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ABSTRACT 

This study proposes and explores a novel category of topological spaces, referred to as SC-compact spaces. Positioned 
strictly between the established notions of semi-compact and C-compact spaces, the SC-compact class is shown to 
satisfy the s-closed property, as conceptualized by Di Maio and Noiri. Utilizing the framework of semi-open and semi-
closed sets, the paper offers a detailed investigation of the core characteristics defining SC-compactness and situates it 
within the wider landscape of generalized compactness concepts. The analysis extends to the behavior of SC-compact 
spaces under a variety of mappings, such as semi-continuous and irresolute functions, revealing several fundamental 
interrelations with known topological structures. A series of examples are presented to illustrate these theoretical 
connections and to highlight the unique role of SC-compactness among other compactness conditions. The findings 
contribute meaningfully to the theoretical expansion of compactness in topology and suggest promising avenues for 
further extensions and applications—especially in scenarios where semi-open coverings and neighborhood systems 
are of central importance. Overall, this work enhances the foundational understanding of topological compactness and 
opens new perspectives for research in fields where approximation and structural imprecision are intrinsic.  

1. Introduction 

     1.1 Historical Background 

    Compactness has traditionally played a pivotal role 

in general topology, serving as a fundamental link 

between the local properties and the global behavior of 

topological spaces. Over the years, numerous 

generalizations have been developed to accommodate 
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increasingly complex structural features and to extend 

the utility of this central notion. 

     In 1987, Di Maio and Noiri [1] introduced the 

concept of s-closedness, offering a refined perspective 

on compactness that lies between semi-compactness 

[2] and S-closedness [3]. This contribution enriched 

the classical framework of compactness-related 

properties and inspired subsequent studies, including 

those by Khan et al. [4]. Later, Viglino [5] proposed 

the concept of C-compact spaces, a specialized subset 

of quasi-H-closed spaces [6], further advancing the 

theoretical understanding of compactness through 

intermediate concepts grounded in semi-open sets. 

     Concurrently, various mathematical paradigms 

were developed to model real-world problems 

involving uncertainty and imprecision, including 

probability theory, fuzzy sets, rough set theory, and 

decision-making methodologies. Among these, 

Pawlak’s seminal 1982 work [7] introduced rough set 

theory, which models uncertainty using lower and 

upper approximations based on equivalence relations. 

However, the limitations imposed by strict 

equivalence motivated efforts to adopt more general 

relational frameworks. 

      As a response, topological approaches were 

incorporated into rough set theory, enabling the 

replacement of equivalence relations with broader 

binary relations. This led to enhanced models with 

wide-ranging applications such as clustering [8–10], 

decision-making problems [11–14], and medical 

diagnosis [15–18]. A major development came with 

the work of Abd El-Monsef et al. [19], who introduced 

a method for generating multiple topologies from 

neighborhood systems derived from binary relations—

thereby establishing the κ-neighborhood framework. 

This model broadened Pawlak’s structure by 

incorporating right and left neighborhoods [8], as well 

as novel types of neighborhoods formed through 

intersections and unions [19]. 

      More recently, Nawar et al. [20] proposed θβ-

rough approximations, which integrate ideals into 

Pawlak’s model and refine the κ-neighborhood 

structure. This model was further generalized by El-

Bably et al. [21], who developed new algorithms and 

theoretical results to validate and extend the 

framework, reinforcing its originality and 

applicability. 

 

      1.2 Objectives and Motivations 

    Motivated by these developments, this paper 

presents and examines a novel class of topological 

spaces, designated as SC-compact spaces. This class 

occupies a position firmly between semi-compact and 

C-compact spaces, inheriting essential features from 

the s-closed framework introduced by Di Maio and 

Noiri [1]. Through the use of semi-open and semi-

closed sets, SC-compact spaces offer fresh insights 

into the structure of compactness. 

The core aims of this study are as follows: 

• To formally define SC-compact spaces and 

contextualize them within the existing hierarchy 

of generalized compactness. 

• To explore the principal properties of SC-

compact spaces and examine their relationships 

with other compactness generalizations. 

• To analyze how SC-compactness behaves under 

different types of mappings, particularly 

irresolute and semi-continuous functions. 

• To identify potential applications and future 

research directions, especially those related to 

rough set theory and generalized neighborhood 

systems. 

     This work seeks to contribute meaningfully to the 

evolving discourse on topological compactness by 

offering a new structural perspective and by 

establishing connections between classical topological 

ideas and modern models of uncertainty and 

approximation. 

 

2. Some Preliminary Concepts 
    Throughout this paper, unless otherwise stated, all 

spaces are assumed to be topological spaces in the 

sense of general topology. 

    Let (X,τ) be a topological space. A subset 𝑆 ⊆ 𝑋 is 

defined as semi-open [22] if 𝑆 ⊆ 𝐶𝑙(Int(𝑆)), where 

𝐶𝑙(𝑆) and Int(𝑆) denote the closure and interior of S, 

respectively. 

    Dually, a subset S is termed semi-closed if its 

complement X\S is semi-open. Equivalently, this 

means 

Int(𝐶𝑙(𝑆)) ⊆ 𝑆. 
   For any subset 𝐴 ⊆ 𝑋, the semi-closure of 𝐴, 

symbolized by 𝑠𝐶𝑙(𝐴), is defined as the smallest semi-

closed set containing 𝐴. 

    Similarly, the semi-interior of 𝐴, symbolized 

sInt(𝐴), is the largest semi-open set contained in 𝐴. 

For any subset 𝐴 ⊆ 𝑋, it is well known that: 

𝑠𝐶𝑙(𝐴) = 𝐴 ∪ Int(𝐶𝑙(𝐴)) and 𝑠Int(𝐴) = 𝐴 ∩
𝐶𝑙(Int(𝐴)). 

    We denote by so (𝑋, 𝜏) the collection of all semi-

open subsets of the space (𝑋, 𝜏). 

     

Definition 2.1. Let (𝑋, 𝜏) be a topological space. The 

space is characterized as follows: 
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 It is called s-closed [1] if for every collection 
{𝑉𝜆: 𝜆 ∈ Λ} of semi-open subsets of 𝑋 such that 

𝑋 = ⋃ 𝑉𝜆𝜆∈Λ a, there exists a finite subcollection 

Λ0 ⊆ Λ satisfying 𝑋 = ⋃ 𝑠𝐶𝑙(𝑉𝜆)𝜆∈Λ0
, where 

𝑠𝐶𝑙(𝑉𝜆) denotes the semi-closure of 𝑉𝜆. 

 It is termed quasi-H-closed [6] if any open cover 

of 𝑋 admits a finite subclass whose closures 

together cover 𝑋. 

 It is said to be semi-compact [2] if any semi-open 

cover of 𝑋 contains a finite subcover. 

 The space is called C-compact [5] if each closed 

subset of 𝑋 is quasi-H-closed with respect to the 

topology 𝜏. 

 It is defined as p-closed [23, 24] if for every 

preopen cover of 𝑋, a finite subcollection can be 

found such that the union of their preclosures 

equals 𝑋. 

Definition 2.2. Let (𝑋, 𝜏) be a topological space. Then: 

 The subset 𝐴 is called s-closed relative a subset 

[1] if each semi-open cover of 𝐴, consisting of 

semi-open subsets of (𝑋, 𝜏), contains a finite 

subcollection whose semi-closures collectively 

cover 𝐴. More precisely, for any family {𝑉𝜆: 𝜆 ∈
Λ} of semi-open sets such that 𝐴 ⊆ ⋃ 𝑉𝜆𝜆∈Λ , there 

exists a finite subfamily Λ0 ⊆ Λ satisfying 𝐴 ⊆
⋃ 𝑠𝐶𝑙(𝑉𝜆)𝜆∈Λ0

, where 𝑠𝐶𝑙(𝑉𝜆) denotes the semi-

closure of 𝑉𝜆. 

 quasi-H-closed relative to (𝑿, 𝝉) [6] if every open 

cover of 𝐴 has a finite subcollection whose 

closures cover 𝐴. That is, given any collection 
{𝑈𝜆: 𝜆 ∈ Λ} of open sets with 𝐴 ⊆ ⋃ 𝑈𝜆𝜆∈Λ , there 

exists a finite subset Λ0 ⊂ Λ such that 𝐴 ⊆
⋃ 𝐶𝑙(𝑈𝜆)𝜆∈Λ0

. 

 

3. Main Results 

     In this section, we present the central theoretical 

contributions of this study, formally defining SC-

compact spaces and establishing their place within the 

hierarchy of generalized compactness notions in 

topology. We begin by introducing the definition of 

SC-compactness and clarifying its relationship with 

existing concepts such as semi-compactness, C-

compactness, and s-closedness. Through precise 

theorems and carefully constructed examples, we 

demonstrate how SC-compactness naturally extends 

classical compactness properties while maintaining 

distinctive characteristics that differentiate it from 

other compactness conditions. 

    We further provide necessary and sufficient 

conditions for a space to be SC-compact, examine its 

preservation under standard topological constructions, 

and illustrate these results with explicit 

counterexamples that show the limitations of the 

converses. This rigorous development not only 

situates SC-compact spaces within the broader 

landscape of general topology but also lays the 

groundwork for their potential applications and deeper 

study. 

 

Definition 3.1. Let (𝑋, 𝜏) be a topological space, then 

it is called SC-compact if each semi-closed subset of 

𝑋 is s-closed relative to the topology 𝜏. That is, each 

semi-closed subset can be covered by finitely many 

semi-closures of semi-open sets that together form a 

cover of the subset. 

 

    It is evident that each SC-compact space 

(respectively, C-compact space) satisfies the condition 

of being s-closed (respectively, quasi-H-closed). 

Furthermore, it is straightforward to verify that all 

semi-compact spaces are necessarily SC-compact. 

Moreover, since the semi-closure of any open set 𝑉 

coincides with its closure, i.e., 𝑠𝐶𝑙(𝑉) = 𝐶𝑙(𝑉), it 

follows that every SC-compact space necessarily 

satisfies the condition for C-compactness. 

    The diagram below illustrates the hierarchical 

relationships between SC-compact spaces and several 

other important classes of generalized compact spaces. 

 

 
 

 

     In the subsequent discussion, we demonstrate that 

the converse of each of these implications does not 

necessarily hold. This is substantiated by Example 

4.8(d) from [25], Example 2.10 from [26], and an 

additional illustrative example provided below. 

 

Example 3.1. This set of examples illustrates that the 

implications between various compactness conditions 

discussed earlier are not reversible. 

(i) Consider the topological space (𝑋, 𝜏), where 𝑋 =
ℝ, and 𝜏 = {𝜙, {0}, 𝑋}. It is easy to verify that this 

space is s-closed. However, it fails to be SC-

compact, since not every semi-closed subset is s-

closed relative to 𝑋. 
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(ii) Let 𝑋 = ℤ, and define a topology 𝜏 on 𝑋 with a 

basis consisting of all singleton sets {𝑛}, for 𝑛 ∈
ℤ − {0}, along with all sets 𝑇 ⊆ 𝑋 such that 0 ∈
𝑇 ∈ 𝜏 and 𝑋 ∖ 𝑇 is finite. This space is compact 

but not semi-compact. Indeed, the collection 

{{𝑛, 0}: 𝑛 ∈ ℤ ∖ {0}} forms a cover of 𝑋 by semi-

open sets, yet no finite subcollection of this family 

covers the space—therefore violating semi-

compactness. 

(iii) There exist spaces that are s-closed but fail to be 

C-compact, and consequently, they are not SC-

compact. A prominent example of such a space is 

the Katětov extension 𝐾ℕ of the set of natural 

numbers ℕ. This space is constructed by adjoining 

to ℕ all free ultrafilters on ℕ, with the topology 

defined by: 

 For every 𝑛 ∈ ℕ, the singleton set {𝑛}  is 

declared open. 

 For any point 𝜇 ∈ 𝐾ℕ ∖ ℕ, a basic open 

neighborhood is given by {𝜇} ∪ 𝐺, where 𝐺 ⊆
ℕ and 𝐺 ∈ 𝜇. 

   As established in [27] and [28], the space 𝐾ℕ is both 

p-closed and s-closed. However, it fails to be compact 

and, as a result, is not semi-compact. Moreover, it 

does not fulfill the requirements for C-compactness 

and thus cannot be categorized as SC-compact. 

    Recall that a subset 𝐴 ⊆ 𝑋 in a topological space 

(𝑋, 𝜏) is termed semi-regular open [1] if it satisfies the 

condition: 

𝐴 = sInt(𝑠𝐶𝑙(𝐴)). 

   This condition implies that A coincides with the 

semi-interior of its semi-closure. 

    It follows directly that a subset 𝐴 ⊆ 𝑋 is semi-

regular open if and only if it can be expressed as the 

semi-interior of some semi-closed set in (𝑋, 𝜏). 

   Furthermore, suppose 𝑊 ⊆ 𝑋 is semi-open, and 

define 𝐻 = 𝑠Int(𝑠𝐶𝑙(𝑊))). Then it holds that: 

𝐶𝑙(𝑊) = 𝑠𝐶𝑙(𝐻), 

indicating that the semi-closure of 𝑊 is equal to the 

semi-closure of the corresponding semi-regular open 

set 𝐻. 

 

Theorem 3.1. Let ( 𝑋, 𝜏 ) be a topological space. The 

subsequent statements are equivalent: 

(1) ( 𝑋, 𝜏 ) is SC-compact. 

(2) For every semi-closed subset 𝐴 ⊆ 𝑋, and 

every collection {𝐷𝜆: 𝜆 ∈ ∇} of semi-closed 

sets such that (∩ {𝐷𝜆, bda : 𝜆 ∈ ∇}) ∩ 𝐴 = 𝜙, 

there exists a finite subcollection ∇𝑜⊆ ∇ such 

that 

𝐴 ⊆∪ {𝑠𝐶𝑙(𝑊𝜆): 𝜆 ∈ ∇𝑜} −∪ {𝑠𝐶𝑙(𝑈𝜆): 𝜆 ∈ ∇𝑜}. 

(3) For any semi-closed set 𝐴 ⊆ 𝑋 and any semi-

regular open cover {𝑈𝜆: 𝜆 ∈ ∇} of 𝐴, there 

exists a finite subcollection ∇𝑜⊆ ∇such that 

𝐴 ⊆ 𝑈{𝑠𝐶𝑙(𝑈𝜆): 𝜆 ∈ ∇𝑜}. 

Proof.  

   (1) ⇒ (2): Immediate from the definition of SC-

compactness. 

    (1) ⇒ (3): Also follows directly, since semi-regular 

open sets are formed via semi-closures and semi-

interiors, consistent with the structure of SC-

compactness. 

     (3) ⇒ (1): Assume condition (3) holds. Consider a 

semi-closed subset 𝐴 ⊆ 𝑋 and {𝑈𝜆: 𝜆 ∈ ∇}  is a semi-

open cover of 𝐴. For every 𝜆 ∈ ∇, define 𝑊𝜆 =

sInt(𝑠𝐶𝑙(𝑈𝜆)). 

     Each 𝑊𝜆 is semi-regular open by construction, and 
{𝑊𝜆: 𝜆 ∈ ∇} still covers 𝐴, since 𝑈𝜆 ⊆ 𝑠𝐶𝑙(𝑈𝜆) and 

hence 𝑈𝜆 ⊆ 𝑊𝜆. By the assumption, there exists a 

finite subcollection ∇𝑜⊆ ∇ such that: 

𝐴 ⊆ ⋃ 𝑠𝐶𝑙(𝑊𝜆)𝜆∈∇𝑜
. 

   But since 𝑠𝐶𝑙(𝑊𝜆) = 𝑠𝐶𝑙(𝑈𝜆), we conclude: 

𝐴 ⊆ ⋃ 𝑠𝐶𝑙(𝑈𝜆)𝜆∈∇𝑜
. 

    This demonstrates that 𝐴 is s-closed relative to 𝑋, 

thereby proving that (𝑋, 𝜏) is SC-compact. 

 

Theorem 3.2. Every infinite topological space 𝑌 can 

be embedded as a closed subspace within an SC-

compact topological space 𝑋. 

Proof. 

Let 𝑍 be an arbitrary infinite 𝑇1-space. Define two 

disjoint copies of 𝑍 as follows: 

𝑍1 = 𝑍𝑥{1} and 𝑍2 = 𝑍𝑥{𝑧}. 

   Assume that the original space 𝑌 is disjoint from 

𝑍1 ∪ 𝑍𝑒 , i.e., 𝑌 ∩ (𝑍1 ∪ 𝑍𝑒) = 𝜙. 

    Now define the space 𝑋 as the union: 𝑋 = 𝑌 ∪ 𝑍1 ∪
𝑍2. 

    For 𝑖 = 1,2, define a subbase 𝛽𝑖  for the topology on 

𝑍𝑖 as: 

𝛽𝑖 = {𝑊𝑖 ⊆ 𝑍𝑖: 𝑊𝑖 = 𝑣𝑥{𝑖}  for some open subset 𝑣 of 

𝑍}. 

    Next, define a family 𝛽3 consisting of subsets of 𝑋 

of the form: 

𝛽3 = {𝐺 ⊆ 𝑋 : 𝐺 = 𝑈 ∪ 𝐶1 ∪ 𝐶2, where 𝑈 is open in 
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𝑌, and 𝐶1, 𝐶2 are cofinite in 𝑍1 and 𝑍2, respectively}. 

    The topology on 𝑋 is then generated by the union of 

these three collections: 𝛽1 ∪ 𝛽2 ∪ 𝛽3. 

    Under this topology, it can be shown that 𝑋 is SC-

compact and that the subspace 𝑌 ⊆ 𝑋 is closed. 

 

    It can be readily verified that the collection 𝛽1 ∪
𝛽2 ∪ 𝛽3 serves as a basis for a topology on 𝑋. Under 

this topology, both 𝑍1 and 𝑍2 are clearly open subsets 

of 𝑋, while the original space 𝑌 becomes a closed 

subspace of 𝑋. 

     For each 𝑖 = 1,2, it follows directly that the closure 

of 𝑍𝑖 in 𝑋 satisfies: 𝐶𝑙𝑋(𝑍1) = 𝑌 ∪ 𝑍1 and the semi-

closure of 𝑍𝑖 is simply: 𝑠𝐶𝑙𝑋𝑍𝑖 = 𝑍𝑖  

     Now, consider any point 𝑦 ∈ 𝑌, and define the 

subset 𝑆𝑦 = 𝑍1 ∪ {𝑌}. Then 𝑆𝑦 is semi-open in 𝑋, and 

its semi-closure is: 𝑠𝐶𝑙𝑋(𝑆𝑦) = 𝑆𝑦. 

     Thus, the collection {𝑆𝑦: 𝑦 ∈ 𝑌} ∪ {𝑍𝑧} forms a 

semi-open cover of 𝑋 that lacks any finite subfamily 

whose semi-closures collectively cover 𝑋. 

     As established in [29], this shows that the space 𝑋 

is not s-closed, and consequently, it fails to be SC-

compact. 

 

4. Some Applications 

     In this section, we explore key applications and 

consequences of the concept of SC-compactness by 

examining how it interacts with various classes of 

functions between topological spaces. We introduce 

and compare different forms of continuity—such as 

almost s-continuity, strongly semi-continuity, 

irresoluteness, and semi-continuity—and investigate 

their connections to the structure and behavior of SC-

compact spaces. 

     Fundamental results are established concerning the 

preservation of SC-compactness under continuous and 

irresolute mappings, the properties of function graphs, 

and the implications for factor spaces in product 

topologies. These results demonstrate how SC-

compactness provides a flexible framework for 

analyzing function spaces and contributes to a richer 

understanding of generalized compactness within 

broader topological contexts. 
 

Definition 4.1. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function 

between two topological spaces. The function 𝑓 is 

classified according to the following types of 

continuity: 

 Almost s-continuous [30]: 

The function 𝑓 is called almost s-continuous 

if, for every point 𝑥 ∈ 𝑋 and every semi-open 

set 𝑉 ⊆ 𝑌 containing 𝑓(𝑥), there exists an 

open neighborhood 𝑈 ⊆ 𝑋 of 𝑥 such that 

𝑓(𝑈) ⊆ 𝑠𝐶𝑙(𝑉). 

 s-continuous (or strongly semi-continuous) [23, 

31]: 

The function 𝑓 is said to be s-continuous if, 

for each 𝑥 ∈ 𝑋 and for every semi-open set 

𝑉 ⊆ 𝑌 containing 𝑓(𝑥), there exists an open 

set 𝑈 ⊆ 𝑋 with 𝑥 ∈ 𝑈 such that: 𝑓(𝑈) ⊆ 𝑉. 

 Irresolute [32]:  

The function 𝑓 is called irresolute if for every 

𝑥 ∈ 𝑋 and every semi-open set 𝑉 ⊆ 𝑌 

containing 𝑓(𝑥), there exists a semi-open 

neighborhood 𝑈 ⊆ 𝑋 of 𝑥 such that: 𝑓(𝑈) ⊆
𝑉. 

 Semi-continuous [22]: 

The function 𝑓 is semi-continuous if for each 

𝑥 ∈ 𝑋 and each open set 𝑉 ⊆ 𝑌 containing 

𝑓(𝑥), there exists a semi-open subset 𝑈 ⊆ 𝑋 

with 𝑥 ∈ 𝑈 such that: 𝑓(𝑈) ⊆ 𝑉. 

 s-closed [31]: 

The function 𝑓 is said to be s-closed if for 

every semi-closed subset 𝐴 ⊆ 𝑋, the image 

𝑓(𝐴) is closed in 𝑌; that is: 𝐴  semi-

closed in 𝑋 ⟹ 𝑓(𝐴) is closed in 𝑌. 

 

Remak 4.1.  A mapping 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is called 

weakly continuous [33] if for every point 𝑥 ∈ 𝑋 and 

every open set 𝑉 ⊆ 𝑌 with 𝑓(𝑥) ∈ 𝑉, there exists an 

open neighborhood 𝑈 ⊆ 𝑋 of 𝑥 such that: 

𝑓(𝑈) ⊆ 𝐶𝑙(𝑉). 
    A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is called almost 

weakly continuous [34] if for every open set 𝑉 ⊆ 𝑌, 

the following condition is satisfied: 𝑓−1(𝑉) ⊆

Int(𝐶𝑙(𝑓−1(𝐶𝑙(𝑉)))). 

 

    Theorem 3.1 in [35] established that a function 𝑓 is 

almost weakly continuous if and only if, for every ∈ 𝑋 

and every open neighborhood 𝑉 ⊆ 𝑌 containing 𝑓(𝑥), 

there exists a preopen set 𝑈 ⊆ 𝑋 such that 𝑥 ∈ 𝑈 and 

𝑓(𝑈) ⊆ 𝐶𝑙(𝑉). 

Furthermore, we note the following relationships: 
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     The following definition introduces a closure-

related property for the graph of a function: 

 

Definition 4.2. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function. 

The graph of 𝑓, denoted by 𝐺(𝑓) ⊆ 𝑋 × 𝑋, is said to 

be strongly s-closed if for every (𝑥, 𝑦) ∈ (𝑋 × 𝑋) ∖
𝐺(𝑓), there exists an open neighborhood 𝑈 ⊆ 𝑋 of 𝑥 

and a semi-open set 𝑉 ⊆ 𝑌 containing 𝑦 such that: 

(𝑈 × 𝑠𝐶(𝑉)) ∩ 𝐺(𝑓) = 𝜙 or equivalently, 𝐹(𝑈) ∩
𝑠𝐶𝑙(𝑉) = 𝜙. 

 

Note that a topological space ( 𝑋, 𝜏 ) is referred to as 

semi-Urysohn [1] if, for any pair of distinct points 

𝑥, 𝑦 ∈ 𝑈 with 𝑥 ≠ 𝑦, there exist semi-open subsets 

𝑈, 𝑉 ⊆ 𝑋 such that: 

𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉, and 𝑠𝐶𝑙(𝑈) ∩ 𝑠𝐶𝑙(𝑉) = 𝜙. 

 

Theorem 4.1. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function. 

Then the following hold: 

(i) If 𝑓 is almost s-continuous and the codomain 

(𝑌, 𝜎) is a semi-Urysohn space, then the graph 

𝐺(𝑓) is strongly s-closed. 

(ii) If 𝐺(𝑓) is strongly s-closed, then for every subset 

𝐾 ⊆ 𝑌 that is s-closed relative to (𝑌, 𝜎), the preimage 

𝑓−1(𝐾) is a closed subset of 𝑋. 

Proof.  

(i) Let (𝑥, 𝑦) ∈ (𝑋 × 𝑌) ∖ 𝐺(𝑓), meaning 𝑓(𝑥) ≠ 𝑦. 

Since (𝑌, 𝜎) is assumed to be semi-Urysohn, there 

exist semi-open sets 𝑉, 𝑊 ⊆ 𝑌 such that 𝑓(𝑥) ∈ 𝑉, 

𝑦 ∈ 𝑊 and 𝑠𝐶𝑙(𝑉) ∩ 𝑠𝐶𝑙(𝑊) = 𝜙. 

     Given that 𝑓 is almost s-continuous, there exists an 

open neighborhood 𝑈 ⊆ 𝑋 of 𝑥 for which: 

𝑓(𝑈) ⊂ 𝑠𝐶𝑙(𝑉). 

This implies: 

𝑓(𝑈) ∩ 𝑠𝐶𝑙(𝑊) = 𝜙, 

and thus: 

(𝑈 × 𝑠𝐶𝑙(𝑊)) ∩ 𝐺(𝑓) = 𝜙. 

Hence, the graph 𝐺(𝑓) is strongly s-closed. 

(ii) Suppose 𝐾 ⊆ 𝑌 is s-closed in (𝑌, 𝜎), and let 𝑥 ∈
𝑋 ∖ 𝑓−1(𝐾). Then 𝑓(𝑥) ∉ 𝐾, and for every 𝑦 ∈ 𝐾, the 

point (𝑥, 𝑦) does not belong to the graph 𝐺(𝑓).  Due 

to the strong s-closedness of 𝐺(𝑓), for each 𝑦 ∈ 𝐾, 

there exist: 

 an open neighborhood 𝑈𝑦 ⊆ 𝑋 of 𝑥, and  

 a semi-open set 𝑉𝑦 ⊆ 𝑌 containing 𝑦, such that: 

𝑓(𝑈) ∩ 𝑠𝐶𝑙(𝑉𝑦) = 𝜙. 

Since 𝐾 is s-closed, there exists a finite subset 𝐾1 ⊆
𝐾 satisfying:  

𝐾 ⊆ ⋃ 𝑠𝐶𝑙(𝑉𝑦).

𝑦∈𝐾1

 

Now, define: 

𝑈 = ⋂ 𝑈𝑦 .

𝑦∈𝐾1

 

    Then, 𝑈 is an open neighborhood of 𝑥, and 𝑓(𝑈) ∩

𝐾 ⊆ 𝑓(𝑈) ∩ ⋃ 𝑠𝐶𝑙(𝑉𝑦)𝑦∈𝐾1
= 𝜙. Therefore, 𝑈 ∩

𝑓−1(𝐾) = 𝜙, implying that 𝑓−1(𝐾) is closed in (𝑋, 𝜏). 

 

Corollary 4.1. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function, 

where the codomain (𝑌, 𝜎) is semi-Urysohn and SC-

compact. Thus, the subsequent statements are equal: 

(1) The function 𝑓 is strongly semi-continuous, 

(2) The function 𝑓 is almost s-continuous, 

(3) The graph 𝐺(𝑓) is strongly s-closed, 

(4) The preimage 𝑓−1(𝐾) is closed in 𝑋 for every 

subset 𝐾 ⊆ 𝑌 that is s-closed relative to (𝑌, 𝜎). 

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) follow 

directly from Theorem 4.1. 

     To establish (4) ⇒ (1): Let 𝐹 ⊆ 𝑌 be a semi-

closed set. Since (𝑌, 𝜎) is assumed to be SC-compact, 

it follows that 𝐹 is s-closed relative to 𝑌. By 

assumption (4), the inverse image 𝑓−1(𝐾) is a closed 

subset of 𝑋. Thus, by the definition of strongly semi-

continuous functions, 𝑓 is strongly semi-continuous. 
 

Theorem 4.2. Let (𝑋, 𝜏) be an SC-compact 

topological space and suppose that 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) 

is a surjective function which is irresolute 

(respectively, semi-continuous). Then (𝑌, 𝜎) is SC-

compact (respectively, C-compact). 

Proof. Let 𝐹 ⊆ 𝑌 be a semi-closed (respectively 

closed) subset. Since 𝑓 is assumed to be irresolute 

(respectively, semi-continuous), the preimage 

𝑓−1(𝐹) ⊆ 𝑋 is semi-closed. By the SC-compactness 
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of 𝑋, this implies that 𝑓−1(𝐹) is s-closed relative to 𝑋. 

It then follows from the surjectivity of 𝑓 that: 

𝐹 = 𝑓(𝑓−1(𝐹)) is s-closed (respectively, quasi-H-

closed) relative to 𝑌. Consequently, 𝑌 is SC-compact 

(respectively, C-compact). 

 

Corollary 4.2. If the product space ∏ 𝑋𝛼𝛼∈∇  is SC-

compact, then every factor. space ( 𝑋𝛼 , 𝜏𝛼  ) is SC-

compact. 

Proof. Each projection mapping from the product 

space onto a factor space is a continuous and open 

surjection. Therefore, it is irresolute. Applying 

Theorem 4.2, the SC-compactness of the product 

implies the SC-compactness of each coordinate space. 

(By using the results in Viglino [5]). 

 

Theorem 4.3. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a semi-

continuous function, where ( 𝑋, 𝜏 ) is SC-compact and 

(𝑌, 𝜎) is a Hausdorff space. Then 𝑓 is s-closed. 

Proof. Consider a semi-closed set 𝐹 ⊆ 𝑋. Since 𝑋 is 

SC-compact, 𝐹 is s-closed relative to 𝑋. From the 

semi-continuity of 𝑓, it follows that 𝑓(𝐹) ⊆ 𝑌  is 

quasi-H-closed relative to 𝑌. Given that 𝑌 is 

Hausdorff, every quasi-H-closed set is closed. Thus, 

𝑓(𝐹) is closed in 𝑌, and so 𝑓 is s-closed. 

 

5. Conclusion and Future Work 

    In this study, we introduced and investigated the 

concept of SC-compact spaces, a novel class of 

topological spaces situated between semi-compact and 

C-compact spaces. These spaces are inherently s-

closed in the sense of Di Maio and Noiri, and they 

contribute to a refined hierarchy of compactness-

related structures within general topology. 

    We systematically explored the initial properties of 

SC-compact spaces and examined their preservation 

under various classes of mappings, including 

irresolute and semi-continuous functions. A range of 

illustrative examples was provided to clarify their 

connections with existing notions such as s-closed, 

semi-compact, and C-compact spaces. This framework 

offers a richer understanding of compactness through 

the interplay of semi-open and semi-closed sets within 

neighborhood systems. 

 

Future Research Directions 

The development of SC-compact spaces suggests 

several promising avenues for further exploration: 

• Topological Rough Set Theory: Investigating 

the interface between SC-compactness and 

generalized rough set approximations, 

particularly those based on topological 

neighborhood systems and semi-open sets, such 

as [11-14], initial-rough sets [16, 17], and fuzzy 

topological spaces [36]. 

• Decision-Theoretic Models: Applying SC-

compactness in frameworks where semi-open 

covers and neighborhood-based reasoning are 

intrinsic, such as decision-making under 

uncertainty by using Primal approximation 

spaces [37]. 

• Mapping Extensions and Fixed-Point Theory: 

Extending the analysis to broader classes of 

mappings, including weakly semi-continuous 

and almost weakly continuous functions, and 

studying fixed-point results within SC-compact 

frameworks. 

• Applications in Data-Driven Contexts: 

Exploring the utility of SC-compactness in 

fields such as artificial intelligence, data 

mining, and information systems, where 

topological notions aligned with uncertainty, 

approximation, and granularity play a critical 

role.     

 

This research lays a foundation for extending the 

theoretical boundaries of compactness in topology and 

highlights the relevance of SC-compact spaces in both 

pure and applied mathematical contexts. 
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