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Abstract. Tracked Mobile Robots (TMRs) are extensively utilized in applications that
demand high mobility across difficult terrains, such as military reconnaissance and search
and rescue operations. The trajectory tracking problem for autonomous TMRs has garnered
considerable attention and has emerged as a focal point of contemporary research. In this paper,
a control strategy is developed using an integration of the kinematic backstepping approach
with a modified PID controller. Given that the performance of the proposed controller is highly
dependent on the appropriate selection of gain parameters, determining their optimal values is
of paramount importance. Consequently, the Particle Swarm Optimization (PSO) algorithm
is employed to optimize the parameters of both the PID and backstepping controllers. The
mathematical model includes a comprehensive kinematic and dynamic model while considering
the effects of external disturbances and slippage, which increases the accuracy of the proposed
controller. Finally, simulation results demonstrated the effectiveness of the proposed controller
by allowing the tracked robot to precisely follow the desired trajectory.
Keywords: Tracked mobile robot, modified PID controller, tracked vehicle, trajectory tracking
control, unmanned ground vehicle

1. Introduction
The rapid advancements in automation, robotics, and communication technologies have
significantly increased interest in unmanned and autonomous systems across academic, civilian,
and military domains. These systems are increasingly recognized as viable solutions across
a broad spectrum of applications [1]. Unmanned systems are programmable, multifunctional
machines designed to plan and execute tasks in their environment without human assistance.
They can also collect and analyze information from their surroundings using sensory devices and
control units [2]. Unmanned systems are categorized according to their operating environment
into three main types: unmanned underwater vehicles (UUVs), unmanned aerial vehicles (UAVs)
and unmanned ground vehicles (UGVs).

UGVs are used in a variety of applications which are repetitive tasks or high-risk tasks,
where having a human operator present could be uncomfortable, hazardous, or impossible
[3]. UGVs are used in civilian areas such as forestry and agriculture [4], environmental
monitoring [5], mining purposes [6], and assistance purposes [7]. Besides the civilization
and industrial applications, UGVs can be deployed for military and tactical operations,
including reconnaissance and surveillance [8], search and exploration [9], explosives and landmine

https://creativecommons.org/licenses/by/4.0/


AMME-22
Journal of Physics: Conference Series 3058 (2025) 012005

IOP Publishing
doi:10.1088/1742-6596/3058/1/012005

2

remediation [10], and dangerous tasks such as firefighting, remediating nuclear pollution, and in
some places which might contain serious radioactivity or toxic gases [11].

UGVs can be categorized into three distinct classes according to their locomotion mechanisms:
wheeled mobile robots (WMRs), tracked mobile robots (TMRs), and legged mobile robots
(LMRs)[12]. Attributable to their inherent mechanical simplicity and relatively low energy
consumption, WMRs are well-suited for conventional applications. Conversely, LMRs
demonstrate superior adaptability in navigating highly irregular, complex, and obstacle-laden
terrains, including staircases and rubble-strewn environments[12]. TMRs are well-suited for
applications requiring robust locomotion in challenging terrains, including loose soil, sand,
snow, and rocky environments. Among off-road ground robots, tracked robots are preferred
due to their superior tractive force compared to legged and wheeled robots, as well as their
reduced ground pressure, improved weight distribution, structural robustness, stability, and agile
maneuverability. These characteristics enable TMRs to traverse a variety of terrains, including
mud, runoff slopes, snow, and loose sand [13]. Consequently, TMRs constitute a viable and
effective solution for off-road mobility in complex environments.

Due to the nonholonomic, multivariable, complex, and nonlinear nature of the dynamic model
of TMRs, achieving precise and effective motion control remains a considerable challenge. The
robot slip is also a crucial factor in control, as tracked robots rely on the skid-steer mechanism
for steering, neglecting this factor may result in a significant deviation of the robot from its
intended track due to the continuous accumulation of errors throughout its motion. Additionally,
longitudinal and lateral resistance forces must be accounted for when modeling the robot’s
dynamics. Therefore, to achieve an autonomous system, the primary necessity is to create an
accurate model and choose an appropriate control algorithm.

Differential Drive Wheeled Mobile Robots (DDWMRs) and TMRs utilize similar motion
control strategies to govern their movement. However, most existing research has primarily
focused on motor-driven control for DDWMRs. In contrast, TMR motion is significantly
influenced by track-terrain interactions, load distribution, and friction, requiring a dynamic
model-based control approach to effectively account for these factors[14]. The DARPA
Grand Challenges (DGC) series in 2004 and 2005 served as a crucial catalyst for significant
advancements in the research and development of control algorithms for autonomous vehicles
[15, 16]. The inherent control challenges of Unmanned Ground Vehicles (UGVs) have led to the
development of a diverse array of control algorithms, including proportional-integral-derivative
(PID) control, Lyapunov-based methods, sliding mode control, dynamic feedback linearization,
model predictive control, etc. Ahmadi et al. [17], A trajectory tracking control algorithm
for a surface drilling machine is proposed to improve tracking accuracy. To reduce friction
forces, a feedforward compensator is incorporated into the feedback linearization-based control
framework. Additionally, the proposed method regulates the trajectory’s forward velocity and
lateral offset error while accounting for track-soil interactions. In [18], two control systems are
proposed: PID control and fuzzy logic control (FLC) to assess the dynamic performance of
tracked robots under slippage and skidding conditions. In [19], a combination of the modified
PID computed torque control and a kinematic backstepping method is presented. The suggested
controller has considered nonholonomic constraints, skid steering, rough terrain, and vehicle
dynamics. Reference [14] proposes a hybrid control strategy that integrates sliding mode control
(SMC) and backstepping to design a trajectory tracking controller for tracked vehicles. However,
the performance of the controller is significantly influenced by the design of the sliding surface.
A surface with inadequate design may respond slowly or become unstable. In [20], a model
predictive control (MPC) approach is presented, utilizing a kinematic model for trajectory
tracking in tracked vehicles. Model predictive control demonstrates strong potential as an
effective approach for managing nonlinear dynamic systems. However, its implementation
requires significant computational resources due to its high complexity.
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Although advanced algorithms often result in reliable and accurate tracking performance,
their efficacy significantly depends on the processing capacity of the microcontroller being
used. Consequently, executing advanced control strategies presents considerable computational
challenges for tracked mobile robots, as their nonlinear characteristics influence the system’s
response time. Complex control strategies require a lot of computational strength, which
low-capacity processing units might not be capable of accommodating. Considering these
constraints, designing a control architecture that optimally balances computational efficiency
with the ability to accurately handle system nonlinearities is essential. To overcome these
challenges, this study introduces a modified PID controller that preserves structural simplicity
while enhancing control performance. The proposed method effectively manages the nonlinear
dynamics of the tracked robot while reducing computational complexity, ensuring competitive
trajectory tracking performance without requiring high-performance sensors. To optimize
controller parameters, researchers have explored various non-traditional techniques, such as
particle swarm optimization (PSO), genetic algorithm (GA), and ant colony algorithm (ACO),
for tuning control gains[21]. In this study, PSO is utilized to optimize the PID controller
parameters, thereby enhancing tracking performance.

The paper is structured as follows: Section 2 provides a comprehensive analysis of the tracked
robot, including the mathematical modeling of its kinematics and dynamics. Section 3 details
the control architecture of the enhanced PID controller and explains the implementation of
the Particle Swarm Optimization (PSO) algorithm for gain tuning. Section 4 describes the
environmental configuration employed in the simulation experiments. Finally, conclusions and
future work recommendations are outlined in Section 5.

2. Tracked Vehicle Model Construction
The mathematical modeling of the tracked mobile robot, including its kinematic and dynamic
behaviors, is presented in this section. This modeling forms the basis for the application of
torque-based PID control. Figure 1 depicts the global frame-G and the local frame-B as the
designated reference frames. Initially, the origin (O) of the ground-fixed global reference frame-
G is aligned with the robot’s center of gravity (CG). In contrast, the local reference frame-B
is attached to the robot, with its origin continuously coinciding with the CG throughout the
motion.

Figure 1: Tracked robot kinematic modeling.
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2.1. Kinematic Model
Let q ∈ C be the vector that represents the location of the robot, where C is the robot’s
configuration space. A tracked robot making a right turn around its instantaneous center of
rotation (ICR′) on flat terrain is seen in figure 1. During this motion, the robot deviates from
its reference trajectory due to a slip angle α. As a result of track side slip, the instantaneous
center of rotation (ICR′) shifts by a displacement α along the YB-axis. The angle between the
XB and XG is referred to as the robot’s orientation angle φ, while the directional course angle
γ is defined as [γ = φ+α]. When turning, the linear velocities of both tracks can be calculated
as follows, considering the slip ratio:

vR = rωR(1− σR), vL = rωL(1− σL) (1)

Here, r denotes the radius of the sprocket, while vR and vL represent the forward velocities
of both tracks (right and left) of the robot. The lateral slip of the right and left tracks is
represented by σR and σL. Likewise, the angular velocities of both track sprockets (right and
left) are denoted by ωR and ωL. They are determined as described below:

ωR = (
vR
r

) , ωL = (
vL
r

) (2)

The following equation describes the velocity vector of the robot v in the B-frame:

[−→v ]B =

[
vxB
vyB

]
=

[
‖vB‖ cosα
‖vB‖ sinα

]
(3)

The linear and angular velocities can alternatively be expressed as follows:

‖vB‖ =
vL + vR
2 cosα

=
r [ωL(1− σL) + ωR(1− σR)]

2 cosα
(4)

|ω| = vL − vR
b

=
r [ωL(1− σL)− ωR(1− σR)]

b
(5)

To determine the turning radius R′ using equation (4) and equation (5), as follows:

R′ =
‖vB‖
|ω|

=
b

2 cosα

[ωL(1− σL) + ωR(1− σR)]

[ωL(1− σL)− ωR(1− σR)]
(6)

where b is the track gauge. Using the rotation matrix Q to transform the robot velocity [−→v ]B
into the G-frame:

v =

[
ẋ
ẏ

]
= [Q][−→v ]B =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

] [
‖vB‖ cos(α)
‖vB‖ sin(α)

]
=
r

2
[(1− σL)ωL + (1− σR)ωR]

[
cos(ϕ)− sin(ϕ) tan(α)
sin(ϕ) + cos(ϕ) tan(α)

]
(7)

Thus, the tracked mobile robot’s kinematic model in G-frame can be expressed this way:

ẋ =
r

2
[(1− σL)ωL + (1− σR)ωR] (cos(ϕ)− sin(ϕ) tan(α)) (8)

ẏ =
r

2
[(1− σL)ωL + (1− σR)ωR] (sin(ϕ) + cos(ϕ) tan(α)) (9)

ϕ̇ =
r

b
[(1− σL)ωL − (1− σR)ωR] (10)
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To ensure dimensional consistency in the dynamic model, the generalized coordinates, which
exhibit dimensional non-homogeneity, are initially defined as q = [x, y, φ]T . The radius of

gyration is given byRg =
√

IZ
m , where IZ andm represent the robot’s moment of inertia and mass

about its center of gravity (CG). This principle is applied to address the problem, as proposed
in [19]. Consequently, the generalized coordinates are reformulated as q(t) = [x, y,Rgϕ]T to
achieve dimensional consistency. The constraint on the robot’s lateral motion necessitates the
enforcement of a nonholonomic condition, which is mathematically expressed in Pfaffian form
[19] as follows:

−ẋ sin(ϕ) + ẏ cos(ϕ) + ϕ̇δ = AT (q)q̇ = 0 (11)

Here

A(q) =

− sin(ϕ)
cos(ϕ)
δ/Rg

 , q̇ =

 ẋ
ẏ

Rgϕ̇

 (12)

Now, a full-rank matrix S(q) ∈ R3×2 is defined, with columns orthogonal to A(q), as presented
below:

ST (q)A(q) = 0 (13)

Thus, S(q) is expressed in the following way:

S =


cos(ϕ)

(
δ
Rg

)
sin(ϕ)

sin(ϕ) −
(
δ
Rg

)
cos(ϕ)

0 1

 (14)

As indicated by (Fierro et al.) [22], based on equations (13) and (14), the velocity
V (t) = [v, ϕ̇]T ∈ R2 is determined in such a way that:

q̇ = S(q)V (t) (15)

2.2. Dynamic Model
To predict the robot’s dynamic behavior, the dynamic model defines the relationships between
forces, torques, and component motion. Tractive forces characterize the magnitude of effort
necessary to drive the robot along the intended trajectory. Achieving forward motion necessitates
overcoming the combined effects of friction, shear resistance, and inertia induced by track-terrain
interactions. As illustrated in Figure 2, the tractive forces are represented by Fl, Fr, while the
longitudinal resistance forces are represented by Rl and Rr. Additionally, the lateral resistance
force resulting from the lateral distribution of soil shear is denoted by Fy.

The tracked robot’s dynamic model is formulated in the body-fixed frame B as follows:

mẍB = Fr + Fl −Rr −Rl (16)

mÿB = Fy (17)

Izϕ̈ = M −Mr (18)

Where m represents the robot’s mass, M denotes the turning moment, and Mr corresponds
to the resisting moment opposing the turn. Assuming an equal weight distribution across both
tracks, the longitudinal resistance forces Rl and Rr, acting on the two tracks, are expressed as
follows[19]:
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Figure 2: Tracked Robot dynamic modeling.

Rl = Rr = µl

(
W

2

)
(19)

This equation calculates the total lateral friction force[19]:

Fy = 2 sgn(ω)µtδ

(
W

L

)
(20)

Where µl and µt denote the tracked robot’s resistance coefficients in the longitudinal and
lateral directions. Due to track sideslip, the instantaneous center of rotation shifts by a distance
δ from the YB-axis, which is calculated using the following equation [14]:

δ =
Lay
2µtg

cosα (21)

Where ay denotes the centrifugal acceleration, given by (ay = v2

R sinα), sign() denotes the
signum function, which is defined as follows [14]:

sgn(ε) =

+1, if ε > 0
0, if ε = 0
−1, if ε < 0

 (22)

The turning moment M can be calculated using the longitudinal resistance forces and tractive
forces, as shown below:

M =
b

2
[(Fl +Rr)− (Fr +Rl)] =

b

2
[Fl − Fr] (23)

The moment of resistance to turning is formulated as[14]:

Mr = 2 sgn(ω)µt
W

L

(
δ2 − L2

4

)
(24)

The dynamic model in the G frame can be obtained by multiplying Newton-Euler dynamic
equations of motion equation (16-18) by the rotation matrix, resulting in:
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mẍ = (Fl + Fr) cos(ϕ)− (Rl +Rr) cos(ϕ)− Fy sin(ϕ) (25)

mÿ = (Fl + Fr) sin(ϕ)− (Rl +Rr) sin(ϕ) + Fy cos(ϕ) (26)

IzRgϕ̈

R2
g

= (Fl − Fr)
b

2Rg
− Mr

Rg
(27)

The dynamic model of the tracked robot can be reorganized and integrated with the
nonholonomic constraint from equation (11) to be reformulated within the generalized
Euler–Lagrange framework [23]:

M(q)q̈ + f(q̇) +A(q)λ(q) = B(q)τ (28)

where

q̈ =

 ẍ
ÿ

Rgϕ̈

 ,M =

m 0 0
0 m 0
0 0 Iz/R

2
g

 , B =

cos(ϕ) cos(ϕ)
sin(ϕ) sin(ϕ)
b/2Rg −b/2Rg

 , A =

− sin(ϕ)
cos(ϕ)
δ/Rg

 , τ =

[
Fl
Fr

]
,

f =

(Rl +Rr) cos(ϕ) + Fy sin(ϕ)
(Rl +Rr) sin(ϕ)− Fy cos(ϕ)

Mr/Rg


The mass inertia matrix is denoted by M(q), the friction vector by f(q), the input matrix is
represented by B(q), the torque input is denoted by τ , A(q) denotes the matrix linked to the
nonholonomic constraints and the Lagrange multiplier vector by λ. Differentiating both sides
of equation (15) results in the following expression:

q̈ = Ṡ(q)V (t) + S(q)V̇ (t) (29)

substituting equation (29) in equation (28) and multiplying both sides by ST , The complete
dynamic model of the robot is reformulated as follows:

M̄(q)V̇ (t) + C̄(q̇, q)V (t) + f̄(q) = B̄(q)τ (30)

where

M̄(q) = STMS = m

[
1 0
0 δ2/R2

g + 1

]
, C̄(q̇, q) = STMṠ =

[
1 mδϕ̇/Rg

−mδϕ̇/Rg mδδ̇/R2
g

]
,

f̄(q) = ST f =

[
2Rl

sgn(ω)µt
w
RgL

(
3δ2 − L2

4

)]
, and B̄(q) = STB =

[
1 1
b

2Rg
− b

2Rg

]

3. Controller Design
The proposed control strategy addresses the trajectory tracking problem, which is shown in
Figure 3. Details of the proposed controller are presented as follows:



AMME-22
Journal of Physics: Conference Series 3058 (2025) 012005

IOP Publishing
doi:10.1088/1742-6596/3058/1/012005

8

Figure 3: A tracked robot’s trajectory tracking control system

3.1. Trajectory Tracking Control of TMR
Let the desired position vector be defined as qd(t) = [xd(t), yd(t), ϕd(t)]

T over the time interval
t ε [0,T], and let q(t) = [x(t), y(t), ϕ(t)]T denote the true position vector derived from sensor
measurements. The primary objective of trajectory tracking is to minimize the deviation between
the robot’s actual posture and the predefined desired trajectory. The desired trajectory qd(t) is
formulated as follows: :

q̇d =

 ẋd
ẏd

ϕ̇dRg

 =

cosϕd 0
sinϕd 0

0 Rg

[vd
ωd

]
(31)

Here, (vd) and (ωd) denote the desired linear and angular velocities, are computed as follows:

vd = ±
√
ẋ2d + ẏ2d (32)

ωd = ± ẋdÿd − ẏdẍd
ẋ2d + ẏ2d

(33)

Here, the sign (±) denotes the direction of the robot’s movement, where (+) indicates forward
motion and (−) represents backward motion. The desired orientation ϕd is defined as:

ϕd = arctan2(ẏd, ẋd) (34)

The pose tracking error, denoted as ep, is the deviation between the desired trajectory qd and
the actual pose q, expressed as follows:

ep = qd − q (35)

The error e is then converted from the frame-G to the frame-B. The error model may be
expressed as follows: exey

eϕ


B

=

 cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

 xd − x
yd − y

(ϕd − ϕ)(Rg)

 (36)
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where the forward, lateral, and angular errors are denoted by ex, ey,eϕ, respectively. The
trajectory tracking error rate is obtained by differentiating equation (36) as follows:ėxėy

ėϕ


B

=

− cosα
− sinα

0

 v +

 ey
−ex
−Rg

ω +

vd cos(eϕ/Rg)
vd sin(eϕ/Rg)

Rgωd

 (37)

3.2. Kinematic backstepping controller
The backstepping controller is designed to maintain the desired velocity Vd = [vd, ωd]

T , while
reducing the pose deviation (ep). To achieve this, the required velocity vector VB , which serves
as the input to the controller, must be determined. According to the kinematic model, VB is
given as follows [24]:

VB =

 vd cos
(
eϕ
Rg

)
+Kxex

ωd + vd

[
Kyey +Kϕ sin

(
eϕ
Rg

)] (38)

where the terms Kx, Ky, and Kϕ are controller gain parameters ( positive constant ). Taking
the first derivative of the equation (38), and assuming that the desired velocity vector Vd remains
constant, it is obtained as:

V̇B =

[
Kx 0 −vd sin(eϕ/Rg)/Rg
0 Kyvd Kϕ cos(eϕ/Rg)/Rg

]ėxėy
ėϕ

 (39)

Consequently, the velocity tracking error (ev) is the variation between the velocity control
input vector VB and the true velocity vector V , which is obtained as follows.

ev = VB − V (40)

3.3. Modified PID controller
The proposed modified PID controller aims to eliminate velocity tracking errors. Therefore, the
controller must satisfy equation (40):

lim
n→∞

ev = VB − V = 0

The following analysis presents the derivation of the proposed modified PID controller,
formulated using the computed torque methodology [19]:

M̄(q)(V̇B +Kpev) + C̄(q̇, q)VB + f̄(q) + (Kpev +Ki

∫
evdt+Kdėv) = B̄(q)τ (41)

Where Kp, Ki and Kd represent the PID parameters. Substituting equation (41) in equation
(30), we obtain:

(M̄ +Kd)ėv + (C̄ + M̄Kp +Kp)ev +Ki

∫
evdt = 0 (42)

Equation (42) describes the dynamic behavior of the velocity tracking error within the control
system.
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3.4. Optimization Method
Since the performance of the proposed controller is highly dependent on the appropriate selection
of gain parameters, determining their optimal values is crucial. Therefore, the PSO algorithm
is utilized to systematically optimize the PID parameters.

In the PSO process, each agent evaluates its fitness level, determining its next position and
movement velocity. The best fitness value of the particle will be selected as the representative
solution for the optimization problem. The globally best solution identified among all particles
and the locally best solution obtained across iterations is two key parameters that influence
a particle’s movement. These factors determine both the direction and magnitude of the
particle’s velocity. Initially, the PSO algorithm establishes the position Xi for each particle as:
[Xi = Xi1, Xi2, Xi3, . . . XiN ], the previous solutions are retained for each number of particles (ith)
[Pi = Pi1, Pi2, Pi3, . . . .PiN ]. and the velocity for each dimension, Vi [Vi = Vi1, Vi2, Vi3, ...ViN ].

Throughout the optimization process, the velocity is updated iteratively, facilitating the
movement of particles toward their respective optimal positions, referred to as the personal-best
and the global-best. The mathematical formulation for updating the final velocity is expressed
as follows [25]:

V k+1
i = V k

i × w + (Pbesti −Xk
i )× cp ×R1 + (Gbest −Xk

i )× cg ×R2 (43)

Xk+1
i = Xk

i + V k+1
i (44)

The parameter w denotes the inertia weight, which controls the influence of each particle’s
previous velocity on its current movement. The instantaneous position of particle i at iteration
k is denoted as Xk

i , while its corresponding velocity at the same iteration, V k
i , dictates its

movement. The coefficients cp and cg as weighting factors that regulate the influence of the
local-best and global-best solutions. Furthermore, R1 and R2 are randomly distributed variables
with uniform distributions in the interval [0–1].

In PSO, the cost function is defined based on two key parameters: the mean square error
(MSE) of position tracking, expressed as ep = square(e2x + e2y), and the angle tracking error,
denoted as eϕ. The optimization problem is defined such that the objective function aims to
minimize the overall tracking error ((e)).To reduce the error, the cost function is expressed as :

min
cost

Je =
1

n

n∑
T=1

[
(ep)

2 + (eϕ)2
]

(45)

Subject to: X = [Kp,Ki,Kd,Kx,Ky,Kϕ] > 0 (46)

Here, n denote the total number of samples,X represents the vector of design variables and T
denotes the time step.

4. Simulation results
Simulations were performed to assess the proposed control strategy and validate its effectiveness.
The parameters of the controller implemented in the simulations and those of the tracked robot
are provided in Tables 1 and 2, respectively. The tracked robot is required to follow a circular
trajectory, defined by:

xd = 4 cos

(
t

4

)
, yd = 4 sin

(
t

4

)
(47)

The robot’s initial position is set to [3, 0, 0], with the desired linear and angular velocities
defined as vd = 1 (m/s) and ωd = 0.25 (rad/s). During the simulation, the vehicle tracks are
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subjected to an external disturbance force, τd, applied over a time interval of 10 to 15 seconds.
The disturbance force is expressed as follows:

τd = 500 sin(3t) (48)

Table 1: Robot specifications.

m (kg) IZ (kg.m2) r (m) L (m) tw (m) b (m) µl α (rad) µt

30 3.29 0.04 0.42 0.075 0.4 0.6 0.1 0.9

Table 2: Controllers gains

kx ky kz kp ki kd

12.59 28.11 1.54 26.64 19.38 8.12

As presented in Table 3, the Modified PID controller demonstrates superior performance
compared to the conventional PID, particularly in the presence of external disturbances. While
the conventional PID becomes unstable as disturbance forces increase, the Modified PID
maintains consistent performance. This enhanced stability results from the modified PID’s
incorporation of the system’s nonlinear dynamics.

The results of the simulation show that the suggested approach successfully solves the
trajectory tracking issue, as illustrated in Figure 4. Moreover, as shown in Figure 7,
it compensates for model uncertainties and mitigates the effects of external disturbances.
Figure 4(a) demonstrates the effectiveness of the proposed controller by illustrating the
trajectory-tracking capability of the tracked robot. The solid red line represents the actual
trajectory, which closely follows the desired trajectory depicted by the dashed black line.
Figure 4(b, c, and d) illustrate the deviations in pose while tracking the reference coordinates.
The robot’s capability to precisely follow the desired trajectory is demonstrated by the variations
in x, y, and orientation ϕ over time. The robot’s linear and angular velocities are depicted in
Figure 5. Figures 6 (a) and (b) present the velocity response under disturbance conditions.
Figure 7 depicts the control force responses over time, where the applied forces on the left
and right tracks (FL in blue and FR in red) effectively compensate for model uncertainties and
mitigate the impact of external disturbances, ensuring stable system performance.

Table 3: Comparison between conventional and modified PID controllers

Controller type Modified PID Conventional PID

disturbance MSE(ex) MSE(ey) MSE(eϑ) MSE(ex) MSE(ey) MSE(eϑ)

τd = 0 N 0.0057 0.0008 0.0349 0.0366 0.0115 0.0637
τd = 250 N 0.0061 0.0012 0.0350 unstable
τd = 500 N 0.0072 0.0023 0.0352 unstable
τd = 750 N 0.0090 0.0042 0.0355 unstable
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Figure 4: Simulation results for circular trajectory tracking.
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Figure 5: The desired linear and angular velocities of the tracked robot:(a) linear velocity,(b)
angular velocity

Conclusion
This study introduced an enhanced model-based PID controller integrated with kinematic
backstepping to ensure accurate trajectory tracking for tracked mobile robots. The proposed
controller provides integration of the system dynamics, taking into account the effects of
external disturbances and slip. Additionally, PSO was utilized to optimize control gains, further
enhancing control performance. To evaluate the effectiveness of the proposed controller, a
comparative analysis was conducted against the conventional controller, using MSE metric
and accounting for the effects of external disturbances. Simulation results demonstrate that
the proposed controller exhibits high adaptability to real-world conditions and achieves precise
motion control.
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Figure 6: The linear and angular velocity responses of the tracked robot, subjected to external
disturbance forces ranging from 250 to 750 N, are presented in subfigures (a) and (b), respectively

0 5 10 15 20 25

Time (sec)

-1000

0

1000

2000

3000

4000

5000

6000

F
or

ce
 (

N
)

F
l

F
r

8 10 12 14

-400

-200

0

200

0 5 10 15 20 25

Time (sec)

-1000

0

1000

2000

3000

4000

5000

6000

F
or

ce
 (

N
)

F
l

F
r

8 10 12 14

-400

-200

0

200

0 5 10 15 20 25

Time (sec)

-1000

0

1000

2000

3000

4000

5000

6000

F
or

ce
 (

N
)

F
l

F
r

8 10 12 14

-400

-200

0

200

0 5 10 15 20 25

Time (sec)

-1000

0

1000

2000

3000

4000

5000

6000

F
or

ce
 (

N
)

F
l

F
r

8 10 12 14

-400

-200

0

200

0 5 10 15 20 25

Time (sec)

-1000

0

1000

2000

3000

4000

5000

6000

F
or

ce
 (

N
)

F
l

F
r

8 10 12 14

-400

-200

0

200

0 5 10 15 20 25

Time (sec)

-1000

0

1000

2000

3000

4000

5000

6000

F
or

ce
 (

N
)

F
l

F
r

8 10 12 14

-400

-200

0

200

Figure 7: The forces exerted on the left and right tracks under external disturbances are each
500 N

Future studies will focus on integrating obstacle avoidance capabilities, implementing the
proposed controller in real time, and exploring advanced control techniques to further enhance
system performance.
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