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ABSTRACT 

 In the current work, new pseud-spectral differentiation and integration matrices have been constructed via the second 

kind of Chebyshev polynomials as a basis function. To achieve that purpose, the continuous inner product of the 
spectral expansion summation is transformed into a discrete one via the Trapezoidal integration technique. Hence, the 
given problem, differential, integral, or integro-differential equations, is transformed into a system of algebraic 
equations. Unlike the standard spectral methods, the algebraic system of equations’ unknowns are the dependent 
variables’ values at equidistant points. The constructed pseud-spectral differentiation and integration matrices have 
been tested to approximate the differentiation and integration of known functions and examine their applicability as 
differentiation and integration operators. In addition, the matrices have been used to approximate the solution of 
differential, integral equations, and integro-differential equations. Some of the presented differential, integral, and 
integro-differential equations represent models concerning real-life applications. Log error figures have shown the 
stability of the results. 
 

1. Introduction 

     Ordinary differential equations (ODEs) [1] are one 

of the most important tools to represent several 

mathematical models in both pure and applied 

analysis, like physics [2], chemistry [3], biology [4], 

and heat and fluid flows [5]. 

     Integro-differential equations (IDEs) contain the 

integral and derivative of an unknown function. IDEs 

have several applications in the field of engineering. 

Some applications of these equations can be found in 

electromagnetic theory [6] and poroelastic solid [7]. 
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The most common IDE is the Volterra–Fredholm 

integro-differential equation (VFIDE), which has been 

examined in [8,9]. 

      The exact solutions to some differential problems 

have not been found, so we use numerical and 

approximated methods [10] to obtain their solutions. 

There are many types of numerical methods, such as 

finite element [11], finite difference [12], and Runge-

Kutta [13] methods. Approximate methods, such as 

the spectral method [14], are semi-analytic to solve 

ordinary, partial, and fractional differential or integral 

equations. 

    The main idea of the spectral method is to 

approximate the function 𝐺(𝑠) by a finite sum of 

unknown coefficients and basis polynomials. We can 

express the solution as follows: 

𝐺(𝑠) = ∑ 𝑒𝑛𝑃𝑛(𝑠)
𝑉
𝑛=0 , 

which 𝑒𝑛 are unknown coefficients and 𝑃𝑛(𝑠) basis 

function. After using the spectral methods, the 

differential problem will transform into a system of 

algebraic equations with unknown coefficients. 

    The basis function used in the spectral method is 

usually orthogonal polynomials. The authors used 

Chebyshev polynomials in [15,16], and the authors in 

[17] used rational Chebyshev. Also, the authors in [18, 

19] used shifted fifth-kind Chebyshev polynomials. In 

addition, the modified Chebyshev was used in [20], 

while monic Chebyshev polynomials were used in 

[21]. Different orthogonal polynomials, such as 

Legendre polynomials, are shown in [22,23]. On the 

other hand, the shifted Legendre polynomial has been 

employed as a basis function in [24]. 

    The spectral methods have three main types: Tau 

[25], Galerkin [26,27], pseudo-spectral (Collocation) 

method [17]. The pseudo-spectral method is a form of 

the spectral method. This paper aims to use the second 

kind of Chebyshev polynomials as a basis function in 

the pseudo-spectral method. Hence, new 

differentiation and integration matrices will be 

constructed. Consequently, the given differential 

problem will be transformed into a system of algebraic 

equations whose unknowns are the dependent 

variable’s values; unlike the regular spectral method, 

the unknowns are the spectral constants expansion. 

     The problem in the pseudo-spectral method is how 

to deal with the integration of the continuous inner 

product [rev]. We used the trapezoidal numerical 

integration method to transform the inner product’s 

integration into a summation. 

    This paper includes six sections. Section 2 

introduces some properties of the second kind of 

Chebyshev polynomials and the main form of the 

Trapezoidal method. In Section 3, we construct 

differentiation and integration matrices for the second 

kind of Chebyshev polynomials. In addition, we show 

the formula of differential, integral, and integro-

differential equations and the solution steps in Section 

4. We presented some known test functions and 

applications of ODEs and IDEs, as well as their 

approximate solution, to show this method’s 

efficiency in Section 5. Finally, the paper ends with a 

section for the concluding remarks. 

 

2. Preliminaries 
    This section presents properties of the second kind 

of Chebyshev polynomials (CHPs2). In addition, the 

general form of the Trapezoidal integration technique 

has been reported. 
The second kind of Chebyshev polynomials, 𝑈𝑛(𝑠), 
The degree 𝑛 for which the variable 𝑠 is defined on the 

interval [-1,1] can be obtained according to the 

recurrence relation [29]. 
 

𝑈𝑛+1(𝑠) = 2𝑠𝑈𝑛(𝑠) − 𝑈𝑛−1(𝑠), 𝑛 = 1,2, …, (1) 
 

which 𝑈0(𝑠) = 1, 𝑈1(𝑠) = 2𝑠. 
Another form of CHPs2 can be written using 

trigonometric functions: 
 

𝑈𝑛(𝑠) =
sin⁡(𝑛+1)𝜗

𝑠𝑖𝑛𝜗
, 𝑛 = 0,1, …,  (2) 

with 𝑠 = 𝑐𝑜𝑠𝜗 and 𝜗 ∈ [0, 𝜋]. 
 

     The boundaries of CHPs2 can be determined as the 

following relations: 
 

𝑈𝑛(−1) = (−1)𝑛(𝑛 + 1),   (3)  
 

𝑈𝑛(1) = (𝑛 + 1).   (4)  
 
    The relation between the first derivative of the first-

kind and second-kind Chebyshev polynomials is 

defined by: 
 

𝑈𝑛(𝑠) =
1

𝑛+1
𝑇′𝑛+1(𝑠),⁡⁡⁡⁡𝑛 = 0,1, ….     (5)      

                                     
     The boundary of the first kind of Chebyshev 

polynomials at 𝑠 = ±1⁡is 𝑇𝑛(±1) = (±1)𝑛. 
 
     The orthogonal relation of CHPs2 concerning the 

weight function w(s)=√1 − 𝑠2  is [30]: 

〈𝑈𝑛, 𝑈𝑚〉𝑤 = ∫𝑈𝑛(𝑠)𝑈𝑚(𝑠)𝑤(𝑠)𝑑𝑠

1

−1
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= {
0,⁡⁡⁡⁡⁡⁡⁡⁡𝑛 ≠ 𝑚,
𝜋

2
,⁡⁡⁡⁡⁡⁡⁡⁡𝑛 = 𝑚.                          (6) 

 
    The integration of the continuous function 𝑃(𝑠) 
over the interval [𝑎, 𝑏] can be approximated using the 

Trapezoidal rule as: 

 

∫ 𝑃(𝑠)𝑑𝑠 =
ℎ

2

𝑏

𝑎
(𝑃(𝑠0) + 2∑ 𝑃(𝑠𝑞)

𝑞=𝑣−1
𝑞=1 ⁡+ 𝑃(𝑠𝑣)),⁡⁡      

        (7) 

where ℎ =
𝑏−𝑎

𝑣
 . The values of 𝑠𝑞  can be calculated 

from⁡⁡⁡⁡𝑠𝑞  =𝑠0 + 𝑞ℎ, 𝑞 = 0,1, … , 𝑣.        

 
In the next section, we will use the properties of 

CHPs2, the Trapezoidal numerical method, and the 

concept of the pseudo-spectral expansion to get the 

differentiation and integration matrices. 

 

3. Pseudo-spectral Matrices for the 

Second Kind of Chebyshev Polynomials 

     This section will use the pseudo-spectral 

expression and calculate its coefficients. 

 

Lemma 1. Let G(s)⁡be a continuous function on the 

interval [-1,1] that can be approximately expanded 

such that: 

 

G(s) = ∑ 𝛿𝑛⁡𝑈𝑛(𝑠),
𝑉
𝑛=0            (8)  

 

Then 

𝛿𝑛 = ∑ 𝐶𝑖√1 − 𝑠𝑖
2𝑈𝑛(𝑠𝑖)𝐺(𝑠𝑖)

𝐾
𝑖=0 ,    (9)  

which 

𝐶𝑖= {

2

𝜋𝐾
,⁡⁡⁡⁡⁡⁡⁡𝑖 = 1,… , 𝐾 − 1,

4

𝜋𝐾
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 0, 𝐾.

             (10) 

 

while 𝛿𝑛⁡ are coefficients for the expansion of pseudo-

spectral and 𝑈𝑛(𝑠) are the basis functions for CHPs2. 
 

Proof. Using the form of pseudo-spectral expansion in 

Eq. (8), we obtained: 

 

G(s)w(s)𝑈𝑛(𝑠) = ∑ 𝛿𝑛⁡𝑈𝑛(𝑠)
𝑉
𝑛=0 𝑤(𝑠)𝑈𝑛(𝑠).       (11)  

                           

Via the orthogonal relation of CHPs2 in Eq. (6), we 

get: 

 

𝛿𝑛 =
2

𝜋
∫ G(s)w(s)𝑈𝑛(𝑠)𝑑𝑠
1

−1
.                  (12)       

                                     

By solving this integration via the Trapezoidal rule, 

the proof is complete. 

 

 3.1 Differentiation Matrices for the Second Kind of 

Chebyshev Polynomials 

     In this subsection, we obtained the pseudo-spectral 

differentiation matrices of CHPs2 (CHPs2-DMatrix). 

 

Theorem 1. Let 𝐺(𝑠) be the function that satisfies 

Lemma (1). Then: 

 

𝐺′(𝑠𝑗) = ∑ 𝑑𝑗𝑖𝐺(𝑠𝑖),⁡⁡⁡⁡⁡𝑗 = 0,1, … , 𝐾,𝐾
𝑖=0      

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13)                                            

where: 

𝑑𝑗𝑖 = ∑ 𝐶𝑖√1 − 𝑠𝑖
2𝑈𝑛(𝑠𝑖)

𝑉
𝑛=0 𝑈𝑛 ′(𝑠𝑗),       (14) 

                                           

such that 𝐶𝑖 ⁡ is defined in Eq. (10), and 0 ≤ 𝑗 ≤ 𝐾. 

Proof. From Lemma (1), by differentiating Eq. (8), we 

obtained: 

𝐺′(𝑠) = ∑ ∑ 𝐶𝑖√1 − 𝑠𝑖
2𝑈𝑛(𝑠𝑖)

𝐾
𝑖=0 𝐺(𝑠𝑖)⁡𝑈𝑛′(𝑠)

𝑉
𝑛=0 .                 

                                                                               (15) 

                                   

Collocate Eq. (15) by the points 𝑠𝑗:  

    𝐺′(𝑠𝑗) = ∑ ∑ 𝐶𝑖√1 − 𝑠𝑖
2𝑈𝑛(𝑠𝑖)

𝑉
𝑛=0 𝑈𝑛

′ (𝑠𝑗)⁡𝐺(𝑠𝑖)
𝑘
𝑖=0 ,    

                              (16)                                    

which completes the proof. 

 

    We can write the expression form of CHPs2-

DMatrix as 𝐺′ = 𝑫𝐺, such that: 

𝑫 = (
𝑑00 ⋯ 𝑑0𝐾
⋮ ⋱ ⋮

𝑑𝐾0 ⋯ 𝑑𝐾𝐾

). 

    The order of differentiation 𝑙 ∈ ℕ for DMatrix can 

be introduced as 𝑫𝒍. Such that we can express to 

𝑑(𝑙)as: 

𝑑𝑗𝑖
(𝑙)

= ∑ 𝐶𝑖√1 − 𝑠𝑖
2𝑈𝑛(𝑠𝑖)

𝑉
𝑛=0 𝑈𝑛

(𝑙)
(𝑠𝑗).     (17)     

 

3.2 Integration Matrices for the Second Kind of 

Chebyshev Polynomials 

    In this subsection, we obtained the pseudo-spectral 

integration matrices of CHPs2 (CHPs2-BMatrix). 

 

Theorem 2.    Let 𝐺(𝑠) be the function that is defined 

in Lemma (1). Then: 

∫ 𝐺(𝑠)𝑑𝑠 = ∑ 𝑏𝑗𝑖𝐺(𝑠𝑖),⁡⁡⁡⁡⁡⁡𝑗 = 0,1, … , 𝐾,𝐾
𝑖=0

𝑠𝑗
−1

  

            (18) 

where: 
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𝑏𝑗𝑖 = ∑
1

𝑛 + 1

𝑉

𝑛=0

𝐶𝑖√1 − 𝑠𝑖
2𝑈𝑛(𝑠𝑖)(𝑇𝑛+1(𝑠𝑗)

− (−1)𝑛+1).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19) 

Proof. From Lemma (1), by integrating Eq. (8), we 

get: 

∫ 𝐺(𝑠)𝑑𝑠 =
𝑠𝑗
−1

⁡⁡⁡⁡∑ ∑ 𝐶𝑖√1 − 𝑠𝑖
2𝑈𝑛(𝑠𝑖)𝐺(𝑠𝑖) ∫ 𝑈𝑛(𝑠)𝑑𝑠

𝑠𝑗
−1

,𝐾
𝑖=0

𝑉
𝑛=0  (20) 

where 𝑗 = 0,1, … ,𝐾. 

 

Using the relation in Eq. (5), and boundary of 𝑇(𝑠) to 

determine this integration, we obtained: 

 

∫ 𝐺(𝑠)𝑑𝑠 =
𝑠𝑗
−1

⁡⁡⁡⁡⁡⁡⁡⁡∑ ∑
1

𝑛+1
𝐶𝑖√1 − 𝑠𝑖

2𝑈𝑛(𝑠𝑖)(𝑇𝑛+1(𝑠𝑗) −
𝐾
𝑖=0

𝑉
𝑛=0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(−1)𝑛+1)𝐺(𝑠𝑖).                     (21) 

This completes the proof. 

 

    We can write the expression form of CHPs2-

BMatrix as ∫ 𝐺(𝑠)𝑑𝑠
𝑠

−1
= 𝑩𝐺, such that: 

                       𝑩 = (
𝑏00 ⋯ 𝑏0𝐾
⋮ ⋱ ⋮

𝑏𝐾0 ⋯ 𝑏𝐾𝐾

). 

 

The next section presents the problems formulation of 

ODEs and IDEs and how we can solve them via the 

DMatrix and BMatrix of CHPs2. 

 

4. Problem Formulation and the 

Algorithm of Solution 

    We will discuss the problem statements of ordinary 

differential, integral, and integro-differential 

equations. Then, algorithms for approximating the 

solution via the CHPs2-DMatrix and CHPs2-BMatrix 

have been designed. 

 

4.1 CHPs2-DMatrix for Solving the Ordinary 

Differential Equation 

  Consider the formula of linear or nonlinear ODEs as: 

 

ℱ(𝑠, 𝐺(𝑠), 𝐺′(𝑆), … , 𝐺(𝑙)(𝑠)⁡) = 0,⁡⁡⁡⁡⁡⁡𝑠 ∈ [−1,1],⁡ 

            (22) 

 

which the initial and boundary conditions can be 

expressed as: 

 

  𝐺(−1) = 𝑔0, 𝐺
′(−1) = 𝑔1, … , 𝐺(𝑝)(−1) = 𝑔𝑝 ,⁡⁡⁡⁡(23) 

  𝐺(1) = ℎ0 , 𝐺
′(1) = ℎ1, … , 𝐺(𝑟)(1) = ℎ𝑟 ,⁡⁡⁡          (24) 

such that 𝑟, 𝑝 ∈ ℕ, 𝑔0,…,𝑔𝑝 , ℎ0,…,ℎ𝑟 ∈ ℝ. 

 

    Using the approximated expression of Eq. (8), the 

definition of the CHPs2-DMatrix Eq. (17), and 

collocating Eq. (22) by the equidistant points to 

obtain: 

 

ℱ (𝑠𝑗 , 𝐺(𝑠𝑗), ∑ 𝑑𝑗𝑖
𝐾
𝑖=0 𝐺(𝑠𝑖), … , ∑ 𝑑𝑗𝑖

(𝑙)𝐾
𝑖=0 𝐺(𝑠𝑖)) = 0,⁡  

0 ≤ 𝑗 ≤ 𝐾,           (25) 

    

with the initial and boundary conditions: 

𝐺(−1) = 𝑔0, ∑ 𝑑0𝑖
𝐾
𝑖=0 𝐺(𝑠𝑖) = 𝑔1, …,  

⁡∑ 𝑑0𝑖
(𝑝)𝐾

𝑖=0 𝐺(𝑠𝑖) = 𝑔𝑝           (26) 

𝐺(1) = ℎ0 , ∑ 𝑑𝑁𝑖
𝐾
𝑖=0 𝐺(𝑠𝑖) = ℎ1 , …, 

∑ 𝑑𝑁𝑖
(𝑟)𝐾

𝑖=0 𝐺(𝑠𝑖) = ℎ𝑟 .               (27) 

 

       Eqs. (25,26,27) form an algebraic system of linear 

or nonlinear equations that are easily solved for the 

unknown functions 𝐺(𝑠). Algorithm (1) shows steps 

for solving the initial boundary value problem (IBVP) 

Eqs. (22,23,24) via CHPs2-DMatrix. 

 

Algorithm 1: Steps for solving ODEs. 

Step 1: Input⁡𝑉, 𝐾 ∈ ℕ. 

Step 2: Use Eq. 𝑠𝑖 =𝑠0 + 𝑖ℎ to calculate the 

equidistance point. 

Step 3: Use Eq.(17) to construct the CHPs2-Dmatrix’s 

elements 𝑑𝑗𝑖
(𝑙)
. 

Step 4: Use steps (1-3) to substitute into the Eqs. 

(22,23,24) to get the system Eqs. (25,26,27). 

Step 5: Solve the algebraic system from step 4 to get 

the unknown functions 𝐺(𝑠𝑖). 
 

4.2 CHPs2-BMatrix for Solving the Integral Equation 

Consider the following integral Equation: 

 

𝐺(𝑠) = 𝒬(𝑠) − ∫ ℱ(𝑠, 𝑡, 𝐺(𝑠))𝐺(𝑡)𝑑𝑡 = 0
𝑠

−1
,        (28) 

 

where 𝒱(𝑠), and 𝑄(𝑠) are given continuous functions. 

To solve this problem via the integration matrices for 

CHPs2, similar procedures to those done for the IBVP 

can be executed. 
 

G(sj) = 𝒬(𝑠𝑗) −∑𝑏𝑗𝑖ℱ(𝑠𝑗 ,

𝑗

𝑖=0

𝑡𝑖 , 𝐺(𝑠𝑗))𝐺(𝑡𝑖) = 0,⁡⁡ 

𝑗 = 0,1, … , 𝐾.               (29) 

Algorithm (2) shows steps for solving the integral 

Equation via CHPs2-BMatrix. 
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Algorithm 2: Steps for solving an integral Equation. 

Step 1: Input⁡𝑉, 𝐾 ∈ ℕ. 

Step 2: Use Eq. 𝑠𝑖 =𝑠0 + 𝑖ℎ to calculate the points of 

CHPs2. 

Step 3: Use Eq. (19) to construct the CHPs2-Bmatrix’s 

elements 𝑏𝑗𝑖 . 

Step 4: Use steps (1-3) to substitute into Eq. (28) to 

get Eq. (29). 

Step 5: Solve Eq. (29) from step 4 to get the unknown 

functions 𝐺(𝑠). 
 

4.3 BMatrix and DMatrix for Solving IDEs 

   Integro-differential equations contain a derivative 

part and an integral part. For this reason, we will use 

both matrices of CHPs2. 
 

Consider the problem of IDEs: 

ℱ1(𝑠, 𝐺(𝑠), 𝐺
′(𝑆), … , 𝐺(𝑙)(𝑠)⁡) =

∫ ℱ2(𝑠, 𝑡, 𝐺(𝑡))𝑑𝑡 + ∫ ℱ3(
𝑠

−1

1

−1
𝑠, 𝑡, 𝐺(𝑡))𝑑𝑡, 𝑠 ∈

[−1,1],                  (30) 
 

subject to a sufficient number of initial and boundary 

conditions. Substitute with the DMatrix and BMatrix 

of CHPs2 in Eqs. (13) and (18), we obtained: 
 

ℱ1(𝑠𝑗 , 𝐺(𝑠𝑗),∑𝑑𝑗𝑖

𝐾

𝑖=0

𝐺(𝑠𝑖), … ,∑𝑑𝑗𝑖
(𝑙)

𝐾

𝑖=0

𝐺(𝑠𝑖)) 

=∑𝑏𝐾𝑖ℱ2(𝑠𝑗 ,

𝐾

𝑖=0

𝑡𝑖 , 𝐺(𝑠𝑖)) +∑𝑏𝑗𝑖ℱ3(𝑠𝑗 ,

𝑗

𝑖=0

𝑡𝑖 , 𝐺(𝑠𝑖)), 

 

⁡𝑗 = 0,1, … , 𝐾.              (31) 

 

    The obtained algebraic system will be solved to 

determine the unknown function values. Algorithm (3) 

shows the steps for solving IDE via DMatrix and 

BMatrix for CHPs2. 

 

Algorithm 3: Steps for solving IDEs. 

Step 1: Input⁡𝑉, 𝐾 ∈ ℕ. 

Step 2: Use Eq. 𝑠𝑖 =𝑠0 + 𝑖ℎ to calculate the points of 

CHPs2. 

Step 3: Use Eq. (17) to construct the CHPs2-

Dmatrix’s elements 𝑑𝑗𝑖
(𝑙)
. 

Step 4: Use Eq. (19) to construct the CHPs2-Bmatrix’s 

elements 𝑏𝐾𝑖 . 
Step 5: Use Eq. (19) to construct the CHPs2-Bmatrix’s 

elements 𝑏𝑗𝑖 . 

Step 6: Use steps (1-5) to substitute into Eqs. 

(30,23,24) to get the system Eqs. (31,26,27). 

Step 7: Solve the system from step 6 to get the 

unknown function 𝐺(𝑠). 
 

     In the next section, we will test the differentiation 

and integration matrices for CHPs2 via the well-

known functions to prove the stability and accuracy of 

the present matrices and solve real-life applications.  

 

5. Applications of CHPs2-DMatrix and 

CHPs2-BMatrix 
 

    The following section will apply the differentiation 

and integration matrices to differentiate and integrate 

some test known functions. Then, some different types 

of applications have been solved. The results have 

been presented to show the accuracy and efficiency of 

the investigated CHPs2-DMatrix and CHPs2-BMatrix. 

 

5.1 Test of known functions 
 

Example 1: Consider the following different test 

functions:  
 

𝐺1(𝑠) = 𝑠2, 𝐺2(𝑠) = 𝑒𝑠, 𝐺3(𝑠) = sin 𝑠. 
 

Tables (1) and (2) present the point-wise absolute 

error (point-wise AE) and the max absolute error 

(MAE) for differentiating the functions using the 

differentiation matrix for CHPs2 for different values 

of 𝑉⁡at  𝐾 = 1000. While Tables (3) and (4) show the 

point-wise AE and MAE of the integration. The 

results prove the efficiency and stability of the present 

method. 
 

Table 1: Point-wise AE for the approximate differentiation 

at 𝑉 = 5 and 𝐾 = 1000 of Example 1. 

𝑠 𝐺1(𝑠) 𝐺2(𝑠) 𝐺3(𝑠) 

-1.0 7.48 ∗ 10−04 5.69 ∗ 10−03 1.39 ∗ 10−02 

-0.8 2.91 ∗ 10−04 1.97 ∗ 10−04 3.11 ∗ 10−03 

-0.6 3.85 ∗ 10−04 1.32 ∗ 10−03 6.77 ∗ 10−04 

-0.4 5.98 ∗ 10−04 2.82 ∗ 10−04 8.07 ∗ 10−04 

-0.2 5.56 ∗ 10−04 9.56 ∗ 10−04 1.77 ∗ 10−04 

0 4.99 ∗ 10−04 9.28 ∗ 10−04 6.86 ∗ 10−04 

0.2 5.56 ∗ 10−04 4.50 ∗ 10−04 1.77 ∗ 10−04 

0.4 5.98 ∗ 10−04 1.95 ∗ 10−03 8.07 ∗ 10−04 

0.6 3.85 ∗ 10−04 6.00 ∗ 10−04 6.77 ∗ 10−04 

0.8 2.91 ∗ 10−03 8.79 ∗ 10−03 3.11 ∗ 10−03 

1.0 7.48 ∗ 10−03 3.41 ∗ 10−02 1.39 ∗ 10−02 
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Table 2: MAE for the approximate differentiation at  

𝐾 = 1000 of Example 1. 

𝑉 𝐺1(𝑠) 𝐺2(𝑠) 𝐺3(𝑠) 

2 8.02 ∗ 10−04 5.69 ∗ 10−01 3.78 ∗ 10−01 

3 8.02 ∗ 10−04 1.34 ∗ 10−01 1.97 ∗ 10−02 

4 7.50 ∗ 10−03 3.65 ∗ 10−02 1.97 ∗ 10−02 

5 7.50 ∗ 10−03 3.41 ∗ 10−02 1.39 ∗ 10−02 

    
Table 3: Point-wise AE for the approximate integration at 

𝑉 = 5 and 𝐾 = 1000 of Example 1. 

𝑠 𝐺1(𝑠) 𝐺2(𝑠) 𝐺3(𝑠) 

-1.0 0 0 0 

-0.8 1.19 ∗ 10−04 1.74 ∗ 10−05 6.05 ∗ 10−05 

-0.6 1.14 ∗ 10−04 4.36 ∗ 10−05 6.12 ∗ 10−05 

-0.4 8.90 ∗ 10−05 2.41 ∗ 10−05 4.43 ∗ 10−04 

-0.2 8.44 ∗ 10−05 4.31 ∗ 10−06 3.97 ∗ 10−05 

0 1.00 ∗ 10−04 9.44 ∗ 10−07 5.12 ∗ 10−05 

0.2 1.16 ∗ 10−04 3.86 ∗ 10−05 6.28 ∗ 10−05 

0.4 1.12 ∗ 10−04 5.75 ∗ 10−05 5.81 ∗ 10−05 

0.6 8.65 ∗ 10−05 7.34 ∗ 10−06 4.09 ∗ 10−05 

0.8 8.20 ∗ 10−05 4.04 ∗ 10−05 4.20 ∗ 10−05 

1.0 2.01 ∗ 10−04 3.16 ∗ 10−04 1.02 ∗ 10−04 

 

Table 4: MAE for the approximate integration at 𝐾 = 1000 

of Example 1. 

   𝑉         𝐺1(𝑠)         𝐺2(𝑠)      𝐺3(𝑠) 

   2 1.37 ∗ 10−04 1.08 ∗ 10−02 ⁡9.84 ∗ 10−03 

   3 1.34 ∗ 10−04 1.30 ∗ 10−03 ⁡1.46 ∗ 10−04 

   4 2.01 ∗ 10−04 3.16 ∗ 10−04 ⁡1.46 ∗ 10−04 

   5 2.01 ∗ 10−04 3.16 ∗ 10−04 ⁡1.21 ∗ 10−04 
 

5.2 Numerical Examples 

   This subsection approximates solutions of some 

applications using the CHPs2-DMatrix and CHPs2-

BMatrix to illustrate our method’s efficiency. 

Example 2: The formula of the nonlinear Riccati 

Equation [31]: 
 

𝐺′(𝑠) − 𝐺2(𝑠) = 1,⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝑠 ≤ 1, 
with the initial condition 𝐺(0) = 0, and the exact 

solution is 𝐺(𝑠) = tan 𝑠. After shifting the domain of 

𝑠⁡from [0,1] to [-1,1]. The MAE equals 8.509⁡∗ 10−01 

at 𝑉 = 4,𝐾 = 1000.⁡Table (5) presents the point-wise 

AE. Moreover, Figure (1) shows the Log Error for 

different values of 𝑉 and 𝐾 = 1000. 

 

Table 5: Point-wise AE at 𝑉 = 4 and 𝐾 = 1000 of 

Example 2. 

𝑠 𝐺(𝑠) 

-1.0 1.33 ∗ 10−09 

-0.8 3.29 ∗ 10−01 

-0.6 3.52 ∗ 10−01 

-0.4 3.82 ∗ 10−01 

-0.2 3.01 ∗ 10−01 

0 3.50 ∗ 10−01 

0.2 3.88 ∗ 10−01 

0.4 4.34 ∗ 10−01 

0.6 5.02 ∗ 10−01 

0.8 6.08 ∗ 10−01 

1.0 7.74 ∗ 10−01 

 

              

 
Figure 1: Log error for Example 2. 
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Example 3: Consider the stable population model [32]: 

𝐺(𝑠) = 𝑒𝑠 −∫(𝑠 − 𝑡)𝐺(𝑡)𝑑𝑡,⁡⁡⁡⁡⁡𝑠 ∈ [0,1].

𝑠

0

 

The exact solution is 𝐺(𝑠) =
1

2
(𝑒𝑠 + cos ⁡𝑠 + sin 𝑠), 

such that (𝑠 − 𝑡) is the net maternity function of 

females of class age 𝑡 at time  𝑠. 𝑒𝑠 is the contribution 

of birth due to females already present at time 𝑠, with 

𝐺 being the number of female births. After shifting the 

domain of 𝑠 from [0,1] to [-1,1]. The MAE can be 

determined using CHPs2-BMatrix and equals  

6.03∗ 10−05 at 𝑉 = 7,𝐾 = 1000. The MAE and 

point-wise AE are presented in Tables (6) and (7). In 

addition, Figure (2) shows the Log error, such that, by 

increasing the value of ⁡𝑉, the accuracy of the 

approximation increases. 

 

Table 6: MAE at 𝐾 = 1000 of Example 3. 

𝑉 𝐺(𝑠) 

1 2.19 ∗ 10−02 

2 4.03 ∗ 10−04 

3 7.59 ∗ 10−05 

4 4.30 ∗ 10−05 

5 4.62 ∗ 10−05 

6 6.00 ∗ 10−05 

7 6.03 ∗ 10−05 

8 7.37 ∗ 10−05 

 

 
Figure 2: Log error for Example 3. 

 

 

Table 7: Point-wise AE at 𝑉 = 7 and 𝐾 = 1000 of 

Example 3. 

𝑠 𝐺(𝑠) 

-1.0 0 

-0.8 1.01 ∗ 10−05 

-0.6 1.91 ∗ 10−05 

-0.4 3.40 ∗ 10−05 

-0.2 3.02 ∗ 10−05 

0 3.09 ∗ 10−05 

0.2 4.46 ∗ 10−05 

0.4 5.18 ∗ 10−05 

0.6 4.69 ∗ 10−05 

0.8 5.33 ∗ 10−05 

1.0 5.28 ∗ 10−05 

 

Example 4: Consider the following first-order Volterra 

IDE [33]: 

𝐺′(𝑠) + ∫ ⁡𝐺(𝑡)𝑑𝑡

𝑠

0

= 1,⁡⁡⁡⁡𝑠 ∈ [0,1], 

with the initial condition 𝐺(0) = 1,  and the exact 

solution is  𝐺(𝑠) = sin 𝑠. After shifting the domain to 

[-1,1] using the relation  𝜇 =
1

2
(𝑠 + 1). Table (8) 

presents the point-wise AE at 𝑉 = 5,𝐾 = 500. 

 

Example 5: Consider the following second-order 

Volterra-Fredholm IDE [34]: 

𝐺′′(𝑠) + 𝐺(s) = 2 + 𝑒𝑠 − e + ∫ ⁡𝐺(𝑡)𝑑𝑡

𝑠

0

+∫ ⁡𝐺(𝑡)𝑑𝑡

1

0

,⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝑠 ≤ 1, 

where the initial conditions are 𝐺(0) = 𝐺′(0) = 1, the 

exact solution is 𝐺(𝑠) = 𝑒𝑠. The MAE equals  

1.46⁡∗ 10−03 at 𝑉 = 5,𝐾 = 1500 and the point-wise 

AE has been expressed in Table (9). 
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Table 8: Point-wise AE at 𝑉 = 5 and 𝐾 = 500 of  

Example 4. 

𝑠 G(𝑠) 

-1.0 1.06 ∗ 10−22 

-0.8 5.57 ∗ 10−01 

-0.6 5.52 ∗ 10−01 

-0.4 5.08 ∗ 10−01 

-0.2 5.04 ∗ 10−01 

0 4.55 ∗ 10−01 

0.2 4.94 ∗ 10−01 

0.4 3.47 ∗ 10−01 

0.6 3.92 ∗ 10−01 

0.8 2.84 ∗ 10−01 

1.0 8.41 ∗ 10−01 

 
 

 
 

Table 9: point-wise AE at 𝑉 = 5 and 𝐾 = 1500 of 

Example 5. 

𝑠 𝐺(𝑠) 

-1.0 2.03 ∗ 10−05 

-0.8 1.05 ∗ 10−03 

-0.6 1.14 ∗ 10−03 

-0.4 1.21 ∗ 10−03 

-0.2 1.18 ∗ 10−03 

0 1.07 ∗ 10−03 

0.2 1.05 ∗ 10−03 

0.4 1.23 ∗ 10−03 

0.6 1.45 ∗ 10−03 

0.8 1.11 ∗ 10−03 

1.0 7.90 ∗ 10−04 

 

 

6. Conclusion 

This paper uses the Trapezoidal integration rule to 

introduce new differentiation and integration matrices 

for solving ODEs and IDEs via the pseudo-spectral 

expansion method. The basis function of pseudo-

spectral is the second kind of Chebyshev polynomial. 

The constructed matrices convert the given differential 

problem into a system of algebraic equations. The 

unknown values of the algebraic system are the values 

of the dependent variable. In addition, algorithms for 

solving the initial boundary value problem and 

integral and integro-differential equations have been 

designed. Different well-known tests, like polynomial, 

exponentiation, and trigonometric functions, are used 

to prove the constructed matrices’ reliability. 

Moreover, the matrices have been applied to 

approximate the solution of some real-life 

applications.  
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