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Abstract: To address the dual concerns of environmental degradation 

and occupational health risks associated with emissions from traditional 

paving methods, this study investigates the use of Fiber-Reinforced 

Rubberized Concrete (FRRC) as a sustainable alternative for concrete 

construction. A total of 238 concrete specimens incorporating recycled 

rubber and different types of fibers were tested to develop eco-friendly 

and durable concrete materials. Key performance metrics included 

ultrasonic pulse velocity (UPV) and abrasion resistance, with a focus on 

acoustic damping, long-term durability, and maintenance efficiency. The 

influence of repeated thermal cycling was also evaluated to replicate real-

world service conditions. The results showed that the incorporation of 

rubber and fibers significantly improved both UPV and abrasion 

resistance. Furthermore, FRRC demonstrated better performance 

retention after thermal exposure compared to conventional concrete, 

highlighting its potential for use in green infrastructure. This approach 

promotes the recycling of waste materials and contributes to safer 

working environments by reducing harmful emissions on construction 

sites.   
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1. Introduction  

 

The increasing emphasis on environmental sustainability and quality of life has driven the 

widespread interest in the development and implementation of low-noise, or “quiet,” 

pavement concrete mix technologies. As highlighted by Donavan [1], such pavement 

concrete mixes play a vital role in mitigating noise pollution, particularly in urban and 

transportation-heavy regions. Tire–pavement concrete mix interaction noise is governed by 

multiple parameters, including material composition, pavement concrete mix thickness, and 

surface friction characteristics, as discussed by Biligiri et al. [1, 2]. Concurrently, the global 

community faces escalating environmental challenges arising from emissions produced 
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throughout the pavement concrete mix lifecycle, with significant contributions from 

vehicular traffic and maintenance operations. Mukherjee and Cass   [3], emphasize that 

these emissions are key contributors to environmental degradation and pose substantial risks 

to public health. Accordingly, the development of strategies aimed at reducing pavement 

concrete mix-related emissions, particularly during the maintenance phase, is critical. Ma et 

al. [4] argue that such mitigation strategies are essential to address the broader 

environmental impact of transportation infrastructure and to preserve ecological stability.  

In the context of rigid pavement concrete mixes, the durability and long-term performance 

of concrete surfaces are largely influenced by their mechanical properties and resistance to 

surface abrasion, as noted by Kewalramani et al. and Mohamed et al.  [5, 6]. The evolution 

of aircraft technology has introduced unprecedented mechanical demands on airport 

pavement concrete mixes, necessitating advanced design solutions and materials that can 

withstand higher loads, dynamic stresses, and surface wear. Fei et al. [7-11] underscore the 

need for pavement concrete mix systems to evolve in response to these increasing demands. 

Additionally, thermal loads from aircraft systems—specifically exhaust gases from auxiliary 

power units (APUs) and vectored thrust mechanisms—impose significant stress on 

pavement concrete mix surfaces. Benazzouk et al. [12-15] point out that these thermal 

exposures can compromise pavement concrete mix integrity unless properly addressed 

through thermally resistant materials and innovative design practices.  

From an environmental perspective, when excluding embodied emissions associated with 

construction materials such as cement and steel, concrete pavement concrete mixes have 

been shown to produce lower emissions during the construction phase than flexible 

pavement concrete mix systems (Kumar et al.  [16]). As performance expectations for 

airfield pavement concrete mixes continue to rise, there is a growing necessity to develop 

advanced concrete mixtures that not only meet structural requirements but also align with 

sustainability objectives. Jin et al. [17-19] highlight the importance of enhancing 

mechanical performance while minimizing environmental impact. Rubberized concrete 

(RC) has emerged as a promising material in this regard, offering notable environmental and 

mechanical benefits. As reported by Carroll et al. [20-28].  RC addresses global waste 

management concerns—particularly regarding end-of-life tires—while contributing to 

improved impact resistance and energy absorption. Its use in airport pavement concrete mix 

applications offers added advantages in terms of functional performance (Liu et al.  [29]).  

Despite these benefits, RC suffers from a well-documented reduction in compressive 

strength, which limits its use in load-bearing applications (Thomas et al. [30, 31]) suggest 

that fiber reinforcement, particularly using a hybrid approach, can substantially improve 

structural performance. Furthermore, the combined use of rubber and fibers has 

demonstrated potential in reducing pavement concrete mix-related noise emissions, thereby 

contributing to both environmental and societal well-being (Turatsinze et al. [34, 35]).  

However, research indicates that single-fiber reinforcement often results in only limited 

improvements across a narrow spectrum of concrete properties. Abaza and Hussein  [36] 

argue that a hybrid fiber approach—incorporating fibers of varying types and functions—
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may offer a more comprehensive enhancement in performance, addressing both mechanical 

deficiencies and acoustic demands. In light of these considerations, this study investigates 

the potential of hybrid fiber-reinforced rubberized concrete as a sustainable, high-

performance material for use in low-noise, low-emission airport pavement concrete mix 

systems. 

Hybrid fiber-reinforced concrete has emerged as a promising solution in mitigating spalling 

damage in airfield pavement concrete mixes, as highlighted by Muhammad Hossain et al. 

This research underscores the material's enhanced mechanical and thermal properties, which 

are pivotal in the development of low-noise and low-emission paving systems [54]. At 

Bologna Airport, studies have demonstrated the efficacy of rubberized concrete in 

efficiently distributing loads, thereby reducing stress under traffic conditions, a critical 

attribute for the sustainable development of airport pavements —a critical attribute for the 

sustainable development of concrete mixes aimed at minimizing noise and emissions [55]. 

The lightweight and noise-isolating characteristics of rubberized concrete make it suitable 

for diverse applications in airport pavement concrete mixes, promoting sustainable 

construction practices [56]. Additionally, high-performance concrete incorporating rubber 

aggregates shows promise in enhancing impact resistance and durability on airport runways, 

essential qualities for achieving low-noise and low-emission paving systems [57]. 

Current advancements in concrete materials for airport pavement concrete mixes continue to 

evolve, driven by the imperative to enhance performance, durability, and environmental 

adaptability, which are crucial for future low-noise, low-emission paving systems [58]. The 

development of such systems using hybrid fiber-reinforced rubberized concrete involves 

integrating its enhanced freeze-thaw resistance, crack propagation inhibition, acoustic 

insulation, and thermal regulation capabilities into specialized scenarios like airport 

pavement concrete mixes [59]. Hybrid fiber-reinforced concrete, through the reinforcement 

of mechanical and thermal properties, effectively mitigates spalling damage caused by 

aircraft fluids, thereby increasing flexural strength and thermal conductivity, which are 

critical for airfield pavement concrete mixes [61]. Moreover, the environmental of 

rubberized concrete, including its low density and suitability for noise isolation and thermal 

insulation, underscore its sustainability in airport infrastructure [62]. Incorporating rubber 

aggregates further enhances the impact and frost resistance of concrete, ensuring durability 

under harsh environmental conditions typically encountered on airport runways [63]. 

In summary, hybrid fiber-reinforced rubberized concrete amalgamates the advantageous 

properties of both materials, offering improved mechanical properties, durability, and 

environmental adaptability.  This study explores the synergistic potential of hybrid fiber-

reinforced rubberized concrete in achieving sustainable solutions for airfield pavement 

concrete mixes. By enhancing mechanical strength, reducing maintenance-related emissions 

and costs, and improving acoustic performance, hybrid RC emerges as a transformative 

material in the pursuit of durable and environmentally responsible airport pavement 

concrete mixes. 
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2. Experimental Details  

 

2.1.    Materials 

The experimental program provides a comprehensive assessment of materials, testing procedures, 

specimen preparation, and instrumentation. The design of both plain concrete (PC) and rubberized 

concrete (RC) mixes was adapted from the authors' previous research framework [37, 64, 65]. 

Figure 1 illustrates the constituent materials utilized in the study.  

 

 

(a) (b) (c) 

Fig. 1: The selected materials are (a) hooked-end steel fibers, (b) glass fibers, and (c) 

recycled crumb rubber [64]. 

 

All concrete mixtures were proportioned to achieve targeted mechanical properties suitable for rigid 

pavement concrete mix applications. Specifically, the mixtures were designed to achieve a 28-day 

flexural strength ranging from 4.14 to 5.17 MPa and a compressive strength of approximately  30.3 

MPa. These values are consistent with the specifications outlined in FAA 150/5320-6F, FAA Item 

P-501, and the Egyptian Civil Aviation Authority (ECAA)-EAC No. 139-11 standards [38-42]. 

Seventeen rubberized concrete mix variations, incorporating steel fibers (SF), glass fibers (GF), or 

combinations of both, were produced to investigate the influence of fiber type and dosage. The 

compositions and fiber dosages for all primary mix designs evaluated in this study are presented in 

Table 1.   

  
Table 1: Selected contents and combinations of rubber, steel fibers, and glass fibers incorporated into PC [64].  

Mix type Mix code 
SF 

(kg/m3) 
Vf % 

GF 

(kg/m3) 

Vf 

% 

Rubber 

(kg/m3) 

Rubber 

% 

Plain concrete PC 0 0 0 0 0 0 

Reinforcement concrete RC 0 0 0 0 24.85 10 

Steel fiber 10 S10 10 0.13 0 0 24.85 10 

Steel fiber 20 S20 20 0.26 0 0 24.85 10 

Steel fiber 30 S30 30 0.38 0 0 24.85 10 

Glass fiber0.5 G0.5 0 0 0.5 0.02 24.85 10 

Glass fiber1.0 G1 0 0 1 0.04 24.85 10 

Glass fiber1.5 G1.5 0 0 1.5 0.06 24.85 10 

Steel 10 & Glass fiber 0.5 S10G0.5 10 0.13 0.5 0.02 24.85 10 

Steel 10 & Glass fiber 1.0 S10G1 10 0.13 1 0.04 24.85 10 
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Mix type Mix code 
SF 

(kg/m3) 
Vf % 

GF 

(kg/m3) 

Vf 

% 

Rubber 

(kg/m3) 

Rubber 

% 

Steel 10 & Glass fiber 1.5 S10G1.5 10 0.13 1.5 0.06 24.85 10 

Steel 20 & Glass fiber 0.5 S20G0.5 20 0.26 0.5 0.02 24.85 10 

Steel 20 & Glass fiber 1.0 S20G1 20 0.26 1 0.04 24.85 10 

Steel 20 & Glass fiber 1.5 S20G1.5 20 0.26 1.5 0.06 24.85 10 

Steel 30 & Glass fiber 0.5 S30G0.5 30 0.38 0.5 0.02 24.85 10 

Steel 30 & Glass fiber 1.0 S30G1 30 0.38 1 0.04 24.85 10 

Steel 30 & Glass fiber 1.5 S30G1.5 30 0.38 1.5 0.06 24.85 10 

 

 

2.2 Experimental Tests 

 

2.2.1 Ultrasonic Pulse Velocity (UPV) test  

The ultrasonic pulse velocity (UPV) test was conducted on three concrete cubes with side 

dimensions of 100 mm, following ECP 203 and ASTM C597. The test used direct transmission to 

determine pulse velocity and assess wave absorption characteristics. The acoustic properties of the 

concrete mixes were evaluated using this technique, consistent with methodologies reported by 

Biligiri and Way [43, 44]. The pulse transmission velocity (V) in the concrete was calculated using 

Equation (1): 

V=L/T                                                                            (1) 

Where: 

• L is the transmission distance (m), 

• T is the transmission time through the concrete (s), and 

• V is the resulting pulse transmission velocity (m/s), as noted by Bogas [45].  

The acoustic impedance (Z) of the concrete was subsequently determined using the estimated UPV 

and mix density (ρ), as expressed in Equation (2): 

 

Z = ρ∗v                                                                        (2) 

where: 

• Z is the impedance (kg/m²·s), 

• ρ is the density of the concrete mix (kg/m³), 

• V is the ultrasonic pulse velocity (m/s). 

To further evaluate acoustic damping behavior, a damping index (DAMP) was computed as an 

indicator of the energy dissipation characteristics of the concrete mix material. The DAMP 

percentage was derived using impedance values and is expressed in Equation (3), as described by 

Biligiri and Way [43]: 

 

DAMP % = 100*(100/Z) 0.4                                                                              (3) 

 

A DAMP value near 1% indicates minimal acoustic damping, whereas values approaching 100% 

signify high damping capacity. 
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Fig. 2: Ultrasonic pulse velocity for UPV test. 

 

2.2.2.Abrasion Resistance Test 

Abrasion resistance was evaluated using four concrete cubes with dimensions of 70 mm per side, 

per the procedures defined in TS 699 [46] and ECP269 [47]. The specimens were oven-dried and 

weighed in air and water to determine their densities. Abrasion resistance was quantified by 

measuring the depth of the abraded surface, following the guidelines outlined in ECP 269. Figure 3 

illustrates the test setup and methodology used to assess the abrasion performance of the concrete 

mix cubes. 

 

 
Fig. 3: Machine used for abrasion test. 

 

2.2.3. Thermal Cycles Test Protocol:  

A controlled thermal cycling protocol was developed to simulate the thermal stresses experienced 

by airfield concrete mixes exposed to exhaust from auxiliary power units (APUs). The protocol 

involved subjecting specimens to a total of six heating and cooling cycles. Research has shown that 

initial exposure to high temperatures, up to 300°C, can lead to significant strength loss in concrete 

specimens.[13, 48]. In this study, specimens were exposed to hot air in a laboratory oven for 30 

minutes per cycle, followed by a 2-hour natural cooling period at ambient room temperature. To 

ensure uniform thermal loading, all surfaces of each specimen were uniformly exposed to the 

heating environment. The specimens underwent a total of six thermal cycles, with the first three 

cycles reaching a maximum temperature of 150°C and the subsequent three cycles reaching a 

maximum of 205°C. This temperature progression was consistent with real-world thermal gradients 

experienced in concrete mixes[13, 14]. The temperature increase was controlled at a heating rate of 

10–20 °C per minute. The target temperatures of 150°C and 205°C were reached within 

approximately 7 and 10 minutes, respectively. This test protocol was designed to replicate realistic 

and progressive thermal exposure conditions and evaluate the resulting mechanical and durability 

performance of the concrete specimens. 
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3. Results And Discussion  

 

3.1. Ultrasonic Pulse Velocity (UPV) Results: 

Figure 4 illustrates that the acoustic damping index (DAMP) of rubberized concrete (RC) was 

13.67%, showing only a marginal increase compared to plain concrete (PC), which recorded a 

DAMP of 13.39%. Among the RC mixes reinforced with hybrid fibers, the S30G1.5 mix 

demonstrated the highest DAMP value at 14.39%, indicating superior acoustic performance. RC 

mixes containing hybrid fibers consistently exhibited the most favorable noise reduction 

characteristics both before and after thermal cycling, positioning them as the quietest concrete mix 

materials under investigation. Figure 5 presents the density values for all mix types. While DAMP 

increased from 13.39% to 14.39% under the tested conditions, we treat this as an early, material-

level indicator rather than a direct predictor of environmental noise reduction. 

Table 2 reveals that including rubber in PC resulted in a 2.94% reduction in UPV. This reduction is 

attributed to the rubber particles' tendency to attenuate the transmission of ultrasonic waves, 

lowering wave velocity, and contributing to decreased concrete mix-generated noise. As indicated 

by Hesami et al. [49]. The presence of internal cavities in concrete can influence wave transmission 

and the volume of traffic-related noise, thus impacting the DAMP index. 

 

 
Fig. 4: Average DAMP (%) for the different concrete mix mixes. 

 
Fig. 5: Density results for all mixes. 
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Table 2: Loss in thickness and UPV test results 

Mix code 
loss in thickness (mm)               UPV 

% ch PC* % ch RC** % ch PC % ch RC 

PC 0.00 6.19 0.00 2.86 

RC -6.59 0.00 -2.94 0.00 

S10 -26.14 -18.34 -3.00 -0.06 

S20 -44.97 -36.01 -5.88 -2.86 

S30 -70.24 -59.71 -17.65 -14.29 

G0.5 -9.25 -2.49 -5.88 -2.86 

G1 -11.81 -4.90 -8.82 -5.71 

G1.5 -20.01 -12.59 -11.76 -8.57 

S10G0.5 -29.54 -21.53 -3.53 -0.57 

S10G1 -33.12 -24.89 -5.88 -2.86 

S10G1.5 -40.87 -32.15 -8.24 -5.14 

S20G0.5 -49.43 -40.18 -7.18 -4.11 

S20G1 -54.29 -44.75 -8.59 -5.49 

S20G1.5 -64.43 -54.26 -8.82 -5.71 

S30G0.5 -72.99 -62.29 -19.65 -16.23 

S30G1 -80.63 -69.46 -20.59 -17.14 

S30G1.5 -97.21 -85.01 -21.12 -17.66 

* (% ch PC): Percentage change in case of  PC mix is a reference. 

** (% ch RC): Percentage change in case of RC mix is a reference. 

 

 

Fig. 6: Loss in thickness results for all mixes. 
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Fig. 7: UPV results for all mixes 

 

The addition of steel fibers, glass fibers, and hybrid fibers to reinforced concrete (RC) further 

reduced the ultrasonic pulse velocity (UPV) by 14.29%, 8.57%, and 17.66%, respectively, as shown 

in Table 2 and Figure 7. These reductions are due to the heterogeneous nature of fiber-reinforced 

RC, where ultrasonic waves encounter multiple interfaces, resulting in partial reflection, scattering, 

and absorption. It is also observed that mixes with increased glass fiber content at a fixed steel fiber 

dosage exhibited further decreases in UPV. This behavior may be attributed to the insulating 

properties of E-glass fibers, which hinder ultrasonic wave propagation, as previously reported by 

Nik and Omran [50]. Statistical analysis of the UPV test results is summarized in Table 2, with 

bordered cells indicating instances where no statistically significant differences were observed 

compared to the control mix results. 

As depicted in Figures 4 and 7, the damping (DAMP) and ultrasonic pulse velocity (UPV) values 

exhibited consistent trends before and after applying thermal cycles. Notably, UPV values 

decreased slightly post-cycling, while DAMP values increased. This behavior is primarily attributed 

to the formation of microvoids resulting from the partial combustion of rubber particles during 

heating. These voids reduce material density and continuity, leading to slower wave propagation. 

Consequently, the increased transmission time for ultrasonic waves corresponds to a lower UPV. 

These observations are consistent with previous findings by Ikpong [51].  Among all tested mixes, 

those incorporating steel fibers, specifically S10, S30, S30G0.5, S30G1, and S30G1.5, showed the 

least variation in ultrasonic pulse velocity (UPV) values after thermal exposure. This indicates that 

steel fiber reinforcement plays a significant role in reducing the negative effects of thermal cycling 

by enhancing internal structural cohesion and limiting microcrack development. 

According to the classification criteria established by Solís-Carcaño et al. [52, 53], before thermal 

exposure, all concrete mixes qualified as "excellent" (UPV > 4575 m/s), by following thermal 

cycling, the mixes were classified as "good" (UPV between 4575 and 3660 m/s), reaffirming the 

thermal and acoustic resilience of the fiber-reinforced rubberized concrete, The percentage change 

in ultrasonic pulse velocity (UPV) and loss in thickness after heating/cooling cycles for all mixes is 

presented in Table 3. 
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Table 3: Percentage of change after heating/cooling cycles for all mixes 

Mix code UPV loss in thickness 

PC -29.41 -1.28 

RC -31.43 -10.58 

S10 -28.84 -11.31 

S20 -29.22 -13.65 

S30 -20.00 -16.91 

G0.5 -25.00 -11.82 

G1 -24.32 -12.20 

G1.5 -21.58 -7.52 

S10G0.5 -29.55 -11.71 

S10G1 -29.28 -15.59 

S10G1.5 -27.72 -12.14 

S20G0.5 -30.13 -12.43 

S20G1 -28.93 -13.37 

S20G1.5 -29.73 -11.64 

S30G0.5 -18.63 -18.16 

S30G1 -18.20 -14.92 

S30G1.5 -18.99 -11.44 

 

3.2. Abrasion Resistance Results: 

Table 2 and Figure 6 reveal that including rubber in plain concrete (PC) led to a marginal reduction 

in surface wear, with a decrease in thickness loss of approximately 0.44%. This minor improvement 

is likely due to the elastic nature of rubber, which is more resilient under stress than traditional 

stone aggregates. The rubber's ability to maintain elasticity over time and its resistance to 

dislodgement during abrasion contributed to the increased wear resistance. These observations are 

consistent with the findings of Ristić [5].  

Further enhancements were observed in rubberized concrete (RC) reinforced with fibers. The loss in 

thickness was significantly reduced by 59.71% with the addition of steel fibers, by 12.59% with the 

addition of glass fibers, and by 85.01% with the addition of hybrid fibers. The RC mixes with 

hybrid fibers exhibited the highest abrasion resistance among these. This performance is attributed 

to the fibers' ability to form strong interfacial bonds with the cement matrix, thereby minimizing 

material detachment under mechanical abrasion. 

Enhanced abrasion resistance translates into practical advantages such as reduced tire–concrete mix 

friction noise, improved ride comfort, and greater fuel efficiency. These benefits contribute to lower 

maintenance demands and reduced vehicular emissions, aligning with the objectives of sustainable 

concrete mix design.  

The abrasion resistance trends remained consistent before and after exposure to thermal cycles. 

However, the results after the cycles showed a slight improvement in resistance, which could be 

attributed to the densification of the microstructure or continued hydration caused by the thermal 

effects. This is supported by the data in Table 3, which shows the corresponding percentage 

changes. Visual analysis in Figure 8 also confirms this, as it shows no noticeable differences 

between the pre- and post-cycle abrasion surfaces. 
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                          (a)                                 (b)                                                 (c) 

   
                (d)                                                (e)                                               (f) 

Fig. 8: Post-abrasion-test images for: (a) RC with glass fiber, (b), RC with steel fibers, (c) Plain 

concrete, (d) RC with glass fiber after heating/cooling cycles, (e) RC with hybrid fiber after 

heating/cooling cycles,  (f) Plain concrete after heating/cooling cycles. 

 

4. Conclusions 

This study confirms the potential of incorporating recycled rubber waste into concrete as a 

sustainable strategy to mitigate environmental pollution. The utilization of rubber not only 

contributes to environmental protection but also enhances several performance characteristics of 

concrete. 

- The data show that rubberized concrete (RC) reinforced with hybrid fibers has the most 

favorable acoustic properties. It is the quietest concrete mix material both before and after being 

exposed to thermal cycles. The even distribution of rubber granules within the concrete helps 

prevent them from being dislodged, which in turn reduces surface abrasion by protecting the 

cement paste and aggregate. As a result, RC has significantly improved wear resistance. 

- The inclusion of hybrid fibers slightly improved the durability of concrete mix surfaces and 

marginal structures, providing a denser and more durable surface than plain concrete or fiber-

free RC. All concrete mixes tested in this study were classified as "excellent" (UPV > 4575 m/s) 

before thermal cycling and "good" (4575 > UPV > 3660 m/s) after cycling, based on ultrasonic 

pulse velocity (UPV) evaluations. 

- Although all concrete mixes experienced degradation in UPV and electrical resistivity following 

thermal cycling, the inclusion of fibers, especially in hybrid configurations, helped mitigate 

these negative impacts. Increased fiber dosage correlated with slightly improved post-cycling 

performance retention.  

- The study demonstrates that rubberized concrete with fibers, particularly hybrid fibers, exhibits 

enhanced abrasion resistance. This is due to the strong bonding between fibers and the cement 

matrix, reducing the material loss under abrasive forces. 

- This improvement offers practical advantages for concrete mixes, including reduced tire noise, 

smoother rides, and increased fuel efficiency. It also leads to lower maintenance costs and 

reduced emissions, promoting sustainability. 

Based on the findings, ductile rubberized concrete incorporating hybrid fibers can be considered a 

viable structural material for airfield concrete mixes. It offers slight advantages in noise reduction, 

abrasion resistance, and environmental sustainability. Ultimately, integrating hybrid fibers into 

rubberized concrete represents a promising advancement in green concrete technology and provides 
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a multifaceted solution for enhancing the performance and longevity of rigid concrete mix systems, 

including applications such as in-concrete mix snow melting. 
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