for the parameters, denoted as lnℓ, is expressed as (El-Saeed et al. (2023)): 

lnℓ = 𝑛 ln(2𝛿𝜑𝛾) + (2𝛿 − 1) ∑ ln 𝑥𝑖

𝑛

𝑖=1

− (2𝜑 + 1) ∑ ln 𝐾𝑖 + (𝜑 − 1)

𝑛

𝑖=1

∑ ln 𝐷𝑖

𝑛

𝑖=1

− 𝑛 ln(𝑒𝛾 − 1)

+ 𝛾 ∑(1 − 𝐷𝑖
𝜑

𝐾𝑖
−2𝜑

),

𝑛

𝑖=1

 

where, 𝐾𝑖 = (1 + 𝑥𝑖
𝛿) and 𝐷𝑖 = (1 + 2𝑥𝑖

𝛿).  The partial derivatives of lnℓ with respect to 

𝛾, 𝛿 and 𝜑 are expressed as follows: 

𝜕 𝑙𝑛 ℓ

𝜕𝛾
=

𝑛

𝛾
−

𝑛𝑒𝛾

(𝑒𝛾 − 1)
+ ∑(1 − 𝐷𝑖

𝜑
𝐾𝑖

−2𝜑
)

𝑛

𝑖=1

, 

𝜕 𝑙𝑛 ℓ

𝜕𝛿
=

𝑛

𝛿
+ 2 ∑ ln 𝑦𝑖

𝑛

𝑖=1

− (2𝜑 + 1) ∑ 𝑥𝑖
𝛿 ln 𝑥𝑖 𝐾𝑖

−1

𝑛

𝑖=1

+ 2(𝜑 − 1) ∑ 𝑥𝑖
𝛿 ln 𝑥𝑖 𝐷𝑖

−1

𝑛

𝑖=1

− 2𝜑𝛾 ∑ 𝑥𝑖
𝛿 ln 𝑥𝑖 𝐷𝑖

𝜑
𝐾𝑖

−2𝜑

𝑛

𝑖=1

(𝐷𝑖
−1 − 𝐾𝑖

−1), 

and, 

𝜕 𝑙𝑛 ℓ

𝜕𝜑
=

𝑛

𝜑
− 2 ∑ ln 𝐾𝑖

𝑛

𝑖=1

+ ∑ ln 𝐷𝑖

𝑛

𝑖=1

− 𝛾 ∑ 𝐷𝑖
𝜑

𝐾𝑖
−2𝜑

𝑛

𝑖=1

(ln 𝐷𝑖 − 2 ln 𝐾𝑖). 

The ML estimators for 𝛾, 𝛿 and 𝜑, denoted as 𝛾, 𝛿 and �̂� respectively, are obtained by 

solving the nonlinear equations 
𝜕 𝑙𝑛 ℓ

𝜕𝛾
= 0, 

𝜕 𝑙𝑛 ℓ

𝜕𝛿
= 0 and 

𝜕 𝑙𝑛 ℓ

𝜕𝜑
= 0 through an iterative approach. 

 

4. Acceptance Sampling Plans 

In our analysis, we assume the product's lifetime conforms to the PITLP distribution 

characterized by parameters (𝛿, 𝜑, 𝛾), as described by the CDF in (5), with a specified median 

lifetime denoted as 𝑀0. Our objective is to draw conclusions regarding the acceptance or rejection 

of the proposed lot. This determination hinges on the criterion that the actual median lifetime (𝑀) 

of the units surpasses the claimed lifetime 𝑀0. In life testing, a standard practice involves 

concluding the test at a predetermined time 𝑇0  and recording the number of failures. To observe 

the median lifetime, the experiment runs for a duration of 𝑇0, which is a multiple of the claimed 

median lifetime with any positive constant a. The decision to accept the proposed lot is based on 

the evidence that 𝑀 ≥  𝑀0, with a specified probability of at least α (consumer’s risk). This 

approach follows a single acceptance sampling plan (ASP), as outlined by Singh and Tripathi 

(2017). 

Randomly select n units from the proposed lot and conduct a 𝑇0-unit experiment. If, during 

the experiment, the number of units failing (acceptance number, denoted as 𝑛0 or fewer) is 

observed, then accept the entire lot; otherwise, reject the lot. Note that the probability of accepting 

a lot, assuming sufficiently large-sized lots to apply the binomial distribution, under the proposed 

sampling plan is expressed as: 
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𝐿(𝑝) = ∑ (
𝑛

𝑖
) 𝑝𝑖(1 − 𝑝)𝑛−𝑖,

𝑛0

𝑖=0

                     𝑖 = 1,2, … , 𝑛 

where 𝑝 =  𝐹{𝑃𝐼𝑇𝐿𝑃}(𝑇0; 𝛿, 𝜑, 𝛾), as defined by equation (5). The function 𝐿(𝑝) represents 

the operating characteristic function of the sampling plan, specifically the acceptance probability 

of the lot as a function of the failure probability. Additionally, by employing 𝑇0  =  𝑎𝑀0, the 

expression for 𝑝 can be formulated as: 

𝑝 =  
1

(𝑒𝛾 − 1)
(𝑒

𝛾{1−
(1+2𝑇0

𝛿)𝜑

(1+𝑇0
𝛿)2𝜑

}

− 1)                                                          (7) 

Now, the problem is to determine for given values of 𝛼 (0 < 𝛼 < 1), 𝑇0 and 𝑛0, the 

smallest positive integer 𝑛 such that 

𝐿(𝑝) = ∑ (
𝑛

𝑖
) 𝑝 

𝑖(1 − 𝑝 )
𝑛−𝑖

𝑛0

𝑖=0

≤ 1 − 𝛼                                                        (8)  

where 𝑝 is given by (7). The minimum values of 𝑛 satisfying the inequality in (8) and its 

corresponding operating characteristic probability are obtained and displayed from Table (1) to 

Table (9) for the following assumed parameters: 

1. The parameters of the PITLP distribution are assumed as follows: 𝛿 = 𝜙 =
 (1.5, 2.5) and 𝛾 =  (0.5, 1.5, 2.5). 

2. The parameters of the acceptance sampling plan are assumed as follows: 

𝑝 =  0.05, 0.25, 0.50, 0.75, 0.99,  𝑛0  =  0, 5, 10, 15, 20, 30, and 𝑎 =  0.25, 0.50, 0.75, 1. 

Note that when 𝑎 =  1, thus 𝑇0  =  𝑀0  =  0.5 for all 𝛿, 𝜙, 𝛾. 
 

From the results obtained in Table (1) to Table (9), we observe that: 

• With an increase in 𝑝 and 𝑛0, the required sample size 𝑛 and 𝐿(𝑝) are 

increasing. 

• With an increase in 𝑎, the required sample size 𝑛 and 𝐿(𝑝) are decreasing. 
 

Finally, for all the obtained results, we verified that 𝐿(𝑝) ≤   1 − 𝛼. Also, when 𝑎 =  1, 

we have  𝑝 =  0.5 as 𝑇0  =  𝑀0, and hence all results (𝑛, 𝐿(𝑝)) for any vector of parameters 

(𝛿, 𝜙, 𝛾) are the same. 

Table (1): ASP for PITLP distribution at 𝜹 = 𝟏. 𝟓, 𝝋 = 𝟏. 𝟓, 𝜸 = 𝟎. 𝟓 

𝑝 𝑛0 
𝑎 = 0.25 𝑎 = 0.50 𝑎 = 0.75 𝑎 = 1 

𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 

0.05 

0 2 0.95864 1 1.00000 1 1.00000 1 1.00000 

5 65 0.95123 16 0.95633 9 0.97306 7 0.98437 

10 152 0.95020 36 0.95374 20 0.96208 15 0.97131 

15 246 0.95026 57 0.95624 32 0.95280 24 0.95342 

20 344 0.95030 80 0.95132 44 0.95138 32 0.96461 

30 547 0.95048 126 0.95153 68 0.95624 50 0.95727 
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0.25 

0 7 0.77613 2 0.81499 1 1.00000 1 1.00000 

5 103 0.75285 24 0.75792 13 0.77781 9 0.85546 

10 210 0.75055 48 0.75774 26 0.75711 19 0.75964 

15 319 0.75356 73 0.75147 39 0.75781 28 0.77894 

20 431 0.75139 98 0.75264 52 0.76387 37 0.79745 

30 657 0.75095 148 0.76203 79 0.75326 56 0.79059 

0.50 

0 17 0.50874 4 0.54131 2 0.64574 1 1.00000 

5 137 0.50542 31 0.51076 16 0.55036 11 0.62303 

10 258 0.50318 58 0.50825 30 0.54247 21 0.58807 

15 379 0.50210 85 0.50726 44 0.54000 31 0.57219 

20 500 0.50140 112 0.50674 59 0.50022 41 0.56264 

30 742 0.50047 166 0.50625 87 0.50742 61 0.55123 

0.75 

0 33 0.25881 7 0.29302 4 0.26926 2 0.49999 

5 179 0.25118 39 0.27044 20 0.28347 14 0.29051 

10 314 0.25098 69 0.26433 36 0.25446 25 0.27060 

15 446 0.25066 99 0.25157 51 0.25936 35 0.30376 

20 576 0.25134 128 0.25087 66 0.25865 46 0.27570 

30 834 0.25027 185 0.25417 96 0.25121 67 0.26924 

0.99 

0 110 0.01001 23 0.01110 11 0.01261 7 0.01562 

5 313 0.01024 67 0.01089 33 0.01190 22 0.01330 

10 482 0.01022 104 0.01069 52 0.01086 35 0.01215 

15 641 0.01014 139 0.01042 70 0.01019 47 0.01294 

20 794 0.01014 173 0.01008 87 0.01057 59 0.01237 

30 1090 0.01015 238 0.01027 120 0.01127 82 0.01282 
 

Table (2): ASP for PITLP distribution at 𝜹 = 𝟏. 𝟓, 𝝋 = 𝟏. 𝟓, 𝜸 = 𝟏. 𝟓 

𝑝 𝑛0 
𝑎 = 0.25 𝑎 = 0.50 𝑎 = 0.75 𝑎 = 1 

𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 

0.05 

0 2 0.95837 1 1.00000 1 1.00000 1 1.00000 

5 64 0.95307 16 0.95968 9 0.97430 7 0.98437 

10 151 0.95027 37 0.95013 20 0.96455 15 0.97131 

15 244 0.95090 58 0.95607 32 0.95651 24 0.95343 

20 342 0.95006 81 0.95354 44 0.95581 32 0.96462 

30 543 0.95097 128 0.95249 69 0.95217 50 0.95728 
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0.25 

0 7 0.77483 2 0.81832 1 1.00000 1 1.00000 

5 102 0.75524 24 0.77129 13 0.78502 9 0.85547 

10 208 0.75368 49 0.75430 26 0.76783 19 0.75966 

15 317 0.75338 74 0.75692 39 0.77089 28 0.77897 

20 428 0.75215 99 0.76425 52 0.77873 37 0.79748 

30 653 0.75035 151 0.75790 79 0.77195 56 0.79062 

0.50 

0 17 0.50646 4 0.54798 2 0.64898 1 1.00000 

5 136 0.50628 31 0.52981 16 0.56094 11 0.62305 

10 256 0.50495 59 0.50952 31 0.50304 21 0.58810 

15 377 0.50020 86 0.51840 45 0.51324 31 0.57223 

20 497 0.50056 114 0.50749 59 0.52090 41 0.56268 

30 737 0.50113 169 0.50672 88 0.50099 61 0.55129 

0.75 

0 33 0.25650 7 0.30029 4 0.27333 2 0.50000 

5 178 0.25043 40 0.26381 20 0.29354 14 0.29053 

10 312 0.25087 71 0.25164 36 0.26743 25 0.27063 

15 443 0.25102 100 0.26386 51 0.27505 35 0.30380 

20 572 0.25209 130 0.25562 66 0.27655 46 0.27574 

30 828 0.25164 188 0.25872 96 0.27262 67 0.26929 

0.99 

0 109 0.01013 23 0.01214 11 0.01325 7 0.01562 

5 311 0.01023 68 0.01131 33 0.01309 22 0.01330 

10 479 0.01019 106 0.01068 52 0.01227 35 0.01215 

15 637 0.01010 142 0.01008 70 0.01177 47 0.01295 

20 789 0.01011 176 0.01033 88 0.01031 59 0.01237 

30 1083 0.01014 242 0.01066 121 0.01160 82 0.01283 
 

Table (3): ASP for PITLP distribution at 𝜹 = 𝟏. 𝟓, 𝝋 = 𝟏. 𝟓, 𝜸 = 𝟐. 𝟓 

𝑝 𝑛0 
𝑎 = 0.25 𝑎 = 0.50 𝑎 = 0.75 𝑎 = 1 

𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 

0.05 

0 2 0.96329 1 1.00000 1 1.00000 1 1.00000 

5 73 0.95108 17 0.95933 10 0.95102 7 0.98437 

10 170 0.95168 39 0.95374 21 0.95342 15 0.97131 

15 276 0.95117 62 0.95541 33 0.95088 24 0.95343 

20 387 0.95035 87 0.95094 45 0.95417 32 0.96462 

30 616 0.95017 137 0.95179 70 0.95578 50 0.95728 
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0.25 

0 8 0.76965 2 0.83052 1 1.00000 1 1.00000 

5 116 0.75201 26 0.75979 13 0.80141 9 0.85547 

10 236 0.75211 52 0.76249 26 0.79195 19 0.75966 

15 360 0.75065 79 0.75982 40 0.76367 28 0.77897 

20 485 0.75224 106 0.76360 53 0.78142 37 0.79748 

30 740 0.75064 162 0.75413 81 0.76355 56 0.79062 

0.50 

0 19 0.51005 4 0.57286 2 0.65655 1 1.00000 

5 155 0.50074 34 0.50374 17 0.51228 11 0.62305 

10 291 0.50125 63 0.51400 31 0.53807 21 0.58810 

15 427 0.50172 93 0.50209 46 0.51219 31 0.57223 

20 563 0.50212 122 0.51000 60 0.53151 41 0.56269 

30 836 0.50009 181 0.50822 89 0.52938 61 0.55129 

0.75 

0 38 0.25061 8 0.27255 4 0.28301 2 0.50000 

5 201 0.25410 43 0.26156 21 0.26507 14 0.29053 

10 354 0.25041 76 0.25411 37 0.26024 25 0.27063 

15 502 0.25219 108 0.25362 52 0.27972 35 0.30380 

20 649 0.25146 139 0.26083 68 0.26185 46 0.27574 

30 939 0.25178 202 0.25501 99 0.25291 67 0.26929 

0.99 

0 124 0.01005 25 0.01160 11 0.01488 7 0.01562 

5 353 0.01024 74 0.01018 34 0.01241 22 0.01330 

10 544 0.01013 114 0.01062 54 0.01036 35 0.01215 

15 723 0.01010 152 0.01063 72 0.01102 47 0.01295 

20 896 0.01002 189 0.01042 90 0.01048 59 0.01237 

30 1229 0.01013 260 0.01062 124 0.01133 82 0.01283 
 

Table (4): ASP for PITLP distribution at 𝜹 = 𝟏. 𝟓, 𝝋 = 𝟐. 𝟓, 𝜸 = 𝟎. 𝟓 

𝑝 𝑛0 
𝑎 = 0.25 𝑎 = 0.50 𝑎 = 0.75 𝑎 = 1 

𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 

0.05 

0 2 0.97060 1 1.00000 1 1.00000 1 1.00000 

5 91 0.95022 19 0.95232 10 0.95894 7 0.98437 

10 212 0.95108 42 0.95693 21 0.96416 15 0.97131 

15 344 0.95095 68 0.95315 34 0.95192 24 0.95343 

20 482 0.95060 95 0.95073 46 0.95954 32 0.96462 

30 768 0.95022 150 0.95059 73 0.95032 50 0.95728 
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0.25 

0 10 0.76450 2 0.84540 1 1.00000 1 1.00000 

5 144 0.75451 28 0.76952 14 0.76424 9 0.85546 

10 294 0.75310 57 0.75928 27 0.78721 19 0.75965 

15 449 0.75091 87 0.75080 41 0.77811 28 0.77895 

20 606 0.75027 117 0.75043 55 0.77777 37 0.79747 

30 923 0.75159 177 0.75766 84 0.76139 56 0.79061 

0.50 

0 24 0.50346 5 0.51080 2 0.66892 1 1.00000 

5 193 0.50277 37 0.50967 17 0.55465 11 0.62304 

10 363 0.50213 69 0.51391 32 0.54443 21 0.58809 

15 533 0.50196 102 0.50020 47 0.54069 31 0.57222 

20 703 0.50191 134 0.50520 63 0.50319 41 0.56267 

30 1043 0.50193 199 0.50041 93 0.50857 61 0.55127 

0.75 

0 47 0.25347 9 0.26092 4 0.29931 2 0.50000 

5 252 0.25096 47 0.26474 22 0.25559 14 0.29052 

10 442 0.25097 83 0.25958 38 0.27499 25 0.27062 

15 628 0.25024 118 0.25953 54 0.27887 35 0.30378 

20 811 0.25094 153 0.25514 71 0.25100 46 0.27573 

30 1174 0.25015 222 0.25126 102 0.26967 67 0.26927 

0.99 

0 155 0.01010 28 0.01073 12 0.01200 7 0.01562 

5 442 0.01017 81 0.01069 36 0.01062 22 0.01330 

10 681 0.01003 126 0.01006 56 0.01083 35 0.01215 

15 904 0.01012 167 0.01075 75 0.01083 47 0.01295 

20 1120 0.01006 208 0.01025 93 0.01165 59 0.01237 

30 1537 0.01008 286 0.01044 129 0.01121 82 0.01283 
 

Table (5): ASP for PITLP distribution at 𝜹 = 𝟏. 𝟓, 𝝋 = 𝟐. 𝟓, 𝜸 = 𝟏. 𝟓 

𝑝 𝑛0 
𝑎 = 0.25 𝑎 = 0.50 𝑎 = 0.75 𝑎 = 1 

𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 

0.05 

0 2 0.97242 1 1.00000 1 1.00000 1 1.00000 

5 96 0.95196 20 0.95241 10 0.96372 7 0.98438 

10 226 0.95078 45 0.95253 22 0.95539 15 0.97131 

15 367 0.95038 72 0.95259 34 0.96158 24 0.95343 

20 514 0.95017 100 0.95302 47 0.96009 32 0.96462 

30 818 0.95038 158 0.95337 74 0.95662 50 0.95728 
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0.25 

0 11 0.75603 2 0.85425 1 1.00000 1 1.00000 

5 154 0.75172 30 0.75953 14 0.78426 9 0.85547 

10 314 0.75073 60 0.76537 28 0.77201 19 0.75966 

15 478 0.75202 92 0.75304 42 0.77792 28 0.77897 

20 645 0.75192 124 0.75000 57 0.75852 37 0.79748 

30 984 0.75092 188 0.75358 86 0.76350 56 0.79062 

0.50 

0 25 0.51108 5 0.53252 2 0.67724 2 0.50000 

5 206 0.50119 39 0.51513 18 0.51525 12 0.50000 

10 387 0.50165 73 0.51671 33 0.53476 22 0.50000 

15 568 0.50212 108 0.50260 49 0.50825 32 0.50000 

20 750 0.50007 142 0.50647 64 0.52418 42 0.50000 

30 1112 0.50120 211 0.50085 95 0.51930 62 0.50000 

0.75 

0 50 0.25400 9 0.28358 4 0.31061 3 0.25000 

5 268 0.25288 50 0.26228 22 0.28225 14 0.29053 

10 471 0.25131 88 0.26057 39 0.27480 25 0.27063 

15 669 0.25106 126 0.25044 56 0.26145 35 0.30380 

20 864 0.25178 162 0.25871 72 0.27313 46 0.27574 

30 1251 0.25074 235 0.25600 105 0.26248 67 0.26929 

0.99 

0 165 0.01019 30 0.01037 12 0.01374 7 0.01563 

5 472 0.01004 86 0.01081 37 0.01068 22 0.01330 

10 726 0.01005 133 0.01087 57 0.01220 35 0.01215 

15 964 0.01010 178 0.01032 77 0.01100 47 0.01295 

20 1194 0.01008 221 0.01024 96 0.01083 59 0.01237 

30 1639 0.01004 304 0.01032 133 0.01048 82 0.01283 
 

Table (6): ASP for PITLP distribution at 𝜹 = 𝟏. 𝟓, 𝝋 = 𝟐. 𝟓, 𝜸 = 𝟐. 𝟓 

𝑝 𝑛0 
𝑎 = 0.25 𝑎 = 0.50 𝑎 = 0.75 𝑎 = 1 

𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 

0.05 

0 3 0.95553 1 1.00000 1 1.00000 1 1.00000 

5 118 0.95067 22 0.95574 10 0.97054 7 0.98437 

10 277 0.95025 50 0.95587 23 0.95205 15 0.97131 

15 449 0.95060 81 0.95288 36 0.95305 24 0.95342 

20 629 0.95047 113 0.95189 49 0.95836 32 0.96461 

30 1002 0.95042 179 0.95122 77 0.95621 50 0.95727 
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0.25 

0 13 0.76113 3 0.75924 1 1.00000 1 1.00000 

5 189 0.75002 34 0.75478 15 0.75631 9 0.85546 

10 384 0.75251 68 0.76118 29 0.77702 19 0.75963 

15 586 0.75153 104 0.75242 44 0.76866 28 0.77893 

20 791 0.75108 140 0.75188 59 0.76868 37 0.79745 

30 1206 0.75119 213 0.75038 90 0.75422 56 0.79058 

0.50 

0 31 0.50541 6 0.50227 2 0.69063 1 1.00000 

5 252 0.50303 44 0.51716 18 0.56329 11 0.62302 

10 475 0.50013 83 0.50992 35 0.50682 21 0.58806 

15 697 0.50080 122 0.50620 51 0.51169 31 0.57219 

20 919 0.50132 161 0.50370 67 0.51547 41 0.56264 

30 1364 0.50050 239 0.50028 99 0.52140 61 0.55123 

0.75 

0 61 0.25544 11 0.25228 4 0.32941 2 0.49999 

5 329 0.25214 57 0.25706 23 0.28055 14 0.29050 

10 578 0.25079 100 0.25769 41 0.26523 25 0.27060 

15 821 0.25043 142 0.25900 58 0.27449 35 0.30375 

20 1061 0.25004 184 0.25562 76 0.25272 46 0.27570 

30 1535 0.25011 267 0.25158 110 0.25469 67 0.26924 

0.99 

0 203 0.01011 34 0.01062 13 0.01178 7 0.01562 

5 579 0.01012 98 0.01067 39 0.01008 22 0.01330 

10 891 0.01008 152 0.01027 60 0.01143 35 0.01215 

15 1184 0.01003 202 0.01055 81 0.01023 47 0.01294 

20 1466 0.01004 251 0.01033 100 0.01162 59 0.01237 

30 2012 0.01000 345 0.01050 139 0.01063 82 0.01282 
 

Table (7): ASP for PITLP distribution at 𝜹 = 𝟐. 𝟓, 𝝋 = 𝟐. 𝟓, 𝜸 = 𝟎. 𝟓 

𝑝 𝑛0 
𝑎 = 0.25 𝑎 = 0.50 𝑎 = 0.75 𝑎 = 1 

𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 

0.05 

0 23 0.95194 1 1.00000 1 1.00000 1 1.00000 

5 1170 0.95011 51 0.95172 13 0.95749 7 0.98437 

10 2761 0.95005 119 0.95030 29 0.95224 15 0.97131 

15 4491 0.95002 192 0.95097 46 0.95122 24 0.95343 

20 6296 0.95004 268 0.95159 63 0.95538 32 0.96462 

30 10041 0.95001 427 0.95060 99 0.95570 50 0.95728 
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0.25 

0 129 0.75084 6 0.76121 2 0.76340 1 1.00000 

5 1888 0.75003 80 0.75757 19 0.76226 9 0.85546 

10 3856 0.75005 164 0.75012 38 0.75599 19 0.75965 

15 5883 0.75002 249 0.75295 57 0.76460 28 0.77895 

20 7941 0.75010 336 0.75201 77 0.75561 37 0.79747 

30 12114 0.75003 512 0.75174 117 0.75103 56 0.79060 

0.50 

0 310 0.50068 13 0.51954 3 0.58278 1 1.00000 

5 2536 0.50007 107 0.50401 24 0.52891 11 0.62304 

10 4771 0.50008 201 0.50373 45 0.52520 21 0.58808 

15 7006 0.50020 295 0.50385 66 0.52434 31 0.57221 

20 9242 0.50011 389 0.50405 88 0.50042 41 0.56266 

30 13714 0.50002 578 0.50055 130 0.50551 61 0.55126 

0.75 

0 620 0.25012 26 0.25558 6 0.25927 2 0.50000 

5 3318 0.25025 139 0.25338 31 0.25314 14 0.29052 

10 5821 0.25009 244 0.25299 54 0.26034 25 0.27061 

15 8265 0.25013 347 0.25136 77 0.25586 35 0.30378 

20 10678 0.25012 448 0.25266 99 0.26572 46 0.27572 

30 15449 0.25004 649 0.25094 144 0.25918 67 0.26927 

0.99 

0 2057 0.01002 85 0.01022 18 0.01016 7 0.01562 

5 5858 0.01001 243 0.01027 52 0.01025 22 0.01330 

10 9003 0.01001 375 0.01006 80 0.01123 35 0.01215 

15 11953 0.01001 498 0.01017 107 0.01112 47 0.01295 

20 14797 0.01000 617 0.01017 133 0.01122 59 0.01237 

30 20295 0.01000 848 0.01002 184 0.01077 82 0.01282 
 

Table (8): ASP for PITLP distribution at 𝜹 = 𝟐. 𝟓, 𝝋 = 𝟐. 𝟓, 𝜸 = 𝟏. 𝟓 

𝑝 𝑛0 
𝑎 = 0.25 𝑎 = 0.50 𝑎 = 0.75 𝑎 = 1 

𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 

0.05 

0 24 0.95143 2 0.95042 1 1.00000 1 1.00000 

5 1210 0.95008 54 0.95343 13 0.96512 7 0.98438 

10 2855 0.95006 127 0.95088 30 0.95380 15 0.97132 

15 4644 0.95002 205 0.95168 47 0.95853 24 0.95344 

20 6511 0.95001 287 0.95125 66 0.95240 32 0.96463 

30 10383 0.95002 457 0.95062 104 0.95082 50 0.95730 
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0.25 

0 133 0.75144 6 0.77549 2 0.77343 1 1.00000 

5 1952 0.75015 86 0.75416 20 0.75273 9 0.85548 

10 3987 0.75015 175 0.75322 39 0.77304 19 0.75969 

15 6083 0.75012 267 0.75098 60 0.75138 28 0.77900 

20 8212 0.75005 360 0.75100 80 0.76161 37 0.79752 

30 12527 0.75002 548 0.75249 122 0.75200 56 0.79067 

0.50 

0 321 0.50019 14 0.51630 3 0.59820 2 0.50001 

5 2622 0.50023 115 0.50025 25 0.53020 12 0.50003 

10 4933 0.50025 215 0.50527 47 0.52387 22 0.50004 

15 7245 0.50016 316 0.50351 69 0.52138 32 0.50005 

20 9557 0.50013 417 0.50234 91 0.52012 42 0.50006 

30 14181 0.50011 619 0.50079 136 0.50040 62 0.50007 

0.75 

0 641 0.25019 28 0.25335 6 0.27676 3 0.25001 

5 3432 0.25004 149 0.25281 32 0.26460 14 0.29056 

10 6019 0.25018 262 0.25033 56 0.26991 25 0.27067 

15 8547 0.25011 372 0.25038 80 0.26441 35 0.30384 

20 11042 0.25013 480 0.25244 104 0.25612 46 0.27579 

30 15976 0.25002 695 0.25163 151 0.25144 67 0.26935 

0.99 

0 2128 0.01000 91 0.01029 18 0.01268 7 0.01563 

5 6058 0.01001 261 0.01010 54 0.01107 22 0.01331 

10 9311 0.01000 402 0.01005 84 0.01084 35 0.01216 

15 12361 0.01000 534 0.01011 112 0.01110 47 0.01295 

20 15301 0.01001 662 0.01001 140 0.01023 59 0.01238 

30 20987 0.01000 908 0.01018 193 0.01025 82 0.01283 
 

Table (9): ASP for PITLP distribution at 𝜹 = 𝟐. 𝟓, 𝝋 = 𝟐. 𝟓, 𝜸 = 𝟐. 𝟓 

𝑝 𝑛0 
𝑎 = 0.25 𝑎 = 0.50 𝑎 = 0.75 𝑎 = 1 

𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 𝑛 𝐿(𝑝) 

0.05 

0 29 0.95153 2 0.95902 1 1.00000 1 1.00000 

5 1475 0.95012 65 0.95300 14 0.96331 7 0.98437 

10 3482 0.95002 153 0.95093 32 0.95628 15 0.97131 

15 5663 0.95005 248 0.95062 51 0.95565 24 0.95343 

20 7940 0.95003 347 0.95049 71 0.95359 32 0.96462 

30 12663 0.95002 552 0.95051 112 0.95243 50 0.95728 
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0.25 

0 163 0.75015 7 0.77798 2 0.79103 1 1.00000 

5 2381 0.75001 104 0.75246 21 0.77391 9 0.85547 

10 4863 0.75006 212 0.75023 43 0.75013 19 0.75966 

15 7419 0.75012 322 0.75334 64 0.76971 28 0.77896 

20 10015 0.75014 435 0.75132 87 0.75324 37 0.79748 

30 15278 0.75008 663 0.75114 132 0.75268 56 0.79062 

0.50 

0 391 0.50052 17 0.51198 3 0.62573 1 1.00000 

5 3198 0.50020 139 0.50022 27 0.53188 11 0.62304 

10 6017 0.50016 261 0.50003 51 0.52077 21 0.58809 

15 8837 0.50008 383 0.50002 75 0.51531 31 0.57223 

20 11657 0.50004 505 0.50004 99 0.51178 41 0.56268 

30 17297 0.50002 749 0.50010 147 0.50716 61 0.55128 

0.75 

0 782 0.25008 34 0.25138 6 0.30972 2 0.50000 

5 4186 0.25004 180 0.25432 35 0.25690 14 0.29052 

10 7342 0.25009 317 0.25069 61 0.26491 25 0.27062 

15 10425 0.25009 450 0.25110 87 0.26103 35 0.30379 

20 13469 0.25003 581 0.25228 113 0.25388 46 0.27574 

30 19486 0.25003 841 0.25194 163 0.26215 67 0.26928 

0.99 

0 2596 0.01000 111 0.01003 20 0.01163 7 0.01562 

5 7390 0.01000 316 0.01022 59 0.01079 22 0.01330 

10 11357 0.01001 487 0.01011 92 0.01012 35 0.01215 

15 15078 0.01000 647 0.01014 122 0.01096 47 0.01295 

20 18664 0.01001 802 0.01004 152 0.01056 59 0.01237 

30 25599 0.01000 1101 0.01002 210 0.01015 82 0.01283 

 

5. Real Data Analysis 

In the quest for reliable renewable energy sources to mitigate CO2 emissions, a 

comprehensive analysis of global CO2 emissions per person in 2020 across 152 countries was 

conducted. This dataset, featuring countries with capita CO2 emissions exceeding 1, was sourced 

from [https://www.statista.com/statistics/270508/co2-emissions-per-capita-by-country/].  

The intensified burning of carbon-based fuels since the industrial revolution has 

significantly elevated atmospheric carbon dioxide concentrations, accelerating global warming 

and contributing to anthropogenic climate change. This phenomenon further induces ocean 

acidification through the dissolution of CO2 in water, disrupting the earth's radiative balance and 

resulting in rising surface temperatures, impacting climate, sea levels, and global agriculture. CO2 
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emissions stem from various sources, including the combustion of fossil fuels (oil, coal, gas), 

burning wood and waste, and industrial activities like cement manufacturing. Recent research by 

Hassan et al.  (2022) applied the weighted Weibull exponential model to this dataset. 

To assess the suitability of the PITLP distribution for this dataset, we employed MLEs of 

parameters and evaluated goodness-of-fit metrics. Negative log-likelihood (NLL), Akaike’s 

information criterion (AIC), Bayesian information criterion (BIC), consistent AIC (CAIC), 

Hannan-Quinn IC (HQIC), and Kolmogorov–Smirnov (K–S) test statistics with P-values were 

computed. Before analysis, a scaled-TTT plot, as recommended by Aarset (1987), was used to 

visually confirm the model's correctness, revealing a concave scaled-TTT plot indicating an 

increasing hazard rate function (HRF). 

Parameter estimates, standard errors (SE), and goodness-of-fit statistics for the PITLP 

distribution are presented in Table 9. Plots of estimated PDF, CDF, and Probability-Probability 

(PP) plots of estimated densities are illustrated in Figure 2. The comprehensive evaluation in Table 

10 and Figure 2 suggests that the PITLP distribution serves as a suitable model for the examined 

CO2 emissions dataset. The P-value exceeding 0.05 and the visual assessments in Figure 2 

reinforces the conclusion that the PITLP distribution provides a superior fit for the considered data. 

Table 10: The MLEs and SEs of the PITLP model parameters and goodness of fit measures  

MLE SE NLL AIC BIC CAIC HQIC K-S P-value 

𝛿 = 0.320 0.186 

406.545 819.089 828.161 819.251 822.774 0.051 0.822 �̂� = 9.933 7.284 

𝛾 = 73.076 158.361 
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Figure 2: Estimated PDF, CDF, TTT, and PP Plots, of the PITLP model  

 

6. Conclusion 

In this study, we present a novel class of lifetime models known as the power inverted 

Topp-Leone power series. This class incorporates the inverted Topp-Leone power series 

distributions as a distinctive sub-class alongside various innovative compounding models. Crafted 

through the fusion of PITL and power series distributions, the proposed class encompasses a range 

of statistical aspects, including the density function, moments, incomplete moments, quantile 

function, and entropy. All statistical properties are applicable to a single selected model within the 

class. We focus on the ML estimation of parameters for the power inverted Topp-Leone Poisson 

distribution. The study also introduces an acceptance sampling plan for the PITLP distribution. 

Real-world data analysis in the engineering and renewable energy sources domain demonstrates 

the applicability and utility of the PITLP model compared to alternative models. Future studies 

may explore the challenge of Bayesian estimation, as proposed by Riad et al.  (2023). 

Data availability 

The data is available in this article. 
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