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Abstract: 

 This paper analyzes a fluid queue driven by an M/M/∞ background system 

subject to catastrophic breakdowns and exponential repairs. The model 

extends classical fluid queues by incorporating catastrophic failures that 

simultaneously remove all customers, along with repair dynamics that restore 

the system to full capacity. Using Laplace transforms and continued-fraction 

techniques linked to confluent hypergeometric functions, we derive the 

stationary distribution of the buffer content and the joint law of buffer level 

and background population. The theoretical novelty lies in the explicit 

continued-fraction representation, the closed-form characterization of stability, 

and the tractable formulas for key measures such as non-empty probability, 

throughput, and mean buffer level. Beyond methodological advances, the 

model has applications in telecommunication networks with mass call failures, 

data centers exposed to blackouts, production systems with common-cause 

machine breakdowns, and service systems under disaster recovery regimes. 

Numerical illustrations highlight how arrival, service, failure, and repair 

parameters shape long-run performance, offering insights into both reliability 

planning and capacity design. 

Keywords: Infinite queue, Stationary analysis, Confluent Hypergeometric 

Function, Catastrophes, Repairable servers.  
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1-Introduction:  

Fluid queues are a well-established framework for studying systems in which 

workload evolves continuously under the influence of random environments. 

They have been applied in telecommunications, computer networks, 

production, and service operations where arrival and service processes interact 

with dynamic input and output rates. A number of studies have examined 

infinite-server systems in this context. For instance, Linton [5], Bura Gulab 

Singh [2], Baykel-Gursoy [1], Sophia [8], and Gulab Singh [3] have analyzed 

infinite-server queueing models, often employing continued-fraction 

techniques to address queueing problems involving disasters and repairable 

servers in the classical (non-fluid) setting. 

Fluid queues themselves have been studied under various structural 

assumptions and solution methods. Xu et al. [10], for example, investigated a 

fluid queue model controlled by an M/M/c queue with working vacation using 

the matrix-analytic approach. Krishna Kumar et al. [4] applied the continued-

fraction method to infinite-server fluid queues, deriving the expected fluid 

content and stationary buffer distributions. Parthasarathy and Vijayashree [7] 

considered a fluid queue driven by a discouraging-arrivals queue, showing 

how modified input dynamics affect performance. These studies demonstrate 

the flexibility of fluid queue modeling and the range of analytic techniques 

available for equilibrium analysis. 

Despite this progress, the literature has typically treated catastrophes, 

repairable servers, and infinite-server environments separately. To the best of 

our knowledge, no prior work has integrated an M/M/∞ background with both 
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catastrophic failures and exponential repairs to analyze fluid queues. This 

integration is important because many practical systems are exposed to sudden 

large-scale service collapses followed by repair and recovery. Examples 

include mass call failures in telecommunication networks, data center outages, 

and coordinated machine breakdowns in manufacturing systems. 

The present study fills this gap by introducing and analyzing a fluid queue 

controlled by an infinite-server system with both catastrophic failures and 

repairable servers. Customers arrive according to a Poisson process and 

receive exponential service in the M/M/∞ background. Catastrophes 

simultaneously remove all customers, while repair times are exponentially 

distributed, restoring the system to full operation. The buffer receives fluid 

input during active phases and depletes during downtime. Our theoretical 

contributions are as follows. First, we derive a precise stability condition 

based on the stationary availability of the catastrophe–repair process. Second, 

we obtain explicit stationary distributions of buffer content and the joint law 

of buffer level and background population using Laplace transforms and 

continued-fraction methods linked with confluent hypergeometric functions. 

Third, we present closed-form expressions for performance measures such as 

the probability of a non-empty buffer, throughput, and expected buffer 

content. On the applied side, the model is relevant to telecommunication 

networks with mass call failures, data centers subject to blackouts, and 

production systems experiencing collective breakdowns. The results provide 

analytical tools for capacity planning, reliability assessment, and disaster 

recovery design. By combining rigorous theoretical results with clear practical 
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applications, the study contributes both to the advancement of fluid queue 

theory and to its use in modern reliability and operations management. 

2-Description of the model and stability condition 

Consider a Markovian queueing system that uses an endless number of servers 

to drive a fluid queue with limitless buffer content. The server is fed into the 

ongoing breakdown failures and repairs. While the servers are in an up/active 

state, arrivals happen one to one in a Poisson process with a rate of  . With 

parameter  , service times are dispersed exponentially. The service facility 

experiences breakdowns (catastrophes) based on a Poisson process of rate   

when the system is nonempty. Every time a disaster strikes, all of the server’s 

malfunction. The repair time distribution is exponential with rate  , and the 

repair procedure is initiated immediately. The server instantly resumes its 

active status upon the completion of a repair. Now, the server is prepared to 

offer services if a new arrival occurs. 

Let  ( ); 0N t t  be the number of customers in the system at time t with state 

{0,1,2,.....}    and  

1,
( )

0,

if the server isactivestate
J t

if the server isunder repair state


 


 

Clearly, the two-dimensional process  ( ), ( ), 0N t J t t  constitute a continuous 

time Markov chain whose state space is given by  (0.0) ( ,1); 0,1,2,.... .S n n    

For this queueing system, with , ,    and   are positive , the stationary 

probabilities of the system size  ; 0np n  when the server is in active state and 
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the failure state probability G , of the server can be obtained from Gulab Singh 

[3] as follows  

11

1
(1 )

1
G 

 
 


, 1n np    , 0 1p                                         (1)  

where   
1

1 1

1 1

1 1

1

( 1, 1; )

( ) (1, 1; )

n

n n

i

F n n

i F

 
 

  



 



   


  
     ,   





                  (2)                              

and                 
1 11

0 1

( 1)
( ) 1.

( )

jj

n nj
j n

    
 

 


 

  
     
                       (3) 

Now assume a fluid queueing model with an infinite servers credit buffer, 

where the queueing system previously described feeds the input and output 

rates of a fluid commodity. The fluid commodity is processed first in, first out, 

and then it builds up in the buffer. 

Only when every fluid commodity that arrived prior to time t has been 

removed will the fluid commodity coming at time t be removed from the 

buffer. 

Let  ( ); 0X t t  represent the amount of fluid commodity residing in the credit 

buffer at time t  which is regulated by the two –dimensional Markovian 

queueing process  ( ), ( ); 0X t J t t  . The fluid commodities in the buffer   credit  

at a constant rate 0   at active state ( ( ) 1J t  ) whereas the fluid commodity 

depletes during the repair period , ( ( ) 0J t  ) of the server at a constant rate 

0 0  as long as the buffer is non-empty.  

Obviously,  ( ); 0X t t   is a non-negative random process and its dynamics 

is defined by the equation  
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0

0 ( ) 0, ( ) 0
( )

( ) 0, ( ) 0

( ) 0, ( ) 1, ( ) 0,1,2,...

for X t J t
d X t

for X t J t
dt

for X t J t N t





 


  
   

                                        (4)

 

Clearly, the 3-dimensional process  ( ), ( ), ( ); 0N t J t X t t  constitutes a Markov 

process that, given an appropriate stability condition, processes a unique 

stationary distribution. 

The mean drift of the fluid commodity in the credit buffer can be compute as 

follows 

 
0

0

0 (1 )

n

n

d G p

G G

 

 





 

  



                    

 

                                                            0( )G      

                                                            0 11

1
( ) ( )(1 ) 0

1
    

 

 
     

 
 

This, the normalizing condition of the fluid queue is  

  1 1,  and 0.d                                                                      (5) 

3- Stationary distribution of fluid queue  

Let    

( ) ( 0, 0, )R x P N J X x     

 ( ) . , 1, , , 0nF x pr N n J X x n x       

with boundary condition 

                                   
0

(0)
d

R


    and (0) 0, 0,1,2,...nF n  . 
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The ordinary differential equations of the stationary distribution fluid queue 

are: 

0

1

( )
( ) ( )n

n

dR x
R x F x

dx
  





                                                                             

(6) 

0
0 1

( )
( ) ( ) ( )

dF x
F x F x R x

dx
                                                                      

(7) 

1 1

( )
( ) ( ) ( 1) ( ) ( ); 1,2,...n

n n n

dF x
n F x n F x F x n

dx
                                   

(8) 

 

with boundary condition 

0

(0) .
d

R b


   where b is unknown constant  

and        (0) 0, 0,1,2,...nF n                                                                          

(9) 

The condition (0)R b , refer to the probability b , 0 1,b  the buffer content of 

fluid commodity is empty and the net input rate is zero , when the server is 

under repair in the organization queueing model. 

In the following complement, let *

0

( ) ( )sxg s e g x dx



   be the Laplace 

transformation (LT) of the function ( )g x . 

By applying the LT for the equations (6) – (8), and using the boundary 

conditions (9), we obtain the following equations  



183 
 

*

* 1

( )

( )
( ) ( )

n

n

F s
b

R s
s s


 



 
  


                                                      (10) 

* * *

0 1( ) ( ) ( ) ( )s F s R s F s                                                      (11)                    

* * *

1 1( ) ( ) ( ) ( 1) ( ), 1,2,...n n ns n F s F s n F s n                       (12) 
                

Eq.  (12) can be expressed as  

*

**

11
*

( )

( )( )
( 1)

( )

n

nn

n

F s

F sF s
s n n

F s



    




       

                     

( 1)

( 2)
( 1)

( 2) ...

n
s n

n
n

s n



 
  

 
  

  




 
     

 
     

      

      (13)     

CFs can be used to express the fractions of confluent hypergeometric 

function. By using the identity given in Lorentzen and Waadeland ([6], 

(4.1.5), page 573) 

                      

1 1

1 1

( 1; 1; ) ( 1) ( 2)
...,

( ; ; ) 1 2

F e c u c e u e u

F e c u c u c u c u

   


       
 

which can be expressed as 

  

1 1

1 1

( ; ; ) ( 1) ( 2)
( ) ...,

( 1; 1; ) 1 2

F e c u e u e u
c c u

F e c u c u c u

 
  

       
                     (14)                   

From Eq. (14) in (13), we obtain  

 

* * 1 1

1 1

* 1 * 1 1

1 1 1

( ) ( 1;( ) 1; )

( ) (( ) ) ( ;( ) ; )

n

n

F s F n s n

F s s n F n s n

    

      

 

  



        


          
           (15)              
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Iterating Eq. (15) for n=12, 3, …, results in  

   

* 1 1
* *1 1

0
1 * 1 1

1 1

1

( 1;( ) 1; )
( ) ( ) ( )

(( ) ) (1;( ) 1; )

n

n n

i

F n s n
F s F s

s i F s

    


     

 

  



        



         

                                                              

* * *

0( ) ( ) ( )n nF s s F s                                                                        (16)                   

where   
* 1 1

* 1 1 1

1 * 1 1

1 1

1

( 1;( ) 1; )
( ) ( )

(( ) ) (1;( ) 1; )

n

n n

i

F n s n
s

s i F s

   
  

     

 


  



       
 

         
      )17 ) 

Clearly, for any 0s  , 

* * 0
0

0

( ) ( )n

n

b
R s F s

s


 





   and 

*

* *1

( )

( ) ( )
( ) ( )

n

n
o

s
b

R s F s
s s




 



 
  



 

From substituting from Eq. (16)  in Eq. (11), it gives that 

* * * * *

0 0 0 1 0

10 0

( ) ( ) ( ) ( ) ( ) ( ) ( )n

n

b
s F s s F s F s s F s

s

 
    

 





 
     

 


 

Also, knowing that  
1

*

0 1

1

( ) ( ) ( )i

i

b
F s s s s

s


     






  
        

 
                                 (18)                                       

then simplification of Eq. (18) reduces to  

* *

0 11
1 1

( 1)
( ) ( ) ( )

( )

jj

k kj
j k

b
F s s

s s


   

 

 


 

   
       

                          (19)                 

On the other side, we get 

( )

0

10

( ) ( ) ( )

x

x x z

i

i

R x be F z z e dz  


   



 
   
 

   ,                                 (20) 

 
*

( )

0 1

0 10

( ) ( 1) ( )
!

jx j
j z

i i

j i

z
F x b e z dz

j

     
 

  

 

 
     

 
  .                 (21) 
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Also, for ( )nF x   inversion Eq. (16), it gives  

0( ) ( )* ( )n nF x x F x                                                                      (22) 

where  





  , 





  , 





  ,
0





  , 





  ,

0





  , 1i is the Kronecker 

Delta, the symbol * refers to the convolution , * j  refers to j  fold 

convolution and 0 ( )F x  given in Eq. (20). 

Also, ( )n x  is the inverse Laplace transform of *( )n s (see the Appendix). 

0 1

( ) ( ) ( ) ( )* ( ) ( )n j l

n n j l

j l

n j
x f x b x

j
   

 



 

 
     

 
                             (23)              

for 
1

( )

1
1

1 ( 1)
( ) , 1,2,3,...

( ) ( 1)!( )!

rn
r x

n n
r

f x e n
r n r

 




  





 

  
  

1

1 1

1

( ) ( 1) ( )* ( ), 2,3,4,...; ( ) ( ).
n

i

n i n i

i

b x f x b x n b x f x





     

4- Stationary distribution of buffer content. 

Under equilibrium conditions, the structure of the stationary probability 

distribution of the buffer's fluid level is examined.  

Let 
( ) lim ( ( ) ), 0

t
H x P X t x x


  

  denote the stationary cumulative distribution 

function of the buffer content. Hence the stationary distribution of the buffer 

content is given by 

0

( ) ( ) ( )i

i

F x R x F x




    

Or   0 0( ) (1 ) ( )
b

F x R x
 

 
                                                       (24) 

where  ( )R x is given by (20). 
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5- Performance analysis 

Some particular performance measures of the model pertaining to the fluid 

level in the buffer are used such as the buffer nonempty probability, the 

throughput, and the expected buffer content are studied   

(i)The credit buffer non-empty probability ( NEBP ) is given by  

( 0) 1 (0) 1NEBP P X F b                                                        (25)                               

(ii)The throughput, ( FluidT ) of the fluid commodity in the fluid system is 

determined by  

( 0)FluidT output rate P X    

   0 0 0( 0) 1 (0) (1 )P X F b                                            (26) 

 

 (iii) The expected buffer content ( X ) can be written as:  

  0 0

0 0

( ) 1 ( ) 1 (1 ) ( )
b

E X F x dx R x dx
 

 

 
 

      
 

                          (27) 

 

6- Numerical analysis 
 

In this section, graphical findings are shown to examine how the probability 

NEBP behaves. The expected buffer content ( X ), say ( )E X  with various 

parameters i.e. arrival rate   and service rate (  ) for  the service times of the 

server.  

Using the results developed earlier and study numerically the effect of the 

system parameters on various performance measures of the fluid queue such 

as the buffer non-empty probability, the mean flow transfer time of fluid 

commodity, and the cumulative distribution function of the fluid commodity 

in the stationary situation. 
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We first examine the effects of the system parameters on the buffer non-empty 

probability,     , of the fluid commodity in Figures 1(a)-1(b). The behavior of 

the descriptor NEBP is plotted as a function of the depletion rate 0  for the 

depletion rate 0  =-3, -4, -8 and -10 of the driven queue in Figure 1(a). The 

results indicate that the curves NEBP increase while the absolute values of 0  

decrease, whereas they decrease as the values of   increase for a fixed value 

of   .  
 

 

Fig.1(a) 2, 4, 1, 4        

 

 

Fig.1(b) 2, 4, 1, 4        
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As shown in figure 1(a) all four curves of NEBP
  
increase in a linear style with 

 however, they decease while the absolute values of 0 increase for given 

where in figure 1(b) all the carves of the description NEBP concerning
 
to

 


 

increase
 
when

 
the

 
absolute

 
values

 
of

 0  
are

 
decreasing,

 
and

 
they

 
increase

 
further

 

with
 
increasing

  
values

 
of

 
 for a

  
taken 

 
value

 
of

 0            
 

 

Fig.2(a) 02, 4, 1, 4, 3           

 
 

 

Fig.2(b) 2, 4, 1, 4, 0.5          
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It is also noted in Figures 2(a) and 2(b) that ( )H x increases monotonically with 

the increases of buffer content x . Furthermore, observed in Figures 2(a), 2(b) 

that the buffer content distribution increase with the increase of the depletion 

rate 0 and input rate  .    
 

 

Fig.3(a) 02, 1, 4, 3        . 

 

 

Fig.3(b) 010, 1, 4, 3         
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The expected puffer content , ( )E x is increase with the increase of arrival rate 

 and decrease with of the service  rate   and input rate  . 

7-Conclusions 

We investigated a fluid buffer modulated by an infinite-server system with 

catastrophic breakdowns and repairable servers. By combining Laplace 

transforms with continued-fraction techniques, we obtained exact stationary 

results for the buffer content distribution and operational measures. The main 

theoretical contributions are: (i) formulation of a new class of fluid queues that 

integrates catastrophes and repairs into the M/M/∞ framework, (ii) 

development of a continued-fraction solution connected to confluent 

hypergeometric functions, and (iii) explicit stability criteria and closed-form 

performance metrics. These additions extend existing fluid queue theory and 

demonstrate the analytical tractability of models with large-scale failures. The 

results are not only of mathematical interest but also directly applicable to 

domains where sudden service collapses occur, such as call centers subject to 

mass call drop, cloud and edge computing platforms vulnerable to outages, 

and production-inventory systems experiencing collective machine 

breakdowns. Future work may adapt the methodology to networks of fluid 

queues, heavy-tailed failure distributions, and control policies for disaster 

resilience. 

Appendix: derive the expression for   ( )n x (see Gulab Singh Bura [3] and 

Sudhesh R. [9]. 

From Eq. (22) 
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By resolving into partial fractions, given that  

 

 

* 1 1 1
11 1

1 0 1

1

( 1;( ) 1; ) ( 1) 1
( )

( 1)!( )!
( )

in k
k

n
k i

i

n kF n s n

k i n k i s i
s i

   
  

 
 

   


  



          
    

        
 



 

Also,  

* 1 1 * *

1 1 0

0 0

1

( )
(1;( ) 1; ) ( ) ( ), ( ) 1.

( )
i

F s f s f s

s i


    

 

 
 

 




          

  
 


l
l

ll
l l

 

1
* 1 1 *

1 1

0

(1;( ) 1; ) ( ) ( ).F s b s    



 



           l

l

l

 

 

where *

0 ( ) 1b s  and for 1,2,3,...k   

 



192 
 

*

1

* *

2 1

* 1 * *

1

* * * *

1 2 3 1

* * * * *

1 2 2 1

( ) 1

( ) ( ) 1

. . .

. . .
( ) ( 1) ( ) ( ).

. . .

. . .

( ) ( ) ( ) . . . ( ) 1

( ) ( ) ( ) . . . ( ) ( )

l

k k l l

l

k k k

k k k

f s

f s f s

b s b s f s

f s f s f s f s

f s f s f s f s f s








  

 

  
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Analysis of fluid system fed by an infinite servers queue subject to 

catastrophes servers and reparable 

 

  الملخص:

، انخذو َٓبئي طٕابيش اَخظبس سبئهت يخضًٍ طٕابيش اَخظبس يبسكٕفيت لاحبحث ْزِ انذساست في ًَٕرج 

نًحخٕٖ انًخضٌ انًؤلج ببسخخذاو دٔال  انًسخمشحخضع لآنيبث الأعطبل ٔالإصلاح. يُشخك انخٕصيع 

سؤٖ  انًسخمشُْذسيت فبئمت انخشابط، يًب يُظٓش أًْيخّ في ححهيم أَظًت انطٕابيش. يُمذو ْزا انخحهيم 

يمبث عًهيت في شبكبث الاحصبلاث ٔانحبسٕة انًعبصشة. حُفيذ ًَبرج طٕابيش الاَخظبس ليًّت ٔحطب

انسبئهت في حمييى َمم حضو انبيبَبث، ٔديُبييكيبث حذفك انبيبَبث في انشبكبث عبنيت انسشعت، ٔإداسة 

لاث انشكم لاحخًب صشيحت حهٕلانطبلت في أَظًت انبطبسيبث انمببهت لإعبدة انشحٍ. يخى انحصٕل عهٗ 

انحبنت انًسخمشة انًشخشكت ٔيؤششاث الأداء انشئيسيت، يع حمذيى أيثهت عذديت نهخحمك يٍ صحت انُخبئح 

 انخحهيهيت.

عطبل أ ،دٔال فٕق ُْذسيت فبئمت ،انخحهيم انًُخظى ،َٓبئيت انخذو لا انطٕابيش :المفتاحية الكلمات

 اعبدة اصلاح انخذو.  ،يفبخئت

 

 

 

 

 

 

 


