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Abstract
In-vitro maturation (IVM) refers to the process of maturing oocytes outside the body and is a
crucial step in in-vitro embryo production (IVEP). Unfortunately, the pregnancy rates achieved
with IVM oocytes are lower than those with oocytes matured in vivo. This discrepancy has
hindered the adoption of IVM technology in assisted reproductive technology (ART) labora-
tories. Several factors contribute to the generally poor quality of in-vitro-matured oocytes,
with oxidative stress (OS) being a significant concern. Antioxidants can play a crucial role in
treating and preventing oxidative stress. This review aims to explore the various factors that
influence IVM of oocytes and to discuss both the elements that enhance oocyte viability and
those that may have harmful effects on the oocytes. Additionally, it will present the findings
from scientific research conducted over the past few years, focusing on the effects of different
antioxidants on bovine oocyte maturation.
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1. Introduction

Laboratory production of embryos from farm an-
imals is still the most widely used protocol for ge-
netic improvement. For this purpose, immature
oocytes collected from ovaries undergo a process
of in-vitro maturation (IVM) to be ready for fer-
tilization and embryo production. Oocytes must
have attained a crucial size to develop meiotic
competence for IVM to be effective. The IVM sys-
tem must be able to sustain oocytes’ nuclear mat-
uration and cytoplasmic differentiation in addi-
tion to growth. It is believed that 120 mm is
the necessary size for achieving complete devel-
opmental capability (Telfer et al., 2020). The
accumulation of proteins, mRNA and other ma-
terials required for development and fertilization
is an indicator of cytoplasmic maturation (Mao
et al., 2014).

Reaching the metaphase II stage (MII) and
continuing meiosis are indicated by oocyte nu-
clear maturation. In this procedure, the oocytes
of mammals divide twice (Sun and Kim 2013).
When the oocyte reaches the diplotene stage,
which contains a large nucleus known as the

germinal vesicle (GV), it is first halted. A
process known as germinal vesicle breakdown
(GVBD) results in nuclear membrane disintegra-
tion and chromatin condensation (Gosden and
Lee 2010). After GVBD, oocytes resume meiosis
and enter metaphase I (MI) (Almonacid et al.,
2019). When the first polar body is extruded
and a haploid egg is produced, the first meio-
sis is completed. The first one is kept at MII till
the time of fertilization (Sun et al., 2011). How-
ever, inaccuracies in meiotic events can hinder
oocytes from achieving normal maturity (Zeng et
al., 2018) (Figure 1).

2. Factors Affecting Oocyte Maturation
A few of the several factors that influence oocyte
maturation include the oocyte’s quality, the me-
dia components used for maturation, and culture
conditions (Gatimel et al., 2020).

2.1. Oocyte Quality
Numerous internal and external variables can
impact the quality of cumulus oocyte complexes
(COCs). Reproductive state, nutritional and
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Figure 1: Prophase I arrest (GV stage), preovulatory LH surge and further arrest at the metaphase II (Lonergan
and fair, 2016).

metabolic health, hormone levels, age, breed and
oestrous cycle stage are examples of internal in-
fluences (Moussa et al., 2015). However, im-
portant external influences include the interval
between ovarian oocyte retrieval and slaughter,
the morphology and methods of collecting COCs,
the ovaries’ storage temperature, the collection
medium, and the operator’s skill in micromanip-
ulation (Tello et al., 2020).

The success of IVM, fertilization, and em-
bryo development is all impacted by the qual-
ity of the oocyte (Liu et al., 2021). Cumu-
lus oocyte complex morphology is a commonly
used criterion for selecting and classifying bovine
oocytes, as well as oocyte cytoplasmic character-
istics like as texture or brightness. There are
three different classifications for the quality of
COCs: Class I is the healthiest, with compacted
cell layers and a complete cumulus cover; Class
II is the medium-quality, with a partial cumu-
lus cover and/or slightly expanded cumulus that
contains fewer than five cell layers; and Class
III is the worst, with more intense cytoplasm,
spots of darkness, and expanded cumulus, indi-
cating follicular atresia (Figure 2) (Aguila et al.,
2020). Cumulus cells (CCs) are necessary for
oocytes to mature in-vitro. Cumulus cells con-
tribute to energy generation in the COC (Lewis
et al., 2020) and protect oocytes from reactive
oxygen species (ROS) damage (von Mengden et
al., 2020). For the categorization of medical im-
ages, a convolutional neural network (CNN) is a
very useful tool. This methodology is used for cat-
egorizing pictures from different medical imag-
ing modalities since it can complete classification
jobs more quickly and accurately (Cavusoglu et
al., 2023).

According to Emanuelli et al. (2019), COCs
with stretched cumulus and partial cumulus
(less than five cell layers) demonstrated reduced
competence and greater levels of DNA fragmenta-
tion following IVM in comparison to healthy ones.
He also concluded that these variations resulted
from improved nuclear maturation brought about
by COCs with complete cumulus covering main-
taining MII block more effectively. It is best to
pick COCs with many cumulus cell layers, com-
pact and/or slightly enlarged, and with or with-
out dark patches in the cumulus and oocyte
(Aguila et al., 2020).

2.2. In-vitro Maturation Medium Components

For the IVM of bovine oocytes, tissue culture
medium-199 (TCM-199) is often utilized. It
promotes high rates of nuclear maturation and
has all 20 essential and non-essential amino
acids. Conversely, bovine oocytes’ nuclear matu-
ration was not enhanced by a chemically defined
protein-free medium that contained both essen-
tial and non-essential amino acids (Bahrami et
al., 2019).

Because follicle-stimulating hormone (FSH) is
important for attracting follicles in vivo, it is fre-
quently added to the maturation medium (Gervá-
sio et al., 2014). FSH must be supplemented
at levels that allow a cohort of oocytes to resume
meiosis without resulting in chromosomal abnor-
malities (Bahrami and Pauline, 2022). Addi-
tionally, a complex combination of amino acids is
added to the maturation medium; they function
as an energy source to support nuclear matura-
tion. An example of this is glutamine, which may
be converted into different tri-carboxy acid cycle
(TCA) intermediates that produce adenosine tri-
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Figure 2: COC categorizing using training set A1-3 representative images: Good quality (category A), B1-3.
Category B: Medium quality C1-3. Inferior quality (category C) (Cavusoglu et al., 2023).

phosphate (ATP), glucose, or pyruvate (Bahrami
and Pauline, 2022).

Luteinizing hormone’s (LH) potential to pro-
mote cumulus cell growth led to its inclusion
in bovine IVM medium. Human chorionic go-
nadotropin (HCG) can attach to the luteinizing
hormone/choriogonadotropin receptor (LHCGR),
making it a replacement for LH. However, it does
not raise the percentage of MII oocytes in bovine
after IVM (Bahrami and Pauline, 2022).

Due to the fact that the contents of extracel-
lular vesicles (EVs) may significantly affect oocyte
maturation (Lange-Consiglio et al., 2017), the
role of EVs in gamete maturation and embryo de-
velopment has recently attracted more attention
(Machtinger et al., 2016).

Increased cumulus expansion is seen in
bovine (Hung et al., 2015) and murine (Javadi
et al., 2022) COCs when EVs are added to an
IVM system.

Researchers have looked at how adding follic-

ular fluid (FF) to the maturation medium affects
the rate of maturation and the development of the
ensuing embryos in a number of studies (Spacek
and Carnevale, 2018).

Bahrami et al. (2019) simplified the matura-
tion medium composition by identifying the nec-
essary fetal bovine serum (FBS), exogenous hor-
mones, and particular amino acid groups for op-
timum IVM of bovine COCs.

2.3. Culture Conditions

Nuclear maturation is impacted by the incuba-
tion environment’s internal atmosphere. Typi-
cally, oocytes are cultured at the core body tem-
perature of their host species, with carbon diox-
ide (CO2) concentrations between 5 and 6%, to
maintain pH at normal values (Zhou et al.,
2016). The bovine oocyte maturation rate is
slowed down by low oxygen concentration as
the main process that produces ATP is oxida-
tive phosphorylation (Zhang et al., 2017). Con-

3

https://jvmr.journals.ekb.eg/
https://doi.org/10.21608/jvmr.2025.380595.1124


JVMR. pISSN: 2357-0512 - eISSN: 2357-0520 Mahmoud et al.,2025. 10.21608/jvmr.2025.380595.1124

sequently, it’s possible that bovine oocytes need
more oxygen to produce ATP, although at greater
quantities, it can cause a rise in ROS generation
(Wrenzycki and Stinshoff, 2013).

The incubation temperature has an effect on
the maturation of bovine oocytes in-vitro, in ad-
dition to the components of the culture medium.
Traditional in-vitro bovine embryo production
procedures, such as oocyte maturation, fertil-
ization, and embryo culture, are normally per-
formed at 38.5°C or 39°C, corresponding to cat-
tle’s core body temperature. Previous studies
have suggested that when cow oocytes are cul-
tivated in-vitro at a temperature lower than their
core body temperature, oogenesis or maturation
improves. This, in turn, could lead to improved
development after fertilization (Şen and Kuran,
2018). Şen and Kuran (2018) examined how
bovine oocyte maturation and embryo develop-
mental competence were affected by incubation
temperatures of 36.5°C and 38.5°C. The current
investigation’s findings showed that at 36.5°C,
oocytes can finish their maturation. After IVF,
their embryonic development is comparable since
the oocytes developed at the standard culture
temperature of 38.5°C.

The time it takes for oocytes to mature in-vitro
and reach the MII can vary (Ruiz et al., 2017).
Therefore, the primary goal of Ruiz et al. (2017)
study was to evaluate the impact of IVM time
on the competence and nuclear maturation state
of alpaca oocytes extracted from non-stimulated
ovaries produced in an abattoir. According to the
study’s findings, the maximum rate of MII COCs
was produced after 32 hours of IVM.

3. Oocyte and GC Expression of Genes Linked
to Oocyte Maturation

Gene expression profiling in granulosa cells (GCs)
and oocytes may serve as genetic markers for pre-
dicting oocyte maturation and competence (Melo
et al., 2016). Key differentially expressed genes
include members of the transforming growth
factor beta (TGFβ) superfamily—growth differ-
entiation factor-9 (GDF9), bone morphogenetic
protein-6 (BMP6), bone morphogenetic protein-
15 (BMP15)—and the phosphatase and tensin
homolog (PTEN ) gene.

B-cell leukemia/lymphoma 2 protein (BCL2)
is essential for oocyte maturation and early em-
bryonic development, according to Huang et al.
(2018). When comparing buffalo oocytes in the
GV stage to those in the MII stage, there was

about a 2.5- fold increase in the amount of BCL2
mRNA and protein.

According to Uchime et al. (2016), GCs’ ex-
pression of genes linked to apoptosis, namely
BCL2 and the BCL-2-associated X protein (BAX )
changed as pig oocytes matured.

Boldura et al. (2016) studied the expres-
sion of BCL2 and BAX in cattle at 0, 24, and
48 hours after IVM of COCs. They found that
BCL2 mRNA was over-expressed at the 24-hour
mark compared to the 0 and 48-hour time points.
They attributed the low levels of BCL2 expression
at 0 hours to the fact that the stress associated
with in-vitro culture had not yet reached its max-
imum, and the apoptotic process had not yet be-
gun. They noted that the overexpression of BCL2
after 24 hours suggests that the cells exposed to
stress factors are trying to adapt to new condi-
tions. Furthermore, they explained that the sig-
nificant increase in BAX mRNA expression from
0 to 24 hours, peaking at 48 hours, indicates
that the cells are entering the apoptotic process
at that time.

4. The Simulated Physiological Oocyte Matu-
ration (SPOM) System

Despite its various applications, in-vitro produc-
tion (IVP) is still less efficient compared to in vivo
embryo production (Lonergan and Fair, 2014).
One of the main challenges in cattle IVP is repli-
cating the processes that occur during the in vivo
maturation of oocytes, which involves both nu-
clear and cytoplasmic changes (Navarro et al.,
2024). These changes in the oocytes of the dom-
inant follicle are referred to as oocyte capacita-
tion or pre-maturation. They are believed to en-
hance oocyte competence and "prime" the oocyte
for final maturation and subsequent development
(Razza et al., 2018).

Because meiosis arrest depends on the
oocyte’s optimal concentration of cyclic adeno-
sine monophosphate (cAMP), IVM mimics the fi-
nal stage of oocyte development by mechanically
removing CCs and FF, which causes an abrupt
decrease in intracellular cAMP concentrations.
This results in meiotic resumption, incomplete
cytoplasmic maturation and oocytes with varying
degrees of competence (Ferré-Pujol et al., 2019).

SPOM is an innovative ex vivo system de-
signed to simulate physiological oocyte matura-
tion. It employs a two-step maturation proto-
col that incorporates cAMP modulators, includ-
ing forskolin, 3-isobutyl-1-methylxanthine, and
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cilostamide (Park et al., 2016). Research has
demonstrated that optimizing cAMP concentra-
tion during IVM can enhance oocyte competence
(Park et al., 2016). Another approach to im-
prove oocyte readiness for development is to ex-
tend the time for coordinating nuclear and cy-
toplasmic maturation. This can be achieved by
blocking meiosis during a pre-maturation phase
immediately after the oocytes are extracted from
the follicles (Adona et al., 2008).

Navarro et al. (2024) investigated the effect of
SPOM on cytoplasmic maturation by measuring
the levels of stress-related genes and assessing
mitochondrial activity and distribution as indi-
cators of cytoplasmic maturation. Additionally,
they examined the impact of cAMP treatment on
nuclear maturation, cleavage, and blastocyst de-
velopment. The findings suggest that using cAMP
modulators during IVM leads to the production of
competent oocytes, which, after fertilization, can
develop into a higher quantity and quality of blas-
tocysts compared to standard IVM conditions.

5. Some Antioxidants’ Impacts on the Matu-
ration of Bovine Oocytes In-vitro

Oxidative stress (OS) signifies a disruption in
the delicate balance between the generation and
clearance of certain molecules known as ROS
(Park et al., 2016). ROS are molecules con-
taining oxygen created by mitochondria and cel-
lular metabolism which has a role in signaling
and gene expression (Halliwell and Gutteridge,
2015; Lepetsos et al., 2019).

Physiological levels of ROS can enhance ga-
mete function and development; however, exces-
sive ROS generation beyond the oocyte’s antiox-
idant capacity can result in OS (Rakha et al.,
2022). Oocytes cultured in-vitro are inevitably
affected by oxidative stress. Antioxidant enzymes
in the follicular fluid quickly break down excess
ROS, balancing their synthesis and removal in
cells (Park et al., 2016). IVM-created oocytes
lack antioxidant enzymes, leading to a break-
down in the equilibrium and increased ROS lev-
els. OS negatively impacts oocyte maturation
and contributes to poor oocyte quality (Yu et al.,
2019).

There are various exogenous factors con-
tribute to the production of ROS including expo-
sure to high oxygen concentrations, visible light,
pollutants, and certain components used during
the IVM process (Tiwari et al., 2016).

Light exposure can unbalance prooxidants

and antioxidants, producing ROS and increas-
ing hydrogen peroxide (H2O2) concentration. The
greater the exposure duration, the more harmful
the embryo’s subsequent development (Oh et al.,
2007).

High oxygen levels activate pro-oxidant oxi-
dase, speeding up oxidation events and accumu-
lating ROS, adversely impacting embryo develop-
ment in-vitro (Guerin et al., 2001).

Changes in pH levels in culture media can
significantly impact sperm motility, oocyte mat-
uration, and embryo development (Will et al.,
2011). In vitro culture systems that main-
tain moderate and consistent CO2 concentrations
help keep the pH within the normal range. Ex-
tremely high temperatures can lower pH levels,
increasing the risk of OS and negatively affect-
ing cellular processes (Larkindale and Knight,
2002).

The three main energy substrates necessary
for oocyte maturation are pyruvate, lactate, and
glucose (Lin and Wang, 2020). Cekleniak et al.
(2001) suggested that increasing glucose levels in
the culture media could elevate the production of
oxygen radicals through glycolysis and oxidative
phosphorylation, which could be harmful to IVM.

Serum is a source of proteins that nourish
the COCs and aid in the oocyte’s ongoing de-
velopment. It can remove metal ions to prevent
the medium from producing free radicals. Ad-
ditionally, serum contains a variety of nutrients,
growth factors, and other substances that may
either directly or indirectly neutralize ROS gen-
erated in the culture environment (Esfandiari et
al., 2005).

Over the past decade, the impact of antiox-
idants in IVM has been studied by many re-
searchers. Because of their proven effect on ROS,
it is essential to research antioxidants and their
roles in this context (Naspinska et al., 2023).

5.1. Quercetin (QT)
Quercetin is a natural flavonoid which present
in fruits, grains, teas, and vegetables. Plants
including onions, apples, broccoli, and berries
contain it (Andreucci et al., 2018). Accord-
ing to earlier research, QT antioxidant enzymes,
scavenges free radicals, and eliminates oxidation
products to avoid malfunctioning mitochondria
(de Oliveira et al., 2016). Silva et al. (2018)
investigated how QT, an antioxidant substitute
for cysteamine (CIS), affected IVM; they observed
that the QT group had a greater proportion of MII
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oocytes than the CIS group.
In a study conducted by Cao et al. (2020),

the impact of QT on oocytes from aged mice was
investigated; the results revealed that treating
oocytes from aged mice with 10 µM QT signif-
icantly increased the IVM rate. On the other
hand, the QT group oocytes had significantly
fewer abnormalities, indicating that some of the
mitochondrial dynamics impairment associated
with oocyte ageing can be mitigated by QT (May-
Panloup et al., 2016).

5.2. Resveratrol

It is a natural polyphenol present in various
plants and foods, including peanuts, mulberry,
cocoa, Japanese knotweed roots, grapes, and red
wine (Wang et al., 2014). Resveratrol is a white
solid powder with a molecular weight of 228.25
g/mol. It has minimal water solubility and is
photo/pH-sensitive (Zabihi et al., 2019).

The experiment of Gutierrez-Castillo et al.
(2023) found that resveratrol administration
reduced ROS levels, while resveratrol paired
with Ethyleneglycol- bis(β-aminoethyl)-N,N,N’,N’-
tetraacetic Acid (EGTA) resulted in the lowest lev-
els. Resveratrol not only reduced ROS levels, but
also increased oocyte development competence
during verification.

5.3. Ferulic Acid (FA)

It is a phenolic compound that is a metabolite
of phenylalanine and tyrosine, commonly found
in fruits and vegetables (Lee and Hyun, 2017).
It’s been demonstrated to possess characteristics
that combat ageing. (Neopane et al., 2023). It
is theorized that FA can prevent oxidative stress,
which is commonly linked to aging (Wang et al.,
2021), and so avoid oocyte aging thereby improv-
ing oocyte quality.

The effects of FA supplementation on the mat-
uration of bovine oocytes and the development
of embryos were investigated by Wang et al. in
2023. The results showed that, as compared
to the control group, supplementing with 5 µM
FA considerably boosted the maturation rates of
bovine oocytes and the expansion of CCs. The
results also showed that FA can sustain antiox-
idant levels (Glutathione “GSH”, Superoxide dis-
mutase “SOD”, and catalase “CAT”) in oocytes
stable, reducing the OS brought on by H2O2.

Yin et al. (2023) examined the potential of
FA to prevent the decline in bovine oocyte qual-

ity during in-vitro aging. Their findings indicated
that adding 5 µM FA to bovine oocytes that had
been aged in-vitro decreased the rate of abnor-
malities. Furthermore, by removing excess ROS
and preserving intracellular GSH levels, together
with the activity of antioxidant enzymes, the FA
supplementation markedly increased antioxidant
capacity.

5.4. Carvacrol

It is widely recognized for its many biological
functions and is a prominent natural ingredi-
ent that is very prevalent in aromatic plants as
an essential oil (Imran et al., 2022). Thyme
yields 5–75% carvacrol oil by extraction, whereas
hop marjoram and marjoram provide 50–70% oil.
(Ares et al.,2020.

Carvacrol has been shown to have anti-
inflammatory, anti-fungal, anti-cancer, hepato-
protective, anti-spasmodic, vasorelaxant, and
immunomodulatory properties in addition to its
antioxidant capabilities (Ezz-Eldin et al., 2020).

The study conducted by Morais et al. (2023)
aimed to ascertain the effects of carvacrol sup-
plementation at different doses (0, 3, 12.5, and
25 µM) on bovine oocyte IVM. The degree of COC
expansion and the evaluation of the nuclear mat-
uration rate (first polar body and MII) are taken
into consideration in the IVM of bovine oocytes.
The pace of maturation was the same for all treat-
ments. ROS levels were significantly greater in
the Carv-25 µM treatment than in the other two.

5.5. Nigella sativa (NS)

The pharmacological characteristics and thera-
peutic potential of NS and its main constituent,
thymoquinone (TQ), make them acknowledged
as medicinal plants that support general health
(Goyal et al., 2017). NS honey contains various
antioxidant compounds, including flavonoids,
chrysin, vitamin C, pinobanksin, catalase, and
pinocembrin (Fakhrildin & Alsaadi, 2014). Ad-
ditionally, a study on human sperm indicates
that honey may have the potential to enhance
sperm quality (Fakhrildin & Alsaadi, 2014).

The impact of different NS hydro-alcoholic
extract (NSE) concentrations at 0, 1, 50, and
100µg/ml on the quality of oocytes in mice with
polycystic ovarian syndrome (PCOS) during IVM
was investigated by Eini et al. (2020). The find-
ings demonstrated that oocyte maturation, OS,
and epigenetic alterations were all improved by
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an NSE concentration of 50µg/ml.
For the first time, Kaabi et al. (2020) eval-

uated how honey made from black seed (Nigella
sativa) affected the IVM rate in sheep oocytes.
The results indicated that 5% black seed honey is
the optimal concentration for enhancing MII and
GSH levels in matured sheep oocytes.

Kaabi et al. (2022) examined the effects of NS
honey, Saudi Sider honey, and honeybee pollen
on the IVM of sheep oocytes. According to the
study, the oocytes’ maturation rate, GSH levels,
and gene expression were all boosted by the addi-
tion of natural honey and honeybee pollen at low
quantities.

5.6. Melatonin

Melatonin is primarily created by the pineal gland
from tryptophan, an important aromatic amino
acid. Additionally, blood cells, the gastrointesti-
nal tract’s epithelium, and the retina and lens of
the eye generate trace quantities (Naspinska et
al., 2023).

Lima et al. (2022) used culture medium with
different melatonin concentrations to investigate
the effects of melatonin on cow oocytes that had
developed under heat stress (10-12, 10-9, 10-6,
and 10-3 mol/L). Melatonin has been proven to
be effective in minimizing the harmful effects
of heat stress on oocytes and pre-implantation
embryos (Fernandes et al., 2019). In mature
bovine oocytes, a dosage of 1 µM of melatonin
was observed to considerably reduce ROS levels
(Yaacobi-Artzi et al., 2020).

5.7. Vitamin C

Vitamin C, also known as ascorbic acid, is an
essential micronutrient primarily found in citrus
fruits such as lemons and oranges, as well as in
various vegetables. It is known for its antioxidant
properties, but the exact mechanisms of its func-
tion at the cellular level remain unclear (Santos
et al., 2022).

A study conducted by Sovernigo et al. (2017)
found that adding 50 µg/mL of vitamin C to the
medium reduced the levels of ROS. Additionally,
vitamin C supplementation resulted in a higher
percentage of blastocysts compared to the con-
trol group. Furthermore, embryos treated with
vitamin C exhibited a greater total cell count.

According to Al-Shimaa et al. (2017), the
most effective treatment for in-vitro embryo for-
mation is 50 µM of vitamin C. When this is com-

bined with 50 µM of cysteine, the effects are sig-
nificantly enhanced. Additionally, a study con-
ducted by Husamaalden et al. (2020) investi-
gated the impact of vitamin C, as well as a com-
bination of vitamin C and CIS, on bovine oocyte
maturation, cleavage rates, and blastocyst for-
mation. The findings revealed that a 200 mM
dose of ascorbic acid improved oocyte matura-
tion and blastocyst rates after in-vitro fertilization
(IVF) compared to the control group, although it
did not increase cleavage rates. In the second
experiment, CIS was introduced to the culture
media alongside vitamin C. The study revealed
no substantial effect on oocyte maturation, al-
though it did indicate a minor improvement in
early cleavage and the generation of 2-celled em-
bryos.

5.8. Vitamin A

Vitamin A is represented by several compounds,
with the most significant being retinol (vitamin
A1) and retinal (3-dehydroretinol or vitamin A2)
(Naspinska et al., 2023). This vitamin plays a
crucial role in various bodily processes, includ-
ing cell differentiation and development, immune
system function, vision, regulation of cell prolif-
eration, and bone tissue growth (Zasada et al.,
2018).

Gad et al. (2018) examined the effects of
different vitamin A concentrations (5, 50, and
200 nM) on buffalo oocyte quality and matura-
tion. The 5 nM treatment yielded the best re-
sults, with the highest rates of expansion and
polar body formation, along with increased mito-
chondrial membrane potential and reduced ROS
levels. Gene expression was also better in the 5
and 50 nM groups, while the 200 nM treatment
produced the worst outcomes.

5.9. Nobiletein

Nobiletin is a polymethoxylated flavone found in
citrus peel. It has gained popularity because it
can be easily absorbed through cell membranes
due to its structure and lipophilic nature (Huang
et al., 2016). Nobiletin also exhibits various bio-
logical effects, including regulating the cell cycle
(Huang et al., 2016), reducing apoptosis (Liu et
al., 2016), and acting as an antioxidant (Choi et
al., 2007). These properties are essential for the
success of oocyte IVM.

The study conducted by Cajas et al. (2020)
aimed to evaluate the protective effects of no-
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biletin on the quality of matured bovine oocytes
during IVM. COCs were supplemented with dif-
ferent concentrations of nobiletin: 10, 25, 50,
or 100 µM. A control group was treated with
0.1% dimethyl sulfoxide (DMSO), which was used
as the vehicle for diluting nobiletin. The re-
sults indicated that the groups treated with 25
µM (Nob25) and 50 µM (Nob50) of nobiletin
had a higher percentage of matured oocytes
in MII compared to the other groups. Addi-
tionally, the oocytes matured with 25 and 50
µM of nobiletin exhibited increased migration
rates of cortical granules and enhanced mito-
chondrial activity while displaying lower levels
of ROS and GSH compared to the other treat-
ments. Regardless of the dose administered,
nobiletin supplementation during the oocyte
IVM process down regulated the expression of
oxidative stress transcripts superoxide dismu-
tase 2 (SOD2) and cytochrome-p450-family-51-
subfamily-a-member-1(CYP51A1) while up regu-
lating developmental-related genes like mitogen-
activated protein kinase (MAPK1) and BMP15.

5.10. Kaempferol

It is a powerful flavonoid-containing antioxidant.
Flavonoids’ antioxidant potential is due to their
ability to scavenge ROS, which in turn increases
the production of intrinsic antioxidant enzymes
such as SOD and GSH (Nijveldt et al., 2001).In
buffalo, adding IVM medium with 10 µg/mL
kaempferol increased oocyte maturation rates
compared to the control group (Bahgat et al.,
2023).

5.11. Biacalein

Baicalein, also known as 5,6,7-trihydroxyflavone,
is a flavonoid that has been traditionally used
in Chinese herbal medicine (Fakruzzaman et
al., 2020). It is a major component of the
plant Scutellaria baicalensis (Kim et al., 2001).
Research has shown that baicalein possesses
free radical scavenging and antioxidant proper-
ties (Shieh et al., 2000). Additionally, it is rec-
ognized for its antioxidant effects (Chen et al.,
2000) and its role as an anti-inflammatory agent
(Lin and Shieh, 1996).

Fakruzzaman et al. (2020) were the first to
examine the effects of baicalein supplementation
during IVM on bovine oocytes. Bovine oocytes,
recovered from abattoir ovaries, were cultured
in IVM medium with different concentrations of

baicalein (0, 0.1, 1.0, and 10 µM). The study
found that baicalein, particularly at 1 µM, acts
as a potent antioxidant, enhancing developmen-
tal competence, increasing the hatching rate, and
raising total blastocyst cell numbers while reduc-
ing apoptosis.

5.12. EMD-300® and EMP3-H200®
They are innovative antioxidant nanoformula-
tions rich in flavonoids. In recent years,
nanotechnology has been effectively utilized
in assisted reproductive technologies (ART) to
enhance oocyte maturation, fertilization, and
in-vitro embryo development (Hashem and
Gonzalez-Bulnes, 2021). Nanoparticles (NPs)
possess unique physical properties that distin-
guish them from microparticles and bulk mate-
rials (Jeevanandam et al., 2018). These prop-
erties include a reduced size, larger surface area,
higher purity, enhanced stability, and interac-
tions at fluid interfaces. As a result, NPs are
considered promising candidates for improving
in-vitro embryo production (IVEP) (Silva et al.,
2021).

Elsaka et al. (2025) investigated the effects
of adding EMD-300® and EMP3-H200® to IVM
medium on oocyte IVM and the expression of OS,
apoptosis, and pluripotency genes in buffaloes.
COCs from buffalo ovaries were cultured in IVM
media with 0.5% or 1.0% EMD 300® or EMP3-
H200® for 22 hours, respectively. Supplement-
ing IVM medium with 0.5% EMD-300® or EMP3-
H200® boosted buffalo oocyte nuclear matura-
tion by more than 1.0%. Their findings show that
these compounds have antioxidant characteris-
tics, supporting their ability to protect oocytes
from oxidative damage.
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