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Abstract:

This paper analyzes a fluid queue driven by an M/M/w background system
subject to catastrophic breakdowns and exponential repairs. The model
extends classical fluid queues by incorporating catastrophic failures that
simultaneously remove all customers, along with repair dynamics that restore
the system to full capacity. Using Laplace transforms and continued-fraction
techniques linked to confluent hypergeometric functions, we derive the
stationary distribution of the buffer content and the joint law of buffer level
and background population. The theoretical novelty lies in the explicit
continued-fraction representation, the closed-form characterization of stability,
and the tractable formulas for key measures such as non-empty probability,
throughput, and mean buffer level. Beyond methodological advances, the
model has applications in telecommunication networks with mass call failures,
data centers exposed to blackouts, production systems with common-cause
machine breakdowns, and service systems under disaster recovery regimes.
Numerical illustrations highlight how arrival, service, failure, and repair
parameters shape long-run performance, offering insights into both reliability

planning and capacity design.

Keywords: Infinite queue, Stationary analysis, Confluent Hypergeometric
Function, Catastrophes, Repairable servers.
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1-Introduction:

Fluid queues are a well-established framework for studying systems in which
workload evolves continuously under the influence of random environments.
They have been applied in telecommunications, computer networks,
production, and service operations where arrival and service processes interact
with dynamic input and output rates. A number of studies have examined
infinite-server systems in this context. For instance, Linton [5], Bura Gulab
Singh [2], Baykel-Gursoy [1], Sophia [8], and Gulab Singh [3] have analyzed
infinite-server queueing models, often employing continued-fraction
techniques to address queueing problems involving disasters and repairable
servers in the classical (non-fluid) setting.

Fluid queues themselves have been studied under various structural
assumptions and solution methods. Xu et al. [10], for example, investigated a
fluid queue model controlled by an M/M/c queue with working vacation using
the matrix-analytic approach. Krishna Kumar et al. [4] applied the continued-
fraction method to infinite-server fluid queues, deriving the expected fluid
content and stationary buffer distributions. Parthasarathy and Vijayashree [7]
considered a fluid queue driven by a discouraging-arrivals queue, showing
how modified input dynamics affect performance. These studies demonstrate
the flexibility of fluid queue modeling and the range of analytic techniques
available for equilibrium analysis.

Despite this progress, the literature has typically treated catastrophes,
repairable servers, and infinite-server environments separately. To the best of

our knowledge, no prior work has integrated an M/M/ew background with both
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catastrophic failures and exponential repairs to analyze fluid queues. This
integration is important because many practical systems are exposed to sudden
large-scale service collapses followed by repair and recovery. Examples
include mass call failures in telecommunication networks, data center outages,
and coordinated machine breakdowns in manufacturing systems.

The present study fills this gap by introducing and analyzing a fluid queue
controlled by an infinite-server system with both catastrophic failures and
repairable servers. Customers arrive according to a Poisson process and
receive exponential service in the M/M/co background. Catastrophes
simultaneously remove all customers, while repair times are exponentially
distributed, restoring the system to full operation. The buffer receives fluid
input during active phases and depletes during downtime. Our theoretical
contributions are as follows. First, we derive a precise stability condition
based on the stationary availability of the catastrophe—repair process. Second,
we obtain explicit stationary distributions of buffer content and the joint law
of buffer level and background population using Laplace transforms and
continued-fraction methods linked with confluent hypergeometric functions.
Third, we present closed-form expressions for performance measures such as
the probability of a non-empty buffer, throughput, and expected buffer
content. On the applied side, the model is relevant to telecommunication
networks with mass call failures, data centers subject to blackouts, and
production systems experiencing collective breakdowns. The results provide
analytical tools for capacity planning, reliability assessment, and disaster

recovery design. By combining rigorous theoretical results with clear practical
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applications, the study contributes both to the advancement of fluid queue

theory and to its use in modern reliability and operations management.

2-Description of the model and stability condition

Consider a Markovian queueing system that uses an endless number of servers
to drive a fluid queue with limitless buffer content. The server is fed into the
ongoing breakdown failures and repairs. While the servers are in an up/active
state, arrivals happen one to one in a Poisson process with a rate of 1. With
parameter ., service times are dispersed exponentially. The service facility
experiences breakdowns (catastrophes) based on a Poisson process of rate v
when the system is nonempty. Every time a disaster strikes, all of the server’s
malfunction. The repair time distribution is exponential with rate », and the
repair procedure is initiated immediately. The server instantly resumes its
active status upon the completion of a repair. Now, the server is prepared to
offer services if a new arrival occurs.

Let {N(t);t>0}be the number of customers in the system at time twith state
0={012,..} and

30 1, if the serverisactive state
|0, if the server isunder repair state

Clearly, the two-dimensional process {N(t),J(t),t>0}constitute a continuous
time Markov chain whose state space is given by S ={(0.0)u(n,1);n=0,12,....}.
For this queueing system, with A,u4,v and n are positive , the stationary

probabilities of the system size {p,;n=>0}when the server is in active state and
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the failure state probability G, of the server can be obtained from Gulab Singh

[3] as follows

G:1+77V71(1_77p1), P =100y Bo=11p (1)
where p, = (o) F(M+Lvu " +n+L—p) | p:i @)
[Tow™+0), Ry +5-p) H

i=1
and p=3 Y {i(ma ,u)p]<1. 3)
' A+ = " "

Now assume a fluid queueing model with an infinite servers credit buffer,
where the queueing system previously described feeds the input and output
rates of a fluid commaodity. The fluid commaodity is processed first in, first out,

and then it builds up in the buffer.

Only when every fluid commodity that arrived prior to time t has been
removed will the fluid commodity coming at time t be removed from the
buffer.

Let {X(t);t>0} represent the amount of fluid commodity residing in the credit

buffer at time t which is regulated by the two —dimensional Markovian

queueing process {X(t),J(t);t>0}. The fluid commodities in the buffer credit
at a constant rate o >0 at active state (J(t) =1) whereas the fluid commodity
depletes during the repair period , (J(t)=0) of the server at a constant rate
o, <0as long as the buffer is non-empty.

Obviously, {X(t);t=0} is a non-negative random process and its dynamics

is defined by the equation
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0 for X(t)=0,J(t)=0
o, for X(t)>0, J(t)=0
o forX(t)>0,J(t)=1 N(t)=0,12,..

dX(t)

(4)

Clearly, the 3-dimensional process {N(t),J(t), X (t);t =0} constitutes a Markov

process that, given an appropriate stability condition, processes a unique
stationary distribution.
The mean drift of the fluid commodity in the credit buffer can be compute as

follows

d =00G+ai P,

n=0

=0,G+0(1-G)

=o0+(0,—0)G

=0+(00—0){( )(1—77P1)}<0

1+nv™
This, the normalizing condition of the fluid queue is
p, <1, and d <0. (5)

3- Stationary distribution of fluid queue

Let
R(x)=P(N=0,J =0, X <x)

F.(0)=pr{N=nJ=1X<x},neQ,x>0

with boundary condition

RO) =L and F.(0)=0,n=012,....

Oy
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The ordinary differential equations of the stationary distribution fluid queue

are:
o dR(x) - R(X)Wiﬁ )
dx —
(6)
U% =—AR(X)+pF(X)+7R(X)
(7)
o dFdn)Ex)_ =—(A+nu+v)FE(X)+(n+YuF ,(X)+AF ,(X);n=12,...
(8)

with boundary condition

R(0) =i:b. where b is unknown constant
Oy

and F (0)=0,n=0,12,...
)

The condition R(0)=b, refer to the probability b, 0<b <1, the buffer content of

fluid commodity is empty and the net input rate is zero , when the server is

under repair in the organization queueing model.

In the following complement, let g*(s)=Te‘sxg(x)dx be the Laplace
0

transformation (L T) of the function g(x).

By applying the LT for the equations (6) — (8), and using the boundary
conditions (9), we obtain the following equations
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SE(s)

. b Wy
RO~ e (10
(os+2) Fo*(s) =n R*(S) +H Fl*(s) (11)
(cs+A+nu+v)FE ()=AF _(s)+(n+) uF ,(s),n=12,.. (12)

Eqg. (12) can be expressed as

F.(s) _ A
Foa(s) S+ A +v +nu' —(n+)u FFnil(gS))
ﬂ/l
- (N+D)A 1/ (13)

S+ A +vi+nu — (+ 21

S+A+v+(N+2)u —...

A+vi+(n+)u' —

CFs can be used to €Xpress the fractions of confluent hypergeometric
function. By using the identity given in Lorentzen and Waadeland ([6],
(4.1.5), page 573)

lFl(e+1;c+1;u): c (e+Du (e+2u
F.(e;c;u) C—U+C—U+1+Cc—u+2+

which can be expressed as

F(ecu) (c—u)- (e+Du (e+2)u (14)
F(e+Lc+Lu) C-U+l+Cc-U+2+

From Eq. (14) in (13), we obtain

Fi(s) _ A F+L s+ +n+L-A" ) (15)
F L) #((s+vV) ) +n) B (n(s+v)u ™ +n-2u™)
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Iterating Eq. (15) for n=12, 3, ..., results in

F+L(s+V) ' +n+L -4y

Fo =) -
BT+ a4 R @ (s +v) i+ L= 2 )

i=1

F () =4)F(©) (16)

Ry (s)

where

¢*(S) :(/'llﬂl—l)n lFl*(n+1; (S+V,) /u,il-’_n-’_]ﬂ._/lrlu,il) (17 )
[Ts+v)a +i),F G s +v) ' +5- 20 ™)
i=1

Clearly, forany s>0,

. SN oJo s " b ”nZﬂ:gb:(S) .
o, R (s)+onZ:(;Fn (s)_T and R (s)=(s+nﬂ)+v ) F'(s)

From substituting from Eq. (16) in Eq. (11), it gives that
(os+A)F; () :n{g_zi¢;(3) Ry (s)-— Fo<s)}+u¢f<s) R (s)

0 n=l

Also, knowing that

F(s)= nsb [S +A+n"— 1, (s) +77"i¢. (S)} (18)
then simplification of Eq. (18) reduces to
* _ 77'b S (_1)j < "_ "N * j

F(s)= S ,21: St A1) LZ;(?? St )P, (S)} (19)

On the other side, we get

R(x)=be™ +v”I(FO(z)i¢, (z)je”"(“’dz : (20)
» X i L

Fo(x) =nbY_(-1)! [e %[Z(n"—@w')qﬁ. (2) } dz. (21)
j=0 0 FL=

184



Also, for F (x) inversion Eq. (16), it gives

R () =¢,()*F(X) (22)
where =2, y=H Y oVl T 5 s the Kronecker
o o o o o o

Delta, the symbol * refers to the convolution , *j refers to j-fold
convolution and F,(x) given in Eq. (20).

Also, ¢ (x) is the inverse Laplace transform of ¢ (s) (see the Appendix).

¢n(x)=w>"§<—w)i[”1f ‘j f,,00* Y ()8 23)

for

Z ( l)rl *(V+r,t/)X’n=1’213’.“
)" (r=-)!(n-r)!

n

b, (X) = _i(—l)i-l £ (0%, (0.1 =2,3,4,..55,() = £,(x)

4- Stationary distribution of buffer content.
Under equilibrium conditions, the structure of the stationary probability

distribution of the buffer's fluid level is examined.

Let H(x) =limP(X () <x), x>0

function of the buffer content. Hence the stationary distribution of the buffer

denote the stationary cumulative distribution

content is given by

F(0)= R(x)+iﬁ(x)

Or F()=""+(1- )R(x) (24)

where R(x)is given by (20).

185



5- Performance analysis
Some particular performance measures of the model pertaining to the fluid
level in the buffer are used such as the buffer nonempty probability, the
throughput, and the expected buffer content are studied
(i) The credit buffer non-empty probability (P ) is given by
Pes =P(X >0)=1-F(0)=1-b (25)
(i) The throughput, (T.,,) of the fluid commodity in the fluid system is

determined by
Tq = OUtput rate x P(X > 0)

=0, P(X >0) ==, [1- F(0)] = —o,(1—b) (26)

(iii) The expected buffer content ( X ) can be written as:

E(X)=T[1—F(x)]dx=]g[1—%—(l—ﬁ)R(x)}dx (27)
0 0 o

(o}

6- Numerical analysis

In this section, graphical findings are shown to examine how the probability
Pesbehaves. The expected buffer content (X ), say E(X) with various
parameters i.e. arrival rate 1 and service rate () for the service times of the
server.

Using the results developed earlier and study numerically the effect of the
system parameters on various performance measures of the fluid queue such
as the buffer non-empty probability, the mean flow transfer time of fluid
commodity, and the cumulative distribution function of the fluid commodity
in the stationary situation.
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We first examine the effects of the system parameters on the buffer non-empty
probability, Py, of the fluid commodity in Figures 1(a)-1(b). The behavior of
the descriptor Pgis plotted as a function of the depletion rates, for the

depletion rate o, =-3, -4, -8 and -10 of the driven queue in Figure 1(a). The
results indicate that the curves Pgincrease while the absolute values of o,

decrease, whereas they decrease as the values of & increase for a fixed value

of a,.
1.00~ . : .
— 0:2—3
0.95| ] —_—
m — Op=—8
% 590! I
0.85}
010 015 020 025 030 035 040 045
ag
Fig.1(@) A=2,u=4,v=1,n=4
10———Mm8M ————————  — — —
0.9} - — o0=03
— ag=0.5
i 0.8 1 06
Q? ao=U.
0.7} ] — 0=07
0.6}
~16 14 12 ~10 oy
Ty
Fig.1(b) 1=2,u=4,v=1n=4
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As shown in figure 1(a) all four curves of P, increase in a linear style with
o however, they decease while the absolute values of o,increase for given o
where in figure 1(b) all the carves of the description P,,concerning to o
increase when the absolute values of o, are decreasing, and they increase further

with increasing values of o for a taken value of o,

1.0p - - : .

0.8\ 1 — =03
— o=0.5

ao=0.6

> | —_— o=0.7

Fig.2(d) 1=2,u=4,v=1n=4,0,=-3

o] 5 10 15 20
>

Fig.2(b) 1=2,u=4,v=1n=4,0=05
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It is also noted in Figures 2(a) and 2(b) that H(x) increases monotonically with
the increases of buffer content x. Furthermore, observed in Figures 2(a), 2(b)
that the buffer content distribution increase with the increase of the depletion

rate o,and input rate o .

2.57
2.0
— o=03
1.5} oo
8 o=0.6
w 10' \ —_— =07
0.5} \
0.0t
0 1 2 3 4 5 6
U
Fig.3(a) 1=2,v=1,n=4,0,=-3.

3.5

3.0} 1
25 — o=03
— o0=05
220 ] o=0.6
w4 51 — 0=07
1.0} 1

0.5
0.0

o 1 2 3 4 5 6 7
A

Fig.3(b) x=10,v=13n=4,06,=-3
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The expected puffer content , E(x)is increase with the increase of arrival rate

A and decrease with of the service rate 4 and input rate o .
7-Conclusions

We investigated a fluid buffer modulated by an infinite-server system with
catastrophic breakdowns and repairable servers. By combining Laplace
transforms with continued-fraction techniques, we obtained exact stationary
results for the buffer content distribution and operational measures. The main
theoretical contributions are: (i) formulation of a new class of fluid queues that
integrates catastrophes and repairs into the M/M/co framework, (i1)
development of a continued-fraction solution connected to confluent
hypergeometric functions, and (iii) explicit stability criteria and closed-form
performance metrics. These additions extend existing fluid queue theory and
demonstrate the analytical tractability of models with large-scale failures. The
results are not only of mathematical interest but also directly applicable to
domains where sudden service collapses occur, such as call centers subject to
mass call drop, cloud and edge computing platforms vulnerable to outages,
and production-inventory systems experiencing collective machine
breakdowns. Future work may adapt the methodology to networks of fluid
queues, heavy-tailed failure distributions, and control policies for disaster
resilience.

Appendix: derive the expression for ¢ (x)(see Gulab Singh Bura [3] and

Sudhesh R. [9].
From Eq. (22)
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F+L(s+V ) +n+L-A" )

[T+ +0) R Gls+v) ™ +3-2 1)

i=1

55 =y

It is known that

' - 1) (_/I,IU' 1)
FE+L s+t +n+ -2y E (n+1),
( ( 4 )= k0((S+V),U +n+1)k k!

Where (@), is known as the Pochhammer symbol, defined as

1, k=0
(CD)k :{q) _
(@ +1) (D +2)..(D+k—-1),k=12,3,...

Therefore,

n+k ,
F(n+L(s+v) ' +n+L-2' /™) = |k (=4)
1M y ) — (lur)n Z

n+k

ﬁ((s+v')y"l+i) ":OH(s+v’+iy’)

i=1

By resolving into partial fractions, given that

B+l (s+v)p et LA ) i(n+kj 2y ”Z*k: - 1
ey — S T

i=1

Also,

G+ a LA ) =Y 2) S (2) 6(s), f(s) =1.
':OH(S+V'+i,u') 1=0

LR @+ +5-2 ] = () b (6).

where b;(s)=1and for k=12,3,...
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') 1
f,(s) f(s) 1

0

bi(s)=| =31, (5) 7(s).

1=1

fa(s) f.(8) fu(s) . .. f(s) 1
fos) £ fL.(6) . . . () f(s)

From all the above formulas, hence

¢.(s)=(2)" Z( )’ ( jfnﬂ(S) Z(l) b'(s)
On inversion,
() =(2)" Z( A)’ ( jfnﬂ( X)* Z(/l') b (x)
Where,

I (1)_1 —( "+ru')x _
f,(x) = 1=123...
0 (u"lrzl( -t

b (x) =Z(—1)‘-1 f00*D (%), 1 =2,3,4,..:0,(0) = £,(x).
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