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Abstract: This paper introduces and explores a new flexible probability distribution called the Burr-X generalized Chen
(BXGZC) model, with a focus on its properties, applications in actuarial risk analysis, and validation using real right-
censored data. The proposed model builds upon the Chen distribution, offering enhanced adaptability for modeling both
positively and negatively skewed datasets commonly encountered in insurance and financial risk assessment. We examine
several key risk indicators, such as Value-at-Risk (VaR), Tail-Value-at-Risk (TVaR), tail variance, tail mean-variance, and
the mean excess loss function, and apply them under different estimation techniques including maximum likelihood, ordi-
nary least squares, weighted least squares, and Cramervon Mises methods. These approaches are tested through simulation
studies involving various sample sizes to evaluate their performance in capturing risk measures accurately. Additionally, we
apply the BXGZC model to real-life insurance claims data to assess its practical utility in actuarial evaluation. To further
validate the modela€™s fit, especially in the context of censored data, we employ a modified version of the Nikulin-Rao-
Robson goodness-of-fit test. This test is particularly useful when dealing with survival or reliability data where censoring is
present. The results demonstrate that the BXGZC model outperforms the standard Chen distribution in fitting a wide range

of right-censored datasets across different domains such as medical research, engineering reliability, and insurance.
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1. Introduction

Every property/casualty claim procedure uses two independent random variables (RVs): the claim-
size RV and the claim-count RV. The first two basic claim RVs can be combined to produce the
aggregate-loss RV, which represents the total claim amount generated by the underlying claim proce-
dure. This work presents the model called the BXGZC distribution for risk analysis and right-censored
validity (see Lane [19] and Klugman et al. [18]). As part of a review of the business’s risk ex-
posure, risks are usually ranked according to their likelihood of occurring in the future multiplied by
the potential loss if they did. The firm can differentiate between little and large losses by ranking the
likelihood of likely losses in the future. Speculative risks frequently result in losses such as failures
to comply with regulations, a decline in brand value, security flaws, and liability issues. Distributions
based on probabilities can then provide an accurate depiction of the risk exposure and recently used
for this actuarial purpose (see Shrahili et al. [31] and Mohamed [22]). The levels of exposure are
functions frequently referred to as major risk indicators (see Klugman et al. [18]). Such main risk
indicators provide risk managers and actuaries with information on the level of risk that the firm is
exposed to. There are variety of RlIs that can be taken into consideration and researched, including
tailed-value-at-risk (TVAR) (also known as the conditional tail expectation (CTE)). We also study how
the mean excess loss (MEL) function may be used to reduce actuarial and economic risks, (see Wirch
[35], Tasche [33], Furman and Landsman [11] for the value-at-risk (VAR), conditional-VAR (CVAR),
tail-Variance (TV)). We provide a simulation study to compare the effectiveness of the main risk in-
dicators based on insurance data in order to satisfy the requirements of the actuarial analysis of risks.
For risk analysis purpose, we analyse and model a new set of negatively skewed insurance claims data.
Additionally, the risk exposure is an actuarial estimation of the potential loss that might develop in the
future as a result of a specific action or occurrence.

In the framework of distributional validation and statistical hypothesis tests for the censored data, a
modified Nikulin-Rao-Robson (NRR) statistic test (see Nikulin [23], Voinov et al. [34] and Rao and
Robson [24] for more main details), which is based on the censored maximum likelihood estimators
on initial non-grouped data, is considered under the BXGZC model. The modified NRR statistic is
assessed under four right censored data sets and some results are highlighted. At the beginning of
this introduction, it is worth mentioning to provide some simple details about the genesis, importance
and uses of the new probability model. Let z be a non-negative RV with a generalized Chen (GzC)
distribution (see Chaubey and Zhang [7]), then its corresponding cumulative distribution function
(CDF) is given by

GO’2,0'3 (Z) = (1 _exp{[l _exp(zo'3)]})0'2, (11)

where z > 0,0, > 0 and 03 > 0. Chaubey and Zhang [7] present two propositions studying probability
density function (PDF) and hazard rate function (HRF). The first proposition shows that the PDF
shapes are either “decreasing” or “unimodal”. The second proposition concludes that the HRF shapes
are either “increasing” or ’bathtub”. Chaubey and Zhang [7] also addressed the problem of estimation
of parameters of the GzC distribution, focusing on the maximum likelihood estimation method. Due
to Dey et al. [10], the shape of the PDF of the GzC distribution may be characterized as follows: for
oy < 1,03 <1, 84,0, (2) 1s a decreasing density, for o, > 1, 03 > 1, g4, +, (z) 1s a unimodal density
and foro, < 1,03 >1and o, > 1, 03 < 1, g4, .+, (z) may be unimodal or decreasing density. Chaubey
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and Zhang [7] presented a proof that the failure behavior of the GzC distribution are, respectively,
bathtub (o, < 1, 03 < 1), increasing (o, > 1, 03 > 1), increasing or bathtub (o, < 1,03 > 1 and o,
> 1,03 < 1). For o, = 1, the GzC distribution reduces to Chen (C) distribution (see Chen (2000)) with
Gy, (2) = 1=V, (2) where

Vo; (2) = exp{[1 —exp c™)]} .

Dey et al.  [10] addressed various mathematical properties and estimation methods for the GzC
distribution. They described different estimation methods such as the method of maximum likelihood
estimation (MLE), percentile estimation (PE), ordinary least square (OLSE) weighted least square
estimation (WLSE), maximum product of spacings estimation (MPSE), Cramér-von Mises estimation
(CVME). In this work, we shall use the Burr X (BX-G) family to derive a new version of the the
BXGZC distribution. The CDF of the BX-G is defined as

Frc@={1-en[-020||". (12)
where i
Ge(2)
022) = | = Z] .
B g(Z)

Inserting (1.1) into (1.2), the CDF of the BXGZC distribution can be expressed as

Fv@={1-exp|-02,,0|", (1.3)

where )
0,20 = [(1 = Vo, @) 1]
The corresponding CDF of the BXGZC can be derived as

2737 exp (27%) Vo, (2) €Xp [—O;ﬁm (z)] [1-V,, (Z)]Z(Tz—l

Jv (@) = 2010203 S o (1.4)
{1-[1-V,, @7 {1 - exp|-022,,,2)|}
where V = (07, 0, 073) . Consider the power series
0\" e ra+s) (4
(1 B Z) T ANT (44— 1) (Z) Jfer. o0 (1)
Applying (1.5) to (1.4) we have
+00 _ A

fZ(Z) = exp (ZUS)V[I]Z ( 1) F(O-l) (16)

LT (0~ yexp|(h + 1) 0;2,,@)]

where
201020377V, () (1 = Vo, (2))7

(1-[1-Vo, @17V (1= Vo @)™

Vi =
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Applying the power series to the term exp {— (1 +1)0;2

02,073

(Z)}, equation (1.6) becomes

(_1)l|+lz (ll + l)lz 1’*(0_1) [1 _ VU-3 (Z)](212+1)o-2

fz (2) = exp(z”7?) Vi Z

) (1.7)
TN A
where
Voo = 20'10'20'3z‘73—1vg3 (2)
2] = —
Consider the series expansion
-3 +00 Is
I l
(1_5) _ Mf_) e .
& = BING) & |2|<1. >0

Applying the expansion in (1.8) to (1.7) for the term [1 — (1 — V,, (z))02]2[2+3, equation (1.7) becomes

fv(@) = Z Shi T (Q = Q2L+ Doy + 5+ 1), (1.9)

1,13=0

where
200 (DT (@NT QL+ 5+3) (D" ¢+ D"

§12,13 - lz'l3‘r (2]2 + 3) 0—2 = ll‘r(0'1 - ll) 5

and 7,(z) = Qg., (2) Gy, (z)]g_l. Equation (1.9) reveals that the density of Z can be expressed as a
linear mixture of GzC densities. So, several mathematical properties of the new family can be obtained
by knowing those of the GzC distribution. Similarly, the CDF of the BXGZC model can also be
expressed as a mixture of GzC CDFs given by

+00
Fy(2) = Z S Ha(@[(Q=QCL+ Do+ 5+1) (1.10)
b,13=0

where Io(z) =[G, (z)]Q is the CDF of the GzC family with power parameter €2.

The new NRR statistical test showed that using the new model as a stand-in for looking at two
right-censored data sets is successful. In this context, we will discuss a few recent research findings
that added to or changed the NRR. It is important to note that the browser for statistical literature on
this topic (NRR goodness-of-fit test) will not find many new NRR goodness-of-fit extensions but only
a few research that applied this test because the NRR goodness-of-fit test has specific requirements,
strict procedures, and demands censored data. It is a well-known fact that it is challenging to collect
new censored data to apply to and stress the importance of the new test. In the next few paragraphs,
we will discuss a few recent research results that use this test on actual data that had been subject to
right-wing censoring, along with a description of the findings from each study independently.

The rest of this work is organized as follows: Sections 2 presentes some mathematical and statistical
properties and two related theorems. The main risk indicators under the BXGZC model are given in
Sections 3. Risk analysis under artificial and real data is presented in Sections 4. Sections 5 introduces
the right censored distributional validity. Sections 6 offers some concluding remarks.
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2. Mathematical and statistical properties

Following Dey et al. [10], we can extract the following two theorems:
Theorem 1: Let z be a RV having the GzC distribution. Then using the transformation ¢ =

[Goyors (z)]”LZ, the 7 ordinary moment of Z is given by

& r r (~1)7*
Iu; :E[Zr] = 0,073 Z UZ(p;O_—)Uz(T;— +p)

3 073 o3 (2 +p+1)+r]

p,7=0
where o (p; é) is the coefficient of [log (1 — t)]%J’p in the expansion of

{E}lmgu—n&q

=1

and o, (T; =+ p) is the coefficient of "™ in the expansion of

5
=g
(see Ibrahim et al. [14] and Dey et al. [10] for more details).

Theorem 2: Let z be a RV having the GzC distribution. Then, the 7 conditional moment can be

derived as

+00
r r
E(Z") = 0,03 Z O'Z(P;—)O'Z(T;— +P)
p,7=0 03 73

y D% (Y, (2))
[o3(o2+p+1)+r]{1 = [1 -V, (2]}

Based on Theorem 1, the " ordinary moment of the BXGZC distribution can then be expressed as

' —E[Z]=Q i oll)aleL+ (D7 @.1)
= = Qo — T, — . .
Hr : =t Sl 2% o3 o3 p [3(Q+p+71)+7]
The variance (V(z)), cumulants, n™ central moment, skewness (S(z)), kurtosis (K(z)) and Index of
dispersion od the variance to mean ratio (ID(z)) measures can be calculated from the ordinary moments
using well-known relationships. For the increasing failure rate models, it is also of interest to know

what E (Z"|z > z) is. It can be easily seen that

2r
O Sk € (p; é) Q (T; =t p) (=17 (Y, (2)
i o3@+p+1)+7][1- (1=, (2)7]

The mean residual life (MRL) is the expected remaining life, z — z, given that the item has survived
to time z. Thus, in life testing situations, the expected additional lifetime given that a component has

E(Z'|z > z) = Qo3 (2.2)
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survived until time x is called the MRL. Since the MRL function is the expected remaining life, z must
be subtracted, yielding

1
M ,=EBE(iz-2zlz>2) = intt> dz| -z,
1z (z—2z>2) e [m Tz2fv (2) z] Z

where Sy (z) = 1 — Fy (z) . Then using (2.2), we get
& Q) Qn L +p) D (V@)
b, l3.p,7=0 [0'3 (0"2 tp+ T) + 1] [1 -(1-Vo, (Z))Q]

In a real life situation, where systems often are not monitored continuously, one might be interested in
getting inference more about the history of the system, for example, when the individual components
have failed.

Ml,z = QO’3

3. Main risk indicators under the BXGZC model

The characterization of risk exposure that the probability-based distributions may offer is sufficient.
One value, or at the very least a limited group of numbers, is frequently used to indicate the amount
of risk exposure. These risk exposure statistics are obviously functions of a certain model and are
frequently referred to as important main risk indicators. Such main risk indicators provide actuaries
and risk managers with information on the degree to which a firm is exposed to specific types of risk.
Numerous main risk indicators, including the VAR, the TVAR which also known as CVAR, the TV
indicator, the Tail Mean—Variance (TMV) and the MELq function, among others, can be taken into
account and examined. The VaR is a quantile of the distribution of aggregate losses in particular.
Actuaries and risk managers frequently focus on estimating the likelihood of a negative result, which
may be conveyed using the VaR indicator at a certain probability/confidence level. This indicator is
frequently used to calculate the amount of capital needed to deal with such probable negative situations.
The VAR of the BXGZC distribution at the 100g% level, say VAR(z) or 7 (g), is the 100g% quantile
(or percentile). Then, we can simply write

1% 4=99%
VAR (z) = Pr(X > Q(U)) = { 5%ly=05% (3.1

where Q(U) = F “,‘ (z), for a one-year time when g = 99%, the interpretation is that there is only a very
small chance (1%) that the insurance company will be bankrupted by an adverse outcome over the next
year. Generally speaking, if the distribution of gains (or losses) is limited to the normal distribution, it
is acknowledged that the number VAR(z) meets all coherence requirements. The data sets for insurance
such as the insurance claims and reinsurance revenues are typically skewed whether to the right or to
the left , though. Using the normal distribution to describe the revenues from reinsurance and insurance
claims is not suitable. The TVAR of Z at the 100g% confidence level is the expected loss given that
the loss exceeds the 100g% of the distribution of Z, then the TVAR of Z can be expressed as

o0

1 - 1
TVARG) = E G > 7(0) = T = f e@d:= 1 [

n(q) #(q)
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Then
Q +00 _1 a,l+p V(r
TVAR(z) = 03 Z C (o, 7) Shpy (=1)73 ( 3 ((])) = (3.2)
l-q, 44, [o3(Q+p+7)+1][1= (1= V,, (9)7]
where

Ci(p,7) = Q(p; L)Q(T; L +P)-
03 03

The quantity TVAR(z), which gives further details about the tail of the BXGZC distribution, is therefore
the average of all the VaR values mentioned above at the confidence level q. Moreover, the TVAR(z)
can also be expressed as TVAR(z) = e (z; ¢)+VAR(z), where e (z; ¢) is the mean excess loss (MELQ)
function evaluated at the 100¢%"* quantile (see Acerbi and Tasche [2]; Tasche [33]; Wirch [35].
When the e (z; g) value vanishes, then TVAR(z) =VAR(z) and for the very small values of e (z; ¢), the
value of TVAR(z) will be very close to VAR(z) .The TV risk indicator, which Furman and Landsman
[11] developed, calculates the loss’s deviation from the average along a tail. Explicit expressions for
the TV risk indicator under the multivariate normal distribution were also developed by Furman and
Landsman [11]. The TV risk indicator (TV(z)) can then be expressed as

TV(z) = E(X*X > n(g)) - [TVARR)?, (3.3)
where
, IS Sty (=17 (V,, (q)
E(X x> R(Q)) - s p,TZ:o .0 [03 (0'2 +p+ T) + 2] [1 -(1-V,, (q))g]’
where

2 2
Cz(p,‘[') = Qp(_)QT(_ +,0)
03 03
As a statistic for the best portfolio choice, Landsman [12] developed the TMV risk indicator, which is
based on the TV risk indicator. Consequently, the TMV risk indicator may be written as

TMV(z) = TVAR(z) + 7TV (2)|o<n<1- (3.4)

Then, for any continuous RV, TMV(z) >TV(z) and, for 7 = 1, TMV(z) =TVAR(2). In view of the
theoretical complexities and the fact that the quantile function is not known in a certain closed form,
we will use the methods that provide numerical solutions. To make numerical processes easier, pre-
made programmes like "R” and "MATHCAD” will be used. Numerous factors have contributed to the
recent rise in popularity of numerical methods. The presence of several mathematically sophisticated
distributions and models, as well as the availability of ready-made statistical programmes, are the
two most significant. The complexity of models is no longer the main issue facing researchers in the
fields of statistical analysis and mathematical modelling, as statistical programmes and packages have
significantly helped to simplify these complexities by offering numerical solutions. This is a fact that
has come to be accepted and cannot be ignored. Numerical approaches were used in this paper’s risk
analysis and evaluation process, as well as in the issue of distributional validation under the NRR and
its new matching version.
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4. Risk analysis

4.1. Artificial analysis using different methods

In this section, we consider the following estimation methods: maximum likelihood estima-
tion (MLE), ordinary least squares (OLS), weighted least squares estimation (WLSE) and Cramer-
von Mises (CVM) for calculating the main risk indicators. These quantities are estimated us-
ing N = 1,000 with different sample sizes (n = 20,50,100) and three confidence levels (CLs)
(g = (50%,60%,70%, 80%,90%,99%)). All results are reported in Table 1 (n=50), Table 2 (n=50),
Table 3 (n=100), from which we conclude: VAR(z), TVAR(z) and TMV(z) increase when g increases
for all estimation methods.

1‘VAR(Z)WLS <VAR(Z)CVM <VAR(Z)MLE < VAR(Z)OLSE for most q.
2-TVAR)wis <TVAR(Z)evm <TVAR(Z)mie <TVAR(2)owss for most ¢.

4.2. Real data analysis under insurance claims

The historical growth of claims through time for each appropriate exposure (or origin) period is
frequently shown in the historical insurance actual data in the form of a triangle presentation. The
year the insurance policy was purchased or the time period during which the loss occurred may be
regarded as the exposure period. It is obvious that the genesis period need not be annual. For instance,
it may be monthly or quarterly origin periods. The development time of an origin period is known
as the “claim age” or “claim lag.” Data from separate insurance is frequently combined to represent
uniform company lines, division levels, or risks. We examine the insurance claims payment triangle
from a U.K. Motor Non-Comprehensive account in this article as a practical illustration. We choose a
convenient origin period of 2007 to 2013. The insurance claims payment data frame displays the claims
data in the manner in which a database would normally keep it. The origin year, which ranges from
2007 to 2013, the development year, and the incremental payments are all included in the first column.
It’s important to note that this data on insurance claims was initially examined using a probability-
based distribution. The capability of the insurance firm to handle such occurrences is of importance to
actuaries, regulators, investors, and rating agencies. This work proposes certain main risk indicators
quantities for the left-skewed insurance claims data under the EEC distribution, including VAR, TVAR,
TV, and TMV (see Artzner [6]). One of the finest techniques for heavy-tailed distributions is based on
the t-Hill approach, an upper order statistic modification of the t-estimator.

Table 4 (first part) lists the main risk indicators under the insurance calims data and MLE method
for the BXGZC model where E = (0.242,598.318,0.085) . Table 4 (second part) gives the main
risk indicators under the insurance calims data and OLSE method for the BXGZC model where
Y = (0.926,48.459,0.062) . Table 4 (third part) shows the main risk indicators under the insurance
calims data and WLSE method for the BXGZC model where ;\7 = (1.351,34.820,0.0603) . Table 4
(fourth part) presents the main risk indicators under the insurance calims data and CVM method for
the BXGZC model where 17 =(1.169,39.769,0.0619) .
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Table 1. main risk indicators under artificial data for n=20.

Method o o) o3 VAR(z) TVAR(z) TV(z) TMV(z)  MELq(2)
MLE 2.113 1.980 0.100
50% 0.157092  0.4329251 0.0881785 0.4770143 0.2758331
60% 0.2131667 0.4951766 0.0907816 0.5405673 0.2820098
70% 0.2882234  0.57735  0.0938764 0.6242882 0.2891266
80% 0.3985333 0.6963983 0.0977948 0.7452957  0.297865
90% 0.5971916 0.9072721 0.1034496 0.9589969 0.3100805
95% 0.8060192 1.1256475 0.1079804 1.1796377 0.3196282
99% 1.3186969 1.6531813 0.115138 1.7107503 0.3344844
OLSE 2.085 1.988 0.100
50% 0.1576542 0.4364144 0.0901364 0.4814826 0.2787602
60% 0.2142574 0.4993355 0.0928086 0.5457398 0.2850781
70% 0.2900813 0.5824122 0.0959789 0.6304016 0.2923309
80% 0.4015843 0.7027889 0.0999833 0.7527806 0.3012047
90% 0.6024707 0.9160314 0.1057452 0.968904 0.3135607
95% 0.8136649 1.1368474 0.1103476 1.1920212 0.3231824
99% 1.3320705 1.6701568 0.1175811 1.7289473 0.3380863
WLSE 2.068 1.996 0.099
50% 0.1555917 0.4373376 0.0931964 0.4839357 0.2817459
60% 0.2123289 0.5009935 0.0961682 0.5490776 0.2886647
70% 0.2886102 0.5852012 0.0996997 0.635051  0.296591
80% 0.4011945 0.707475 0.1041735 0.7595618 0.3062805
90% 0.60486  0.9246501 0.1106495 0.9799748 0.3197901
95% 0.8197635 1.1501218 0.1158725 1.2080581 0.3303583
99% 1.3494693 1.6964142 0.1242583 1.7585433 0.3469449
CVM 2.103 1982 0.101
50% 0.1593845 0.4358835 0.0878817 0.4798244 0.276499
60% 0.2158841 0.4982483 0.090339 0.5434178 0.2823642
70% 0.2913541 0.5804704 0.0932527 0.6270967 0.2891163
80% 0.4020269 0.6994189 0.096927 0.7478824  0.297392
90% 0.600803  0.909719 0.1021931 0.9608156 0.3089161
95% 0.8092097 1.1270754 0.1063694 1.1802601 0.3178657
99% 1.3192285 1.6508218 0.1128276 1.7072356 0.3315933
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Table 2. main risk indicators under artificial data for n=50.

Method o o) o3 VAR(z) TVAR(z) TV(z) TMV(z)  MELq(2)
MLE 2.038 1.990 0.100
50% 0.1544573 0.4325662 0.0901393 0.4776359 0.2781089
60% 0.2106891 0.4953719 0.0928857 0.5418147 0.2846828
70% 0.2861912 0.578372  0.0961339 0.6264389 0.2921808
80% 0.3974413 0.6987406 0.100224  0.7488526 0.3012993
90% 0.5982302 0.9121481 0.106089 0.9651926 0.3139179
95% 0.8095751 1.1332698 0.1107599 1.1886498 0.3236948
99% 1.3287942 1.6675677 0.1180806 1.726608 0.3387735
OLSE 2.033 1.994 0.100
50% 0.1549363 0.4346197 0.091244  0.4802417 0.2796834
60% 0.2114468 0.4977862 0.0940387 0.5448055 0.2863394
70% 0.2873497 0.581276 0.0973434 0.6299477 0.2939264
80% 0.399226  0.7023741 0.1015041 0.7531261 0.303148
90% 0.6012092 09171128 0.1074703 0.970848  0.3159036
95% 0.8138639 1.1396486 0.1122227 1.1957599 0.3257846
99% 1.3364259 1.6774539 0.1196773 1.7372925 0.341028
WLSE 2.021 1.995 0.100
50% 0.1540865 0.433995 0.0916003 0.4797951 0.2799084
60% 0.2105417 0.4972254 0.0944438 0.5444473 0.2866837
70% 0.286437 0.5808329 0.0978049 0.6297354 0.2943959
80% 0.3983925 0.702151 0.1020356 0.7531688 0.3037585
90% 0.6006834 0.9173793 0.1081023 0.9714305 0.3166959
95% 0.8138002 1.1405135 0.1129372 1.1969821 0.3267133
99% 1.3378274 1.6800049 0.120536 1.7402729 0.3421775
CVM 2040 1991 0.101
50% 0.1556107 0.4343478 0.0902951 0.4794954 0.2787371
60% 0.2120757 0.4972817 0.0929993 0.5437814  0.285206
70% 0.2878291 0.580415 0.0961958 0.6285129 0.2925859
80% 0.3993579 0.7009179 0.1002173 0.7510265  0.30156
90% 0.6004607 0.9144319 0.1059744 0.9674191 0.3139712
95% 0.8119545 1.1355286 0.1105474 1.1908023 0.3235741
99% 1.3310292 1.6693611 0.1176748 1.7281985 0.3383319
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Table 3. main risk indicators under artificial data for n=100.

Method o o) o3 VAR(z) TVAR(z) TV(z) TMV(z)  MELq(2)
MLE 2.030 1.994 0.100
50% 0.1546226 0.4341807 0.0912138 0.4797876 0.2795581
60% 0.2110828 0.4973221 0.0940168 0.5443305 0.2862393
70% 0.2869347 0.5807871 0.097331 0.6294526 0.2938524
80% 0.3987584 0.7018612 0.1015035 0.7526129 0.3031028
90% 0.6006873 0.9165818 0.1074863 0.970325 0.3158946
95% 0.8133187 1.139121 0.1122525 1.1952472 0.3258023
99% 1.3359033 1.6769922 0.1197318 1.7368581 0.3410889
OLSE 2.022 1.997 0.100
50% 0.1546194 0.4353147 0.0920863 0.4813578 0.2806952
60% 0.211246 0.4987212 0.0949394 0.5461909 0.2874752
70% 0.2873642 0.5825572 0.0983117 0.6317131 0.2951931
80% 0.3996373 0.7042001 0.1025562 0.7554782 0.3045627
90% 0.6024798 0.9199893 0.1086418 0.9743101 0.3175095
95% 0.8161566 1.1436897 0.1134907 1.2004351 0.3275332
99% 1.3415038 1.6845062 0.1211078  1.74506  0.3430024
WLSE 2.020 1.996 0.100
50% 0.1548396 0.4351772 0.0916922 0.4810233 0.2803376
60% 0.2114571 0.4984949 0.094503  0.5457464 0.2870378
70% 0.2875285 0.5821916 0.0978235 0.6311033 0.2946631
80% 0.3996791 0.7035954 0.1019992  0.754595 0.3039164
90% 0.6021836 0.9188755 0.1079779 0.9728644 0.3166919
95% 0.8153874 1.1419576 0.1127319 1.1983235 0.3265701
99% 1.3392256 1.6809976 0.1201685 1.7410818 0.341772
CVM 2.025 1.996 0.100
50% 0.1549623 0.4353138 0.0917147 0.4811711 0.2803515
60% 0.2115836 0.4986344 0.0945293 0.545899  0.2870508
70% 0.2876555 0.5823352 0.0978557 0.6312631 0.2946798
80% 0.3998043 0.7037479 0.1020412 0.7547684 0.3039436
90% 0.6023112 0.9190551 0.1080383 0.9730742 0.3167439
95% 0.8155329 1.1421827 0.1128114 1.1985884 0.3266498
99% 1.339488  1.6814022  0.12029  1.7415472 0.3419142

Based on Table 4, the following results can be highlighted:
1. For all actuarial risk assessment approaches:
VAR(Z|1-4=50%) < VAR(Z|1-4=40%) < ... < VAR(zZ|1_g=10%) < VAR(Z|1_4=1%)-
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2. For all actuarial risk assessment approaches:

TVAR(z|1-4=50%) < TVAR(zZ|1-4=40%) < ... < TVAR(Z|1_4=10%) < TVAR(Z|1-4=1%)-

3. For all actuarial risk assessment approaches:

TV (zZli—g=50%) > TV (zli—g=40%) > ... > TV(2li_g=10%) > TV(2l1-4=1%)

4. For all actuarial risk assessment approaches:

TMV(zli—g=s0%) > TMV(z|i—g=40%) > ... > TMV(z|i—g=10%) > TMV(z|i—¢=1%)-

5. For all actuarial risk assessment approaches:

MELG(z|1-g=509%) > MELG(z|i-g=409%) > ... > MELq(z|i_4=10%) > MELqG(z|1-4=1%).

6. Under the MLE technique: The VAR(z) is monotonically increasing starts with
2366.80069|;_4-50% and ends with 6501.06864|,_,-14, the TVAR(z) in monotonically incresing
starts with 3848.80179 and ends with 6970.51489. However the TV(z), the TMV(z) and the
MELQq(z) are monotonically decreasing for all g = (50%, 60%, 70%, 80%, 90%, 99%).

7. Under the OLSE method: The VAR(z) is monotonically increasing starts with 2468.457|,_,-s50%
and ends with 8867.3465],_,-14, the TVAR(z) in monotonically incresing starts with 4397.12888
and ends with 10037.10797. However the TV(z), the TMV(z) and the MELq(z) are monotonically
decreasing for all g = (50%, 60%, 70%, 80%, 90%, 99%).

8. Under the WLSE method: The VAR(z) is monotonically increasing starts with 2328.55844|,_,-50¢
and ends with 8245.58459|,_,-,4, the TVAR(z) in monotonically incresing starts with 4061.32709
and ends with 9414.17032. However the TV(z), the TMV(z) and the MELq(z) are monotonically
decreasing for all g = (50%, 60%, 70%, 80%, 90%, 99%).

9. Under the CVM method: The VAR(z) is monotonically increasing starts with 2465.08067|;_,-s50%
and ends with 8743.84313|,_,-1%, the TVAR(z) in monotonically incresing starts with 4325.0162
and ends with 9947.3567. However the TV(z), the TMV(z) and the MEL(q(z) are monotonically
decreasing for all g = (50%, 60%, 70%, 80%, 90%, 99%).
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Table 4. main risk indicators under insurance claims data

Method VAR(z) TVAR(z) TV(z) TMV(z) MELq(z)
MLE
50% 2366.80069 3848.80179 1201335.462 604516.53275 1482.001096
60% 2827.16262  4162.7392 1004479.704 506402.59109 1335.576577
T70% 3345.63847 4523.50196 811251.6110 410149.30745 1177.863488
80% 3960.61743 4964.06764 618901.2187 314414.67701 1003.450212
90% 4787.12604 5582.14707 417447.5811 21430593763  795.021027
95% 5425.62884  6082.04447 302440.8371 157302.46304  656.415627
99% 6501.06864 6970.51489 170469.0719 92205.05086 469.446252
OLSE
50% 2468.457 4397.12888  2709322.0385 1359058.14812 1928.67188
60% 298991542 4815.57935 2505495.1618 1257563.16025 1825.66393
70% 3605.17011 5324.97984  2292224.1197 1151437.03971 1719.80974
80% 4394.59163 5997.60414  2055268.7449 1033631.97656  1603.0125
90% 5599.41252 7054.59324  1757463.3165  885786.25148 1455.18072
95% 6677.86559 8023.63854  1542231.5599  779139.41849 1345.77296
99% 8867.3465 10037.10797 1208939.1294  614506.67266  1169.76147
WLSE
50% 2328.55844 4061.32709  2300413.8217 1154268.23794 1732.76865
60% 2786.71964 4438.56758  2159601.8532 1084239.49419 1651.84794
70% 3330.38852 4901.68738  2013367.4521 1011585.41341 1571.29886
80% 4035.648 5520.42809  1850954.7508 930997.8035 1484.78009
90% 5132.77458  6510.2026 1644322.0724 828671.2388 1377.42803
95% 6138.02961 7436.35862  1490625.9397  752749.32848  1298.32901
99% 8245.58459 9414.17032 1241308.0055  630068.17307 1168.58573
CVM
50% 2465.08067  4325.0162  2596755.08221 1302702.5573  1859.93556
60% 2961.49325  4729.3575  2423361.55172 1216410.1334  1767.86428
70% 3548.94671  5224.0453  2242731.44223 1126589.7664  1675.09853
80% 4307.5111 5881.8935  2041989.96963 1026876.8783 1574.3824
90% 5478.62611  6926.9569  1787696.04351 900774.97867 1448.33081
95% 6541.97247  7897.1920  1600271.59533  808032.98965 1355.21951
99% 8743.84313  9947.3567 1302219.73987 661057.22665 1203.51358
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5. Validation

5.1. Maximum likelihood estimation for censored data

In reliability studies and survival analysis, data are often censored. If zi,z5,.....,2, 1S a censored
sample from the BXGZC distribution, each observation can be written as z; = min(z;, C;) fori = 1,..,n
where z; are failure times and C; censoring times. The likelihood function is

1) =TI, fy(z)*S v(z)' ™, 6 = lx<c;

The right censoring is assumed to be non informative, so the log-likelihood function can be written as:

L(®) = > ilog fy(z) + ) (1 - 6)log Sy(z).
i=1 i=1

Let:
Vo, (2) = exp{[l —exp(™)]},
—oy -2
02, = [1-Yo @)= -1]",
w;=1-e¢ 0‘_’2”3(),
and
$i=1-V5(2).
Then,

n

L©) = >

i=1

+> (1 =6)In(l - @)
i=1

InQ2010303) = (03 = Dlnzi +2° + Y, (2) = 0,2, (2)
+(202 — DIn(g) = 31In(1 = ¢7*) = (1 — o) In(@)

The maximum likelihood estimators o; ,07,, and o3 of the unknown parameters o1, 0, and o3 are
derived from the nonlinear following score equations:

_+ln(wl] 2(1 5)[ mw‘] -0,

n

oL
5o = 2.0

i=1

n D—Z
oL _ 5 02 (¢i ) ~0
h o3¢ 201-0)e P Inggne %@ | T
0o — @; % In(p;) (1-0)g; 2 In(g))e” 727
= oo 3
1=e; @i(g?-1)
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l

& o1¢: 7% In(g;)e
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and

o +1n(z) + 27 In(z)

1 c 3
20 3ln(z,)ef vﬁ(m C 2o @) Yoy (2)

oL - 5 (1) o g
— = i _o3 30z @) ¢ Ve, (2)
do3 pr —z7 In(z)e™" + ——— e =
0_3 (7' (L) _
_ 21-a)oaz In(z)e Voy (e 00 ®;
(¢, 2-1) @
—or—1 __o1—-1

—2
-2 Z (1-6) 01022 ln(zl)e i VU3 (z) e 9 US(Z)(pi @
= (77 - ) (1 -a™)

op-1

The explicit form of o7y , 07, and o3 cannot be obtained, so we use numerical methods.

5.2. Test statistic for right censored data

Let 21,22, ....., 2, be n 1.i.d. random variables grouped into r classes /;. To assess the adequacy of a
parametric model F, where

Hy: P(zi<z|Hy))=Fyz;0),z>0, ©=(0,,..,0,)  c®cR’

when data are right censored and the parameter vector ® is unknown, Bagdonavicius and Nikulin
(2011) proposed a test statistic 77,  based on the vector

1 .
Z= $(Uj(z)—ej(z)), j=L12,..,r, withr > s.

This one represents the differences between observed and expected numbers of failures (U (z) and
e;j(z)) to fall into these grouping intervals I; = (p;_1,p;] with py = 0, p, = 7, where 7 is a finite time.
The authors considered p; as random data functions such as the r intervals chosen have equal expected

numbers of failures e; (z). The test statistic Tf 1.4 18 defined by

—~ 4 1
T2, ,,=2'S7 = ; Toli@-e @)+ 0

where Z = (Z,, ..., Z)" and T isa generalized inverse of the covariance matrix S and

0 WG W

A; = U;@)/n,

Ui(x) = Z i

iZZiGIj
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W o= (W,..,W),
G = rgll’]sxs’

)
- = = = i
gr = Iy —ZCUCZ'JAJ ,

Cy = = > 65 nh(z, 0,

i:z;€l;

_ ‘Z 6lnh(z,,®)c’)lnh(zl,®)
o, 00,

Wl = Zaﬂ?‘\]—lzj, l,l, = 1,...., S,

where © is the maximum likelihood estimator of ® on initial non-grouped data. Under the null
hypothesis Hj , the limit distribution of the statistic Tzr .o 18 @ chi-square with r = rank(X) degrees of
freedom. The description and applications of modified chi- square tests are discussed in Voinov et al.
(2013). The interval limits p; for grouping data into j classes /; are considered as data functions and
defined by

9

; _H_I[Ej—zi;}H(z,,@)) .
bz =

0], 0, = max T
n—i+l pr .7

such as the expected failure times e; (z) to fall into these intervals are e;(z) = ET for any j, with
E. =" H (zi, (:)). The distribution of this test statistic Tir_m is chi-square (see Voinov et al., 2013).

5.3. Criteria test for BXGZC

For testing the null hypothesis Hj that data belong to the BXGZC model, we construct a modified

chi-squared type goodness-of-fit test based on the statistic Tfr 1o+ Suppose that 7 is a finite time, and

observed data are grouped into r > s sub-intervals /; = (p -1, ]] of [0, 7]. The limit intervals p; are
considered as random variables such that the expected numbers of failures in each interval /; are the
same, so the expected numbers of failures ¢; () are obtained as

E;(2) = % ; ln(l - {1 —exp [—Oj; (z)]}m v), j=1,.r—1

The components of the estimated matrix W are derived from the estimated matrix C which is given by:

A 1 © 1 In @;
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Therefore, the quadratic form of the test statistic can be obtained easily:
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=
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6. Validation via right censored data

6.1. Right censored lymphoma data

In this sebsection, we analyze the lymphoma data set consisting of times (in months) from diagnosis
to death for 31 individuals with advanced non Hodgkin’s lymphoma clinical symptoms, by using our
model. This data has been analyzed by Gijbels and Gurler [13] by using exponential change point
model. Among these 31 observations 11 of the times are censored, because the patients were alive at
the last time of follow-up, where the data are given as: 2.5, 4.1, 4.6, 6.4, 6.7, 7.4, 7.6, 7.7, 7.8, 8.8,
13.3, 13.4, 18.3, 19.7, 21.9, 24.7, 27.5, 29.7, 30.1%*, 32.9, 33.5, 35.4*, 37.7*, 40.9%, 42.6*, 45.4%,
48.5*%, 48.9*%, 60.4*%, 64.4*%, 66.4*%. where * denotes a censored observation. We use the test statistic
provided above to verify if these data are modeled by BXGZC distribution, and to that end,we first
calculate the maximum likelihood estimators of the unknown parameters

O = (0,05, 03)" = (1.6325,1.9532,1.0236)" .

Data are grouped into r = 5 intervals /;. We give the necessary calculus in the following Table 5.

Table 5' Values Ofﬁj’ ej (Z) ’ U] (Z) ’ é]j’ Zis CA‘Zj? Zi» é3j7 Zi

pi- | 712 | 146 | 30 | 415 | 664
Ui | 5 7 6 6 7
Ciz | 0.9346 | 0.7367 | 0.8162 | 0.9934 | 1.0342
Cajnzi | 1.3426 | 12034 | 1.2963 | 1.4436 | 1.5133
Csjrz | 0.8346 | 0.6746 | 0.7342 | 0.9347 | 1.0263
e;(2) | 2862 | 2.862 | 2.862 | 2.862 | 2.862
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Then we obtain the value of the test statistic T';,_, ,: T3, 4405 = X~ + Q = 7.6329. For significance
level a = 0.05, the critical value 3 = 11.0705 is higher than the value of T, , = 7.6329, so we can

say that the proposed BXGZC model fit these data. Decision: for the right censored lymphoma data,
T321’ 4005 = 7.6329 < )(505(6) = 11.0705, therefore, we can accept the null hypothesis that the data of

times to infection of kidney dialysis patients follows the BXGZC distribution.

6.2. Right censored bone marrow transplant data

The second data set , we consider the bone marrow transplant data (Klein and Moeschberger [17])
for patients suffering from acute lymphoblastic leukemia. This data consist of time (in days) to death
or on study time after a allogenic bone marrow transplant for 38 patients. The bone marrow trans-
plant is a standard treatment for acute leukemia. Recovery following bone marrow transplantation is a
complex process. Immediately following transplantation, patients have depressed platelet counts and
have higher hazard rate for the development of infections but as the time passes the hazard decreases.
Data are given as: 1, 86, 107, 110, 122, 156, 162, 172, 243, 262, 262, 269, 276, 371, 417, 418, 466,
487, 526, 716, 781, 1111, 1182, 1199, 1279, 1377, 1433, 1496. Censored observations: 350, 1330,
194,226, 1167, 1462, 1602, 2081, 530, 996, 1330. We use the test statistic provided above to verify
if these data are modeled by the BXGZC distribution, and to that end, we first calculate the maximum
likelihood estimators of the unknown parameters

(o1,02,03)" = (1.0342,0.9238,1.1342)" .
Data are grouped into r = 4 intervals /;. We give the necessary calculus in the following Table 6.

Table 6. values of pj, ¢;(2),U; (2),C1j» 2, Caj» 21> C3» Zi

P | 197 | 402 | 1125 | 2081
U@ | 9 8 10 11
Cinz | 0.9734 [ 0.8376 | 0.9436 | 0.9696
Cy5nzi | 0.9816 | 0.8933 | 0.9212 | 0.9196
Csjnz | 07347 [ 0.6198 | 0.7417 | 0.7538
;) | 3.6592 | 3.6592 | 3.6592 | 3.6592

Then we obtain the value of the test statistic T, ,: T55500s = X° + Q = 6.9326. For significance

level @ = 0.05, the critical value )(i = 9,4877 is higher than the value of Tir_m = 6.9326, so we can
say that the proposed model BXGZC fit these data. Decision: For the right censored bone marrow
transplant data, T32&3’0.05 =6.932 < )(8‘05(4) = 9.4877, therefore, we can accept the null hypothesis that

the bone marrow transplant data follows the BXGZC distribution.

6.3. Right censored reliability data

For the third data set, we apply the results obtained from this study to real data established from
reliability (Crowder et al.  [8]). In an experiment to obtain information on the strength of a cer-
tain type of braided cord after the weather, the forces of 48 pieces of cord having resisted for a
determined time were studied. The right censored force values observed are given below: 26.8",
29.6%, 33.4*, 357, 36.3, 407, 41.7, 41.9%, 52.3,52.3,52.4,52.6,53.6, 42.5*, 57.3,52.7, 53.1, 50.8, 51.9,
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52.1, 53.6, 53.9,53.9,54.1,54.6, 54.8,54.8,55.1,55.4, 55.9, 56, 56.1, 56.5, 57.7, 57.8, 58.1, 58.9,
43.9,49.9,50.1,56.9,57.1,57.1,59, 59.1, 59.6, 60.4, 60.7. We use the test statistic provided above to
verify if these data are modeled by the BXGZC distribution, and to that end, we first calculate the
maximum likelihood estimators of the unknown parameters

(01,02,03)" =(1.326,2.061,1.4523)" .
Data are grouped into » = 5 intervals /;. We give the necessary calculus in Table 7.

Table 7. values of pj, ¢;(2), U, (2), C1j, 2, Caj» 21> Caj» 2

pi. | 4230 | 52.02 | 5376 | 567 | 60.7
Ui | 8 6 9 12 13
Cijnzi | 1.2346 | 1.3476 | 1.2019 | 0.9834 | 0.7934
Cajnzi | 13637 | 12133 | 1.3737 | 1.1136 | 0.9739
Cs;nz: | 0.8534 | 0.9312 | 0.8994 | 0.7647 | 0.6345
e;(z) | 45316 | 4.5316 | 4.5316 | 4.5316 | 45316

Then we obtain the value of the test statistic T, ,: T3, ,00s = X° + Q = 9.5326. For significance

level a = 0.05, the critical value 5 = 11.0705 is higher than the value of 7? _, , = 9.5326, so we can
say that the proposed model BXGZC fit these data. Decision: For the right censored reliability data,
T321’4’0.05 = 9.5326 < x3,5(5) = 11.0705, therefore, we can accept the null hypothesis that thestrength

of certain type of braided cord data follows the BXGZC distribution.

6.4. Right censored survival data

For the fourth data set, Woolson [9] has reported survival data on 26 psychiatric inpatients
admitted to the university of Iowa hospitals during the years 1935-1948. This sample is part
of a larger study of psychiatric Inpatients discussed by Woolson [9]. Data for each patient
consists of age at rst admission to the hospital, sex, number of years of follow-up (years from
admission to death or censoring) and patient status at the followup time. The data is given
1,1,2,11,14,22,22, 24,25,26,28,30,30%,31%,31%,32,33%,33",34*, 35,35",35%,36%,37",39",40.
(* indicates the censorship). We use the test statistic provided above to verify if these data are modeled
by the BXGZC distribution, and to that end, we first calculate the maximum likelihood estimators of

the unknown parameters
(0r1,02,03)" =(0.9532,1.0315,0.8239)" .

Data are grouped into r = 4 intervals /;. We give the necessary calculus in Table 8.

Table 8. values of pj, ¢;(2),U; (2), C1j, 2, Caj 2i> Ca» Zi

P | 235 | 316 | 348 | 40
Ui | 7 8 4 7

Cinz | 0.9361 | 0.9712 | 0.9396 | 0.7346
Cajnzi | 0.8326 | 0.8263 | 0.8575 | 0.8633
Csjnzi | 1.0134 | 1.0492 | 1.1346 | 1.0034
¢;(z) | 2.0314 | 2.0314 | 2.0314 | 2.0314
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Then we obtain the value of the test statistic T';,_, ,: T3 505 = X + Q = 7.2301. For significance
level @ = 0.05, the critical value x; = 9.4877 is higher than the value of 7, _, , = 7.2301, so we can

say that the proposed model BXGZC fit these data. Decision: For the right censored survival data,
T226’3’0.05 =7.2301 < X(2),05(4) = 9.4877, therefore, we can accept the null hypothesis that thestrength of
certain type of braided cord data follows the BXGZC distribution.

7. Conclusion

In this paper, we introduced and studied a novel probability distribution for risk analysis and cen-
sored validity. Several characterizations are provided. Indicators of financial risk include value-at-risk,
tail-value-at-risk, tail variance, tail Mean-Variance, and mean excess loss function. These indica-
tors are considered by the Cramer-von Mises method, ordi-nary least squares, weighted least squares,
and maximum likelihood estimation. These four techniques were used in a sim-ulation study and an
application to insurance payment claims data for the actuarial evaluation. The well-known Niku-lin-
Rao-Robson statistics are taken into consideration for distributional validation under the whole set of
data. Four com-plete real data sets and a simulation study are used to evaluate the Nikulin-Rao-Robson
test statistic. An updated version of the Nikulin-Rao-Robson statistics are taken into consideration for
censored distributional validation. Four censored real data sets and a thorough simulation analysis are
used to evaluate the novel Nikulin-Rao-Robson test statistic. Under the artificial analysis, we have the
following results:

1. VAR(2)wLs <VAR(2)cvm <VAR(Zme < VAR(2)oLsg for most g.

2. TVAR(2)wrs <TVAR(z)cym <TVAR(2)me <TVAR(2)oLsg for most g.
Based on Table 4, the following results can be highlighted:

3. For all actuarial risk assessment approaches:

VAR(Z|1-4=50%) < ... < VAR(zZ|1-¢=1%)-
4. For all actuarial risk assessment approaches:
TVAR(Z|1-g=50%) < ... < TVAR(Z|1-4=1%)
5. For all actuarial risk assessment approaches:
TV(zli-4=50%) > - > TV (2l1_g=1%)-
6. For all actuarial risk assessment approaches:
TMV(z|i—g=50%) > ... > TMV(2|i_g=1%)-
7. For all actuarial risk assessment approaches:
MELq(zZ|1-4=509%) > ... > MELq(z|1—4=1%)

8. Under the MLE technique: The VAR(z) is monotonically increasing starts with
2366.80069|;_4-50% and ends with 6501.06864|,_,-14, the TVAR(z) in monotonically incresing
starts with 3848.80179 and ends with 6970.51489. It is worth noting that the TV(z), the TMV(z)
and the MELq(z) are monotonically decreasing for all g.
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9. Under the OLSE method: The VAR(z) is monotonically increasing starts with 2468.457|;_,-s0%
and ends with 8867.3465|,_,4-14, the TVAR(z) in monotonically incresing starts with 4397.12888
and ends with 10037.10797. However the TV(z), the TMV(z) and the MEL(q(z) are monotonically
decreasing for all g.

10. Under the WLSE method: The VAR(z) is monotonically increasing starts with 2328.55844(,_,-50%
and ends with 8245.58459|,_,-,4, the TVAR(z) in monotonically incresing starts with 4061.32709
and ends with 9414.17032. It is worth noting that the TV(z), the TMV(z) and the MELq(z) are
monotonically decreasing for all g.

11. Under the CVM method: The VAR(z) is monotonically increasing starts with 2465.08067;_,-50%
and ends with 8743.84313|,_,-14, the TVAR(z) in monotonically incresing starts with 4325.0162
and ends with 9947.3567. However the TV(z), the TMV(z) and the MEL(q(z) are monotonically
decreasing for all g.

In the context of the distributional validity and statistical hypothesis tests for the censored data, a
modified NRR statistic, which is based on the censored maximum likelihood estimators on initial non-
grouped data, is of considered under the BXGZC model. The modified NRR statistic is assessed under
four right censored data sets and the following results can be highlighted:

e For the right censored lymphoma data, T32L 4005 = 71.6329 < Xi05(0) = 11.0705, therefore, we can
accept the null hypothesis that the data of times to infection of kidney dialysis patients follows

the BXGZC distribution.

e For the right censored bone marrow transplant data, T328’3’0.05 = 6932 < X(2),05(4) = 9.4877,
therefore, we can accept the null hypothesis that the bone marrow transplant data follows the
BXGZC distribution.

e For the right censored reliability data, T321’4’0.05 = 9.5326 < )(3.05(5) = 11.0705, therefore, we
can accept the null hypothesis that thestrength of certain type of braided cord data follows the
BXGZC distribution.

e For the right censored survival data, T226’3’0.05 = 7.2301 < )((2).05(4) = 9.4877, therefore, we can

accept the null hypothesis that thestrength of certain type of braided cord data follows the BXGZC
distribution.

In the context of the distributional validity and statistical hypothesis testing for the censored data,
a modified NIRR statistic is of consideration under the BXGZC model. This statistic is based on the
censored maximum likelihood estimators on the original non-grouped data, and it is of interest because
it is derived from the data. When evaluated using four different right-censored data sets, the modified
NIRR statistic yields the following results, which can be highlighted. As a future potential work, we
may consider other Chen extensions for making a useful compression. We may also consider other
distractions for validations and risk analysis. Other modified test statistics could be considered for
validation. Develop a new test for the right censored validation. Use some new risk indicators for risk
analysis. Develop some new risk indicators for the risk analysis Other related papers can be used for
some potential works as presented in Abonongo et al. [1]. For other useful works see Shaheed [28],
Mohammad [20], Mohammad [21], Shaheed [29] and Shaheed [30]. Other future works could be
developed based on Alzeley et al. [5], Tashkandy et al. [32], Jameel et al. [15], Salih and Abdullah
[25], Salih and Hmood [26] and Salih and Hmood [27], and Alotaibil et al. [4].
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