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1. Introduction

In scientific research, we often encounter situations where the variable of interest is continuous, but
it is more practical to measure it in a discrete form. For life testing or reliability experiments, numerous
continuous models are available in the literature. However, it can be impractical or inconvenient to
measure the lifetime of a device on a continuous scale. For instance, when evaluating the reliability
of an on/off-switching device, the lifetime of the switch is determined by the number of times it is
operated, which is essentially a discrete random variable. The reliability of an airplane tire is typically
assessed based on the number of landings it can withstand. The lifespan of an electric circuit is often
measured by the frequency of breakdowns within a month, and the effectiveness of a particular drug
is determined by the number of days it remains viable before its expiration date. In survival analysis,
one might want to record the number of days that a patient has survived since starting therapy or the
number of days from remission to relapse. The survival time of a patient with a brain hemorrhage is
determined by the length of time they are observed.

In these scenarios, while a variable seems continuous, the actual lifetimes are recorded discretely,
thus, they are considered discrete random variables. These instances illustrate that although continuous
lifetime models might not always be measured on a continuous scale, they can often be approached
as discrete random variables. Over the past two decades, typical discrete distributions like geomet-
ric, Poisson, and negative binomial have been applied to model lifetime data. However, Alamatsaz
et al. [4] asserted that these established discrete distributions do not always provide the best fit for
both count and time data. For instance, the Poisson distribution is commonly used to model counts but
is not suitable for modeling time. Additionally, binomial and negative binomial distributions are not
widely regarded as effective models for reliability, failure times, counts, and similar data. This is partly
because they are not defined over the entire set of non-negative integers. Therefore, it is essential to
identify more suitable discrete lifetime distributions that are specifically tailored to various types of
discrete data, such as reliability and failure times. These contexts necessitate creating discrete forms of
current continuous distributions. In recent decades, there has been substantial interest from researchers
in converting continuous probability distributions into discrete forms. This has resulted in numerous
established discretized versions of existing continuous distributions. Investigating the discretization
of statistical models is vital for managing discrete lifetime data and count data across various fields,
including biological and medical sciences, physical sciences, engineering, agriculture, and more. Di-
verse techniques exist in academic literature for discretizing continuous distributions. Chakraborty [8]
offers a thorough review of numerous discrete derivation strategies for continuous distributions. The
survival function approach ranks among the most widely adopted methods for this purpose. It utilizes
the survival function associated with the continuous model. Nakagawa and Osaki [30] pioneered this
technique to formulate the discrete Weibull distribution. In reliability theory, lifetime models are clas-
sified based on their survival functions and other reliability characteristics. For example, we have the
increasing failure rate (IFR) and decreasing failure rate (DFR) classes, as well as the increasing failure
rate average (IFRA) and decreasing failure rate average (DFRA) classes. There are also the increas-
ing mean residual lifetime (IMRL) and decreasing mean residual lifetime (DMRL) classes (see Kemp
[24]). When a continuous distribution is discretized using the survival function approach, it retains the
same functional form as the original survival function. As a result, many important properties related
to reliability theory are preserved in the discrete form. Therefore, discretizing a continuous lifetime
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model provides a straightforward method for deriving a corresponding discrete lifetime model.

Several prominent continuous distributions have been discretized using this survival-function-based
method. For instance, Nakagawa and Osaki [30] introduced a discrete form of the Weibull distribution.
Roy applied a similar approach to develop discrete analogues of the normal and Rayleigh distributions
in [34] and [35], respectively. Krishna and Pundir explored discrete versions of the Burr and Pareto dis-
tributions [26], while Chakraborty and Chakravarty proposed a discrete form of the gamma distribution
[9]. Chakraborty [8] provided a comprehensive list of the various discretized distributions available in
the literature. Recently, Olivera et al. [31] proposed the discrete power Lindley model as an effective
distribution for both count and failure time datasets. The discrete generalized inverse Weibull model
was studied by Para and Jan [32] in relation to medical science data. Additionally, Chakraborty et al.
[10] proposed the discrete Gumbel model, which is suitable for various skewed datasets. Almetwally
et al. [5] discussed overview of discrete distributions in modelling COVID-19 data sets. Gillariose
et al. [19] explored the discrete Weibull Marshall-Olkin family of distributions. Finally, in the con-
text of daily new COVID-19 cases from various countries, Ibrahim and Almetwally [22] reported the
discrete Marshall-Olkin Lomax model. Abd EL-Hady et al. [2] discussed discrete exponentiated gen-
eralized family of distributions More recently, Das et al. [14] proposed a new right-skewed distribution
known as the discrete generalized Gompertz distribution. In another study, Das and Das [13] devel-
oped the discretized Fréchet—Weibull distribution, which is suitable for modeling datasets with both
over-dispersion and under-dispersion. Aljohani et al. [3] discussed the discrete Marshall-Olkin length-
biased exponential distribution in the context of analyzing COVID-19 data from China and Pakistan.
Additionally, Balubaid et al. [6] developed the Discrete Weibull Exponential distribution, which fea-
tures both symmetric and asymmetric shapes in its probability mass function. Barbiero and Hitaj [7]
studied the discrete half-logistic distribution, particularly its applications in the insurance sector. Fi-
nally, Hadi and Khudhair [20] examined the discrete Fréchet distribution concerning the duration of
stay for a hundred stroke patients in a hospital.

Lindley [27, 28] introduced a one-parameter continuous distribution known as the Lindley distribu-
tion. This distribution has been shown to be a mixture of the exponential distribution with parameter 6
and the gamma distribution with parameters 2 and 6, with a mixing proportion given by p = %. De-
spite its potential, the relevance of the Lindley distribution as a model for lifetime data has been largely
overlooked in the literature. The popularity of the exponential distribution continued to dominate the
modeling of lifetime data until Ghitany et al. [17] discussed various mathematical properties of the
Lindley distribution. They demonstrated that the probability distribution function (pdf) of the continu-
ous Lindley distribution serves as a better model for waiting times and survival times compared to the
exponential distribution. A number of researchers have developed advanced variations of the Lindley
distribution. In recent studies, Chesneau et al. [11] presented the inverted modified Lindley distribu-
tion. In a subsequent investigation, Chesneau et al. [12] explored the modified Lindley distribution,
while Gillariose et al. [18] introduced the Marshall-Olkin Modified Lindley distribution, among other
variants.

Notably, the Lindley distribution has only an increasing hazard rate function. In 2013, Shanker et al.
introduced the two-parameter Lindley (TPL) distribution in their study [36]. This distribution is useful
for modeling waiting times and survival data. The TPL distribution can exhibit both decreasing and
increasing hazard rate functions. Additionally, the mean of the distribution is always greater than the
mode, which indicates that the distribution is positively skewed. It also exhibits both over-dispersion
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and under-dispersion. Moreover, the TPL distribution encompasses the one-parameter Lindley dis-
tribution as a special case. This distribution can be represented as a mixture of exponential (6) and
gamma (2, 0) distributions, with a mixing proportion given by p = aiw The pdf of the TPL distribution

is defined as follows: X

fﬂm=0+aﬂ+am€“; x>0, (1.1)

where the parameters 6 > 0, @ > —6, and the survival function (sf) is given by

0+a+ a9x6_9x

S =

; x>0,60>0, aa>-6. (1.2)

The discrete version of the one-parameter Lindley distribution was introduced by Emilio and En-
rique [16]. This model serves as a viable alternative to the Poisson distribution for analyzing automo-
bile claim frequency data. The discrete Lindley distribution is characterized by its unimodal shape,
leptokurtic nature, and positive skewness. However, one significant limitation of this distribution is
its inability to effectively model under-dispersed datasets. This limitation has led us to develop a dis-
cretized version of the two-parameter Lindley distribution, known as the discretized two-parameter
Lindley (D2PL) distribution. Thus, the development of this new model is based on several key points:
The D2PL model possesses several important features that enhance its practical utility. It offers explicit
forms for its probability mass function, reliability function, and failure rate, making the distribution
both accessible and computationally efficient for various applications. One of the key advantages of the
D2PL distribution is its flexibility and notability in handling dispersion data; it can effectively discuss
and evaluate dataset exhibiting either overdispersion or underdispersion, which is often encountered in
real scenarios. Further, the D2PL model is capable of representing different forms of the hazard rate
function, including the well-known bathtub shape, as well as strictly increasing or decreasing patterns.
This adaptability makes it a suitable candidate for reliability analysis and life data modeling. More-
over, the D2PL model is particularly well-suited for asymmetric data, especially when the dataset is
right-skewed or shows various degrees of peakedness or tail behavior. Such flexibility allows for more
accurate modeling of non-symmetric discrete phenomena. Empirical comparisons with other discrete
distributions consistently highlight the superior performance of the D2PL distribution, particularly in
terms of goodness-of-fit across various kinds of dataset. This strong performance underscores its re-
liability and relevance for researchers and practitioners working with dependent or complex discrete
dataset.

The remainder of this paper is organized to provide a comprehensive understanding of the proposed
D2PL distribution and its applications. Section 2 begins with the formal derivation of the D2PL distri-
bution, followed by an in-depth exploration of its key structural characteristics, notable special cases,
and graphical representations to illustrate its flexibility. This section also includes the procedure for
generating random samples from the distribution, which is essential for both theoretical exploration
and simulation studies. In Section 3, we extend the foundational results by presenting additional math-
ematical insights that deepen our understanding of the distribution’s behavior. Section 4 is devoted
to deriving various distributional properties, such as moments, reliability measures, and tail behav-
ior, which are critical for statistical modeling and interpretation. Estimation techniques are the focus
of Section 5, where we examine both maximum likelihood estimation and the method of moments,
discussing their implementation and theoretical underpinnings. To evaluate the performance of these
estimators, a detailed simulation study is carried out in Section 6, providing empirical evidence of
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their accuracy and robustness across different parameter settings. Section 7 illustrates the practical
relevance of the D2PL distribution by applying it to two real-life count datasets. Here, we compare its
fitting capabilities with those of alternative models, demonstrating its superiority in capturing complex
data patterns. Finally, Section 8 summarizes the main findings of the study and suggests avenues for
future research.

2. Discretized two-parameter Lindley distribution

The discretized two-parameter Lindley distribution has been derived by using the discretization
approach, after the parameterization, 1 = ¢ in the survival function of the continuous two-parameter
Lindley distribution as defined in Eq. (1.2). Then the probability mass function (pmf) of the D2PL
distribution is derived as follows

oy
[{a/ +0(1 +ay))(1 —e™?) - a@e‘e]

0+ a
y

a — logl

PIY =]

[a//l logA + (1 = D){a — logA"*® }], .1)

where the parameter A = e, such that 0 < A < 1 and @ > logA. Further, to prove that the pmf

equation’s is a valid pmf, it must satisfy the condition ¥, P[Y = y] = 1, where

iP[Y= ] Z L[a//l logd+ (1 = D{a—lo /l(“"y)}]
Y a —logl & §

y=0 y=0

1 _ oo oo
- _ —(1- Y Z (1 — y
= T logl »{cwllog/l+(1 Da—(1-2) log/l}(;)/l) a(l —2Q) log/l( yZ:(;y/l )]
= L etoga+ (= Da-(1-1)1 A}(L)— (=) 4( 4 )]
T a—loga |'718 n T a) e ENa -2
_ 1 a/llog/l+a_log/l_a/llog/l]

a—logal 1-2 1-4

= 1.

Hence, the form of the pmf derived in Eq. (2.1) is a valid pmf. The cumulative distribution function
(cdf) of D2PL distribution is obtained as

Y
Fy(y) = P(Y<y) =) PIY =Kk
k=0

y "
A
= Z o /l[axl logAd + (1 — D{a — logd*™}]
im0 & 108
= —— _Cjogﬂu — 2 @+ )2 1) logd] yeZ,. 2.2)

The sf of the D2PL distribution can be formulated as

a1 — (2 + y)logA} + (@ — 1) logA
Sy(y) = { = log; yEZ,. (2.3)
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The hazard rate function (hrf) of the D2PL distribution is given by

Pladlogd + (1 = D{a — logA1+}]

h©) a1 = (2 +y) logA} + (a — 1) logA

.y eZ,. (2.4)

The proposed D2PL distribution reduces to the following mentioned distributions under specific pa-
rameter values:

1. For @ = 1, D2PL(4, @) reduces to discrete Lindley(1) (see Emilio and Enrique [16]).
2. Fora =0and A =1 - p, D2PL(A, @) reduces to Geometric(p), where 0 < p < 1.

2.1. Graphical representation

The possible shapes of the pmf and hrf of D2PL distribution for different values of the parameter
(4, @) are presented in Figure 1 and Figure 2, respectively.
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Figure 1. The pmf plots of the D2PL distribution for different parameter values of A and .

In Figure 1, we can see that the pmf of the D2PL for various values of the parameter (4, @) has a
long right tail. This indicates that the proposed distribution is positively skewed. It is also apparent
that the shape of the pmf of this distribution can be decreasing, or unimodal. In Figure 2, it can be
noted the possible shapes of the hrf of the D2PL model for different values of the parameter (4, @).
The hrf function of the D2PL. model can be increasing, decreasing or uni-modal-shaped, depending
on the choice of parameter values. It is noteworthy that, in all cases, the value remains below 1. A
key characteristic of the proposed distribution is its inverse bathtub-shaped hazard function, along with
its capability to capture both increasing and decreasing hazard rate patterns features that are rarely
observed in count distributions.
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Figure 2. The hrf plots of the D2PL distribution for different parameter values of A and a.

2.2. Random number generation from the D2PL distribution

The pdf of the continuous TPL distribution can be expressed as a combination of exponential and
gamma distributions. To generate a random sample from the D2PL distribution, we use the concept
that the discrete version of the continuous TPL distribution corresponds to the D2PL distribution. This
leads to the following algorithm:

Step 1: Generate a sample “u” of size “n” from Uniform (0,1) and specify the initial values of the
parameters A and a.

Step 2: Compute ﬁ, where 8 = —log A.

Step 3: For (i = 1,2,...,n),ifu; < ﬁ, generate X; ~ Exponential (), otherwise generate X; ~ Gamma
(2,6), where 6 = —log A .

Step 4: Now obtain Y, using the form Y; = | X;|, where |.] is the floor function.
3. Supplementary results

3.1. Infinite divisibility of D2PL distribution

The mathematical concept of infinite divisibility reports a fundamental structural characteristic of
probability models. As listed by Steutel and Van Harn [37], a model can be tested for infinite divisibility
by verifying either of the two specific conditions listed below.

Lemma 3.1. For a discrete probability model p,, a necessary requirement for it to be infinitely
divisible is that py > 0.
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Lemma 3.2. If a discrete model sequence p;, where j € Z., is infinitely divisible, then each term
must satisfy p; < e”! forall j € N.

Theorem 3.3. The D2PL model with parameters (A, @) generally exhibits infinite divisibility.

Proof. To generate this, we first verify the condition given in Lemma 3.1. Specifically, we demonstrate
that
po=PlY=0; 4,a] >0, forall O0<A<1,a>logAl.

For example, assume y = 0, 4 = 0.8, and @ = 0.34, we find py = 0.0922 > 0, satisfying the
requirement. Next, referring to Lemma 3.2, we need to obtain that

p;=PlY=j;4a]l<e’!, forall jeN, and 0<A<1,a>logl

As an illustrative case, let y = 1, 4 = 0.6, and @ = 0.25. The resulting probability is p; = 0.2993,
which is clearly less than e~! ~ 0.3679. So, the condition is satisfied. m]

Figure 1 clearly shows that there can be many combinations of parameter values satisfying the
conditions in Lemma 3.1 and Lemma 3.2, indicating that the D2PL distribution is infinite divisible.
3.2. Monotonic property of D2PL distribution

To prove that D2PL distribution is log-convex, it is sufficient to show that

(PIY =y;4,a]f> < P[Y =y+1;4,a]. P[Y =y - 1;4,0],

where y € Z, and the parameters 0 < A < 1 and a > log A, otherwise it is log-concave. For this, if we
can show that the ratio
PlY=y+1;4,a]  2*"[adlogd+ (1 - Dia - logA"** 0y
PlY =y;A4,a] Alad logd + (1 — Dia — logA1+en}]

;y€Z+a

is an increasing function of y, it implies that the model is log-convex (otherwise it is log-concave).
For this distribution, when considering different sets of combinations for the parameters A and «, the
ratio shows both decreasing and increasing functions of y. Therefore, depending on the values of the
parameters considered, the pmf of the D2PL distribution behaves as either log-convex or log-concave.
When the pmf of a discrete random variable is log-convex (or log-concave), it is proven that the hazard
function is non-increasing (or increasing). As a result, the D2PL distribution has a decreasing failure
rate (DFR), and an increasing failure rate (IFR) distribution. This information is also represented in
Figure 2.

3.3. Distribution of order statistics

Order statistics are a fundamental tool in inference and non-parametric statistics. In this subsection,
we present results related to order statistics for the D2PL distribution. Let Yy, Y, ..., Y, be a random
sample drawn from the D2PL distribution, and let Y(;), Y2), ..., Y, denote the corresponding order
statistics. The cdf of the " order statistic from the D2PL distribution can be expressed as follows:

n

Fy, (o) = Z (’:)[FY(Y(r); L,)|'[1 = Fy(yey; 4, )]

r=i
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1 n
- (—) Z(n) @ [1 =20 +{Q2 +y4) X0 =1} logA]’

a —logd r
X [@X 1 = (2 + y) logA} + (a — 1) logA]"™". (3.1)
Using the binomial expansion for [1 — Fy(y(y; 4, @)]"", we get
n-r «(n-r i i
[1 - Fy(yey: A, a)] = Z ( j )(_1)J[FY(y(r); La).
=0
Therefore,
nonr N . e
Fy, 0 = Z Z(; (r)( ; )(—DJ[FY@(,); Aa)]"
5 = [ [1= 20+ {2+ yp) 2ot — 1} loga] "™
_ Zz(n)(n .r)(_l)]{a[ {2 +y0) } log ]} .32
=\ a—logl

And the corresponding pmf of the " order statistics of D2PL can be expressed by
n r— n—r
PlYy =ypnl = (r)[FY()’(r); 4,)] 7 % [1 = Fy(ey 4, )" X PIY = y4y; 4, al

1 n r—1
(—) ot po [1 — 20 Q2+ y )0t — 1) log/l]
a—logd) \r

x[a/ly(””{l ~ @+ yo)logd) + (@—1) log/l]

X[a//l logd + (1 = Dja - log/l(”"y(’))}]. (3.3)

The pmf of the smallest order statistics Y, = min(Y},Y>,...,Y,) of D2PL distribution is given by

n Ao n-1
P[Yqy =yl m [a//ly“)“{l -2 +ya) log}+(@—-1) log/l]
X[axl logd + (1 = D{a - log/l(“"y(”)}]. (3.4)

The pmf of the largest order statistics Y,y = max(Y,, Y, ..., Y,) of D2PL distribution is given by

a,n—l QYo " " n—1
P[Y(n) = y(n)] m [1 — 0T 4 {(2 + y(n))/ly(") - 1} lOg/l]
x[a//l logd + (1 = D{a — log/l(]“’y‘"))}]. (3.5)

4. Distributional properties of D2PL distribution

4.1. Moment generation function

The moment generating function (mgf) of the D2PL model is obtained as

[ee)

My(r) = ) e"P[Y =)]

y=0
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(o)

A
= Z " —[adlogd + (1 — Da — logA+™}], 4.1)
o a- loga
where 0 < A < 1, > logd; y€eZ,.
Theorem 4.1. The r'" moment about the origin of the D2PL distribution is of the form

y

: A
[ = Z yr—l[aa logd + (1 — Dfa — logA"* )], (4.2)
47 - ogAd

where 0 < A < 1,a > logd; yeZ,.
Proof. Differentiating the mgf of the D2PL distribution as in Eq.(4.1), we get

MO () = —My(t) = Z e [a/l logA + (1 — Dia — logA"*™}].
Then, the #* moment about origin of D2PL distribution is given by

wo=MP0)|_, = Z Y ———lad logd + (1 - Djer - log A"+ ™).

4.1.1. Moments

Using r = 1,2,3 and 4, in Eq.(4.2) after some tedious computations the first four moments about
the origin of the D2PL distribution are obtained as follows:

a1 =D -1 +a-2)logl]
o= (@—log) (1-12
, Ala(1 = 22) = {(a + 1) + 3ad — 2%} log]
= (@ — logd) (1 — 1) ’ “44)
Ala(1 +32 =32 - 2) = {(1 + @) + (10 + 3)A + (Ta — 3)A> — 2%} logA]

s = (@ log) (1 - )? @Y

wy = Ala(l +102 - 102 - 1*) -

(4.3)

{(1 + @)+ (25a + 10)A + 55a2? + (15a — 8)A°> — (10« + 1)4*} logd

4.6

(a —logd) (1 =) (4.6)
Clearly, the moments about origin of the D2PL distribution exist, and after some complex calculations,
their closed forms can be derived. Using the above forms of the moments about the origin, one can
easily obtain the moments about mean of the D2PL distribution. Thus, the variance of the D2PL
distribution is obtained as

2 (@ =log)(1 = DA = A{A)]
ot - = (@ — logd)? (1 - ) ’

4.7)
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where A = a(1 =A%) = {(@ + 1) + 3ad — A%} logdand A, = a(1 = 1) — (1 + @ — A) logA.

From Eq. (4.3) and (4.7) it is clear that as the values of A and « increase, the mean and variance
also increase. This relationship is demonstrated in Figure 3.

(a) The parameter 'A" increases and a=-0.33
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Figure 3. The impact of A and @ on mean, variance and index of dispersion for the D2PL

distribution.

Figure 3 depicts how changing the parameters A and « affects the mean and variance, as well as
the index of dispersion. Figure 3(a) shows the impact of changing the parameter A while keeping the
parameter « fixed. In contrast, Figure 3(b) illustrates the impact of changing the parameter @ while
keeping the parameter A fixed. Moreover, Figure 3 (a) and (b), also illustrate that the index of dispersion
can be both greater and less than one, indicating that the D2PL distribution is both over-dispersed and

under-dispersed.

4.2. Probability generating function
The probability generating function (pgf) of the D2PL model is obtained as

D PPIY =y
y=0

Z (Ary

o= logd

Gy(?)
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[ad logAd + (1 = Dia — logA"+™}],

(4.8)
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where 0 < A < 1,a > logd; y€eZ,.

Theorem 4.2. The 1" factorial moment of D2PL distribution is of the form

n= Y Veny———[ad logd + (1 = Dia - logd*}], 4.9
Hir ;y( Vo gl logd + (1= Dl = log )] (4.9)
where y,_y =y (y—-1)(y—-2)..(y —r+1).
Proof. Differentiating the mgf of the D2PL distribution as in Eq.(4.8), we get
" d N y-—r
GY= —Gyt) = ) yG-DO=2.0-r+ D1
t =
y
X ———[ad logd + (1 — D{a — logA"*}].
a —logAd
Then, the r* factorial moment of D2PL distribution is given by
= GY0)|_ = i _r [@d logd + (1 — Dia — logd"*)]
l‘l(”) - Y =1 = y("_])a, _ lOg/l a Og a Og s
where y,_y =y -1y -2)..(y—r+1). O

4.3. Numerical computation

In this subsection, we will calculate the values of mean (u), variance (%), index of dispersion (ID),
skewness (Sy), and kurtosis (K,) for the D2PL distribution, considering different combinations of the
parameters A and a. The skewness and kurtosis are obtained using the formula:

H3
2

_ M
uo?

Si= and K,

In Tables 1 the values are calculated for the fixed value of @, while A is increasing. And in Table 2 the
values are calculated for the fixed value of A, while « increases. These numerical results are obtained
using the R software.

Table 1. Descriptive statistics of the D2PL. model as “A” increases.

1 a=-03 1 a=-04
u o2 ID Sk K, i o? ID Sk K,

0.07 | 0.048 0.049 0979 4.637 30.197 | 0.06 | 0.032 0.031 1.032 5.182 30.674
0.10 | 0.069 0.069 1.000 3.810 22.148 | 0.068 | 0.036 0.035 1.029 4.763 25.280
0.12 | 0.082 0.083 0988 3.389 18.111 | 0.075 | 0.039 0.038 1.026 4.426 20.902
0.15 | 0.103 0.102 1.009 2.814 12241 | 0.086 | 0.045 0.042 1.071 3.925 14.184
0.17 | 0.116 0.113 1.027 2409 7.692 | 0.091 | 0.048 0.044 1.091 3.701 11.052
0.19 | 0.129 0.123 1.049 1.939 1.882 | 0.100 | 0.051 0.047 1.085 3.288  5.056
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Table 2. Descriptive statistics of the D2PL model as “a” increases.
A=0.15 1=04

¢ 4 o2 D S, K, ¢ 1 o2 D Sy K,

034 | 0091 0084 1.083 2325 1752 | -0.05 | 0.608 0971 0626 2215 12.627
2030 | 0.103 0102 1.009 2814 12241 | 03 | 0918 1.634 0561 1967 8877
2024 | 0.119 0127 0937 3.069 17.772 | 14 | 1282 2168 0591 1.605 4.750
20.15 | 0.143 0161 0888 3.108 19451 | 2.5 | 1412 2294 0616 1509 3.269
006 | 0.189 0224 0844 2904 18201 | 3.2 | 1458 2332 0625 1480 2.709

0.12 | 0.199 0.239 0.833 2.840 17.710 | 45 1.513 2369 0.639 1448 2.021

From the above Table 1 and Table 2, the following observations can be made: The D2PL model
demonstrates strong adaptability in handling a variety of dataset characteristics. It is particularly effec-
tive for datasets exhibiting positive skewness, making it well-suited for asymmetric models. Further-
more, the D2PL model accommodates data with different kurtosis forms, including both leptokurtic
and platykurtic distributions, offering flexibility in capturing various tail behaviors. Another notable
property of the D2PL model is that its mean and variance tend to increase as the parameters A and
a grow, allowing dynamic adjustment of the scale and spread of the dataset. Moreover, the D2PL
distribution proves useful in applications involving both over-dispersed (/D > 1) and under-dispersed
(ID < 1) data, enhancing its applicability in real discrete dataset analysis.

5. Parameter Estimation

5.1. Maximum likelihood estimation

In this section, the estimation of the D2PL parameters has been discussed using the maximum like-
lihood estimation (MLE) method. Let yy, y,, y3, ..., ¥, be a random sample from the D2PL distribution,
then the corresponding likelihood function is given as

Ly =[] Py =y
i=1
The log-likelihood function is given as

log Ly) = ) log PIY =y
i=1

n

= Z {y,- logd + log [ad logd + (1 — Y{a — (1 + a y;) logd})]| — log [a — log/l]}

i=1
= Z y; logAd + Z log [adlogd+ (1 — da — (1 + @y, logd})] — n log [ — logA]5.1)
i=1 i=1
Differentiating Eq.5.1 with respect to A and «, we get

n

OlogL(y) 1] _ n {1+a(l+y)}Alogd+ (A1—- 1)1+ ay;)

01 - Z[”y " a—logd * ; b(y;) ’ (5-2)
OlogL(y) _ ~o (A+(1-y)logd-(1-2)  n

oa B ; b(y;) a —logd’ G-
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where b(y;) = [a@d logd + (1 — d{a — (1 + a y;) logA})]. To estimate the parameter vector § = (1, @)?,
we solve the nonlinear equations (5.2) and (5.3) by equating them to zero and applying the New-
ton—Raphson iterative technique. This yields the maximum likelihood estimates 8 = (A, &)”. For
constructing confidence intervals for the estimated parameters, the Fisher information matrix 7 (6) is es-
sential. This matrix is obtained by computing the second-order partial derivatives of the log-likelihood
function with respect to the model parameters. Since the exact analytical form of 7 (6) may be complex
to derive, it is often approximated numerically for practical implementation.

_&L _L
. o’ ) 00 |} &)
1(0) =
_2L _2L
dadd (2’&) Oa? (2’@)

5.2. Moment method of estimation

Under the moment method of estimation (MME), the parameters A and « can be obtained by solving
the equations

Aa(1 =) = (1 +a — Q) logl]
(@ —logd) (1 — A)?

=my,

and
Ala(1 = 22) = {(a + 1) + 3ad — 2%} logA]
(@ —logd) (1 = )3

= my,

where m; and m, are the mean of the observed sample and the second raw moment observed, respec-
tively. Alternatively, moment estimates can be obtained following the method suggested by Khan et al.
[25]. According to this method, the parameters A and « can be estimated by minimizing the equation

Ala(1 =) = (1 + @ — ) logA] 2 rAla(1 =22 - {(a + 1) + 3ad — 2%} logA] 2
(@ — logd) (1 — 2)? - 1] +[ (a - logd) (1 = 2)3 —

6. Simulation study

In this section, the performance of the maximum likelihood estimators and the method of moments
estimators is evaluated through a simulation study conducted using the statistical software R ( optimal
package) based on data generated in Section 2.2. In this study, we generated 1000 samples of sizes 50,
80, 120, and 150 from a D2PL distribution with known parameter values of A and a. Four different
schemes were considered: (i) 4 = 0.5, @ = 0.02, (ii)) 4 = 0.8, « = 0.5, (iiHAd = 0.2, = —-0.3
and (iv) 4 = 0.07, @ = 1.5. In this subsection, the average values, bias, and mean squared error
(MSE) of the parameter estimators (4, @) for the D2PL distribution are estimated. Additionally, the
average width of the 95% confidence interval estimators (AW) and the coverage probabilities (CP) for
the maximum likelihood estimators and the method of moments estimators are calculated. The results
of the simulation analysis are shown in Table 3, 4 and 5. It is important to note that all the values in
these tables represent the average estimates for 1000 samples.
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Table 3. The average estimates, average biases, variance, MSEs, AWs, and CPs for scheme

I.
SchemeI: 1 =0.5,a =0.02
MLE MME
Size “n” A & A &

50 0.5421 0.0152 0.4503 0.0341
Average 100 0.5332 0.0163 0.4712 0.0272
Estimate 150 0.5201 0.0171 0.4781 0.0242
200 0.5040 0.0188 0.4845 0.0211

50 0.0421 -0.0048 -0.0497 0.0141
Average 100 0.0332 -0.0037 -0.0288 0.0072
Bias 150 0.0201 -0.0029 -0.0219 0.0042
200 0.0040 -0.0012 -0.0146 0.0011
50 0.1262 0.1322 1.1342 0.8677
MSE 100 0.0947 0.1041 0.5022 0.6214
150 0.0751 0.0642 0.0835 0.1217
200 0.0421 0.0313 0.0311 0.0402
50 0.3212 0.2005 0.1525 0.2247
AW 100 0.1736 0.1621 0.1214 0.1014
150 0.1423 0.1304 0.1003 0.0762
200 0.0511 0.1132 0.0622 0.0415

50 0.835 0.871 0.849 0.902

CP 100 0.847 0.893 0.887 0.890
150 0.862 0911 0.879 0.895

200 0.908 0.907 0.896 0.901

Table 4. The average estimates, average biases, variance, MSEs, AWs, and CPs for scheme

II.
Scheme II: 2 =0.8,a =0.5
MLE MME
Size “n” A & A &

50 0.7204 0.4052 0.9043 0.5512

Average 100 0.7428 0.4321 0.8803 0.5403
Estimate 150 0.7715 0.4615 0.8421 0.5205
200 0.7955 0.4845 0.8133 0.5032

50 -0.0796 -0.0948 0.1043 0.0512

Average 100 -0.0572 -0.0679 0.0803 0.0403
Bias 150 -0.0285 -0.0385 0.0421 0.0205
200 -0.0045 -0.0155 0.0133 0.0032

50 1.1052 0.8053 1.0035 0.8733

MSE 100 1.0403 0.5007 0.8526 0.5114
150 0.7271 0.1121 0.4241 0.2201

200 0.3435 0.0322 0.1013 0.0541

50 0.8952 0.5855 0.8825 0.8715

AW 100 0.6853 0.4432 0.7641 0.7045
150 0.5274 0.2508 0.4371 0.5012

200 0.2175 0.1141 0.2134 0.1221

50 0.861 0.801 0.895 0.883

CP 100 0.893 0.845 0.901 0.892
150 0.908 0.863 0914 0.903

200 0.905 0.871 0.907 0.912

The results of the simulation analysis presented in Tables 3 and 4 include both maximum likelihood
estimation (MLE) and method of moments estimation procedures. In contrast, Table 5 focuses solely
on the analysis using MLE. A look at the tables 3 and 4 reveals that in both schemes I and II, the MLE
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Table 5. The average estimates, average biases, MSEs, AWs, and CPs for scheme III and

scheme IV.
Scheme I1I Scheme IV
1=02, a=-03 1=0.07, a=1.5
Size “n” A & A &

50 0.35121 -0.45103 0.05209 1.72004
Average 100 0.30432 -0.38004 0.06009 1.62212
Estimate 150 0.22008 -0.32214 0.06822 1.55233
200 0.20241 -0.29045 0.06934 1.51102
50 0.15121 -0.15103 -0.01791 0.22005
Average 100 0.10432 -0.08004 -0.00991 0.12212
Bias 150 0.02008 -0.02214 -0.00178 0.05233
200 0.00241 -0.00955 -0.00066 0.01102
50 0.15313 0.10044 0.14105 0.22012
MSE 100 0.05032 0.03021 0.01517 0.14117
150 0.02062 0.01202 0.00443 0.04331
200 0.00413 0.00231 0.00101 0.01021
50 0.72211 0.58814 0.60512 0.37723
AW 100 0.41165 0.32204 0.41152 0.12064
150 0.18562 0.10521 0.20117 0.06274
200 0.05411 0.01442 0.06271 0.00431

50 0.811 0.799 0.866 0.869

CP 100 0.835 0.865 0.916 0.928

150 0.884 0.909 0.938 0.961

200 0.917 0.928 0.947 0.908

is the best method of estimation in comparison to the method of moments. However, the tables 3, 4,
and 5 demonstrate that the biases and mean squared errors (MSEs) both drop to zero as the sample
size n grows. This illustrates the MLEs’ impartiality and constancy. Furthermore, the average width
of the confidence interval estimators for MLEs decreases with increasing sample size, a trend that is
constant across all tables. Furthermore, the coverage probability is never less than 0.799, even though
it occasionally surpasses the nominal value of 0.95. Generally speaking, the greater the sample size,
the higher the coverage probability.

7. Applications: Evaluation and decision-making of the quality of fit

In this section, we demonstrate the flexibility of the proposed D2PL distribution using two real-
life datasets. The fitting of the D2PL distribution is compared with seven other competitive discrete
distributions: discrete inverted Nadarajah-Haghighi (DINH), discrete Burr type II (DBX-II), discrete
inverse Weibull (DIW), discrete Rayleigh (DR), discrete inverse Rayleigh (DIR), Poisson (Poi), and
discrete Pareto (DPa). For each dataset, we evaluate the D2PL distribution against the other distribu-
tions using specific criteria. These criteria include the log-likelihood (log L), Chi-square (y?) statistic
and its corresponding p-value, as well as various information criteria such as the Akaike Information
Criterion (AIC), the corrected Akaike Information Criterion (AICC), the Hannan—Quinn Information
Criterion (HQIC), and the Bayesian Information Criterion (BIC). We compute these selection criteria
for all of the compared distributions to determine which one fits the data best. The distribution that
exhibits the lowest values for AIC, AICC, HQIC, and BIC, the highest log-likelihood value, and the
greatest p-value is deemed the most suitable for the given data.
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7.1. Application I

The first dataset pertains to mammalian cytogenetic dosimetry lesions observed in rabbit lym-
phoblasts following exposure to streptonigrin (NSC-45383), a potent antitumor antibiotic known for
its ability to induce DNA damage. In this study, the administered dose was set at -60 ug/kg, a concen-
tration carefully chosen to evaluate the cytogenetic effects of streptonigrin on chromosomal integrity.
The experimental design involved the analysis of chromosomal aberrations, including breaks, gaps,
and rearrangements, which are critical indicators of genotoxic stress. These lesions were quantified
to assess the extent of DNA damage and repair mechanisms in the lymphoblasts, providing insights
into the compound’s mutagenic potential. To thoroughly analyze the dataset and gain a deeper under-
standing of its underlying patterns, non-parametric plots were generated. These plots are particularly
useful for visualizing the distribution and behavior of the data without making any assumptions about
its underlying statistical properties. The resulting visualizations, as depicted in Figure 4, provide a
clear and intuitive representation of key trends, outliers, and relationships within the data.
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Figure 4. Plots based on non-parametric methods for dataset I.

The MLEs for the models tested, along with the results of the goodness-of-fit tests (GOFT), are
presented in Table 6. Figure 5 provides an explanation and validation of the results presented in Table
5. To highlight the unique characteristics of each estimate, profile log-likelihood graphs and contour
graphs were created, as illustrated in Figure 6.
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Table 6. The GOFT for dataset 1.

X JOF] D2PL [ DBXII | DINH [ DIW [ DR | DIR Poi DPa
0 413 407.68 412.71 414.58 411.60 273.43 411.86 374.05 447.06
1 124 131.14 132.73 91.62 136.59 274.53 134.96 177.38 84.54
2 42 42.18 33.25 31.37 29.13 50.49 29.47 42.06 29.96
3 15 13.57 11.29 15.79 10.39 2.515 10.68 6.65 13.99
4 5 4.36 4.79 9.50 4.82 0.04 5.01 0.79 7.66
5 0 1.40 2.36 6.34 2.61 0.00 2.74 0.07 4.64
6 2 0.67 3.87 31.80 5.86 0.00 6.28 0.00 13.15
Total | [ 601 [ 601 | 601 [ 601 [ 601 [ 601 [ 601 [ 601 ]
-1 556.516 560.131 | 595.708 | 564.056 | 700.860 | 564.095 | 582.677 | 580.141
MLE, -5.574 x 1077 0.187 23.1217 0.684 0.545 0.685 0.474 0.140
MLE, 0.3217 1.653 0.0137 2.041 - - - -
AIC 1117.032 1124.262 | 1195.416 | 1132.112 | 1403.720 | 1130.190 | 1167.354 | 1162.282
CAIC 1117.052 1124.282 | 1195.436 | 1132.132 | 1403.727 | 1130.197 | 1167.361 | 1162.289
HQIC 1120.456 1127.686 | 1198.840 | 1135.536 | 1405.432 | 1131.902 | 1169.066 | 1163.994
BIC 1125.829 1133.059 | 1204.213 | 1140.909 | 1408.119 | 1134.588 | 1171.753 | 1166.681
X2 0.659 5.563 51.489 12.234 156.05 11.861 58.562 39.711
df 2 2 4 3 1 4 3 4
P.value 0.719 0.062 < 0.001 0.007 < 0.001 0.018 < 0.001 < 0.001
D2PL DB-XII DINH DIW
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Figure 5. The estimated probability mass functions for dataset I.

It is evident from Table 6 that the AIC, AICC, HQIC, and BIC values are the smallest for the D2PL
distribution while the y? value is the lowest. Additionally, the p-value for D2PL is the greatest. These
results indicate that the D2PL distribution provides a better fit to data set I compared to the seven other
competitive distributions.
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Figure 6. The contour plot and profile log-likelihood of the D2PI for data set I.

7.2. Application Il

The dataset provided captures the frequency of computer breakdowns recorded over a span of 128
consecutive weeks of operation, as documented by Hand et al. [21]. This longitudinal dataset offers
valuable insights into the reliability and performance of the computer systems under study, highlighting
patterns and trends in system failures over time. By analyzing the count of breakdowns, researchers
can identify potential periods of instability, assess the effectiveness of maintenance protocols, and
evaluate the overall durability of the hardware. The extended timeframe of 128 weeks ensures a robust
sample size, allowing for a comprehensive examination of both short-term fluctuations and long-term
trends in system performance. Such datasets are particularly useful for predictive modeling, enabling
the development of strategies to minimize downtime and optimize system efficiency. The dataset not
only underscores the importance of continuous monitoring in maintaining system integrity but also
contributes to the broader understanding of failure dynamics in complex computing environments.
Non-parametric plots are well-suited for the preliminary visualization of this dataset, and the associated
outcomes are illustrated in Figure 7.

Table 7 displays the observed frequency, expected frequency, the MLEs for the parameter(s), -
L, AIC, AICC, HQIC, BIC, and Chi-square test values, along with their respective P-values, for all
competing distributions applied to dataset II. Figure 8 offers a comprehensive explanation and confir-
mation of the findings outlined in Table 7. To emphasize the distinct features of each estimate, profile
log-likelihood curves and contour plots were generated, as depicted in Figure 9.

Among all the tested models, the D2PL model demonstrates superior performance as the most
optimal distribution for fitting the dataset II. The estimated probability mass functions and the log-
likelihood profiles of the estimators for dataset II are presented in Figures 8 and 9, respectively.
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Figure 7. Plots based on non-parametric methods for dataset II.
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Figure 8. The estimated probability mass functions for dataset II.
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Table 7. The GOFT for dataset I1.

X [OF] D2PL [DBXII | DINH [ DIW | DR | DIR Poi DPa
0 15 [ 16.01 19.89 | 1240 9.69 3.64 324 231 47.81
1 19 | 1893 | 3659 | 30.16 | 33.09 | 1030 | 4781 9.27 19.19
2 23 | 1832 | 19.05 | 1994 | 2310 | 1531 | 3402 | 18.61 10.76
3 14 | 1615 | 1069 | 1278 | 1448 | 18.04 | 1665 | 2491 7.02
4 15 | 1349 6.83 8.72 9.54 18.44 8.77 25.01 5.00
5 10 | 10.87 476 6.29 6.64 16.92 5.08 20.09 3.77
6 8 8.54 3.52 473 4.84 14.17 3.17 13.44 2.97
7 4 6.59 272 3.69 3.65 10.94 2.11 7.71 2.40
8 6 5.01 2.17 2.95 2.85 7.84 1.47 3.87 1.99
9 2 3.76 1.77 241 2.27 523 1.06 1.74 1.69
10 3 2.80 1.48 2.01 1.85 3.26 0.79 0.69 1.45
11 3 2.07 1.25 1.69 1.53 1.89 0.60 0.25 1.26
12 2 1.52 1.08 1.46 1.28 1.04 0.47 0.08 L11
+13 | 4 3.94 16.19 | 1876 | 13.18 0.99 276 0.01 21.59
Total [ 128 ] 128 | 128 [ 128 [ 128 [ 128 | 128 [ 128 [ 128 |
-1 316.625 | 342581 [ 331.931 | 330.446 | 347.148 | 356.525 [ 384.974 [ 369.766
MLE, 11348 | 0785 | 1244 | 0076 | 0972 | 0025 | 4016 | 0509
MLE, 0679 | 3309 | 1634 | 1235 - - - -
AIC 637.250 | 689.162 | 667.862 | 664.892 | 696.296 | 715.050 | 771.948 | 741.532
CAIC 637.346 | 689.258 | 667.958 | 664.988 | 696.327 | 715.082 | 771.979 | 741.564
HQIC 639.568 | 691.479 | 670.17 | 667.209 | 697.454 | 716.209 | 773.107 | 742.691
BIC 642.954 | 694.866 | 673.566 | 670.596 | 699.148 | 717.902 | 774.800 | 744.384
X 3.690 | 40.183 | 20.199 | 18709 | 49.897 | 50.533 | 88.995 | 94.971
df 8 5 6 6 8 5 6 6
P.value 0.884 | <0.001 | 0.003 | 0.005 | <0.001 | <0.001 | <0.001 | <0.001
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Figure 9. The contour plot and profile log-likelihood of the D2PI for data set II.

8. Conclusions and future research

This study introduced a novel discrete distribution defined on the set of positive integers by
discretizing the continuous two-parameter Lindley distribution. The newly formulated distribution,
the discretized two-parameter Lindley (D2PL) distribution, was systematically developed using the
survival function approach. The cumulative distribution function, survival function, and hazard
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rate function for the D2PL distribution were derived in explicit closed forms. Additionally, key
statistical properties of the distribution were explored. Closed-form expressions for non-central
moments were provided, allowing for the straightforward computation of central and factorial
moments. The distribution demonstrated unimodal and positively skewed shapes, and numerical
evaluations indicated its ability to capture both platykurtic and leptokurtic behaviors. Depending
on the parameter values, the hazard rate function of the D2PL distribution exhibited increasing,
decreasing, or upside-down bathtub shapes, making it highly adaptable for real-world applications.
This flexibility enabled the model to effectively describe both overdispersed and underdispersed
datasets. Moreover, the proposed distribution encompasses the discrete Lindley with one parameter
and the Geometric distributions as special cases. One practical advantage of the D2PL distribution
is the simplicity of generating random numbers from it. Parameter estimation was conducted using
the maximum likelihood method and the method of moments. However, the study ensures the
efficiency and reliability of the maximum likelihood estimates. The proposed model was evaluated
by applying it to two real-world datasets, where it demonstrated a better fit than existing discrete
distributions. Goodness-of-fit measures confirmed that the data samples were effectively represented
by the D2PL distribution. These results highlight the potential of the D2PL distribution as a strong
alternative to current discrete probability models for analyzing count data. As future work, a multivari-
ate extension will be explored both mathematically and through the development of a prediction model.
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