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ABSTRACT
Avrticle history: Early detection of lung cancer is vital for improving patient survival rates, yet achieving high
Received 30 May 2025 accuracy remains a significant challenge due to the heterogeneous nature of medical data
ii‘é;iisgzw':zgiosfgozs originating from various institutions. Federated Learning (FL) has emerged as a promising
Available online 20 October 2025 paradigm that enables collaborative model training across decentralized datasets while ensuring

data privacy by keeping sensitive patient information on local servers. Despite its advantages,
Handling Editor: Prof. Dr. FL struggles with data heterogeneity, particularly when handling non-Independent and
Mohamed Talaat Moustafa Identically Distributed (non-11D) data, which can hinder model convergence and degrade

performance. To address these challenges, this study proposes an enhanced FL-based model for
lung cancer detection that integrates the K-Nearest Neighbors (KNN) classifier with advanced
aggregation techniques. Specifically, the proposed framework employs three distinct FL
aggregation methods “FedAvg+, FedProx, and FedMA” to assess their effectiveness in handling
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FedProx, diverse, distributed medical imaging data. Each aggregation strategy was evaluated
FedMA, independently to identify the most suitable method for optimizing classification performance
FedAvg+. while preserving data confidentiality. Experimental results reveal that the FedMA aggregation

method achieves the highest accuracy of 99.28%, outperforming the others in terms of
sensitivity, specificity, and precision. These results demonstrate that incorporating advanced
aggregation techniques within the FL framework significantly improves diagnostic accuracy,
model robustness, and adaptability across diverse healthcare environments. By ensuring both
high predictive performance and strong privacy protection, the proposed model offers a scalable
and secure solution for implementing Al-powered diagnostic systems in real-world medical
settings, thereby supporting more reliable and ethically responsible approaches to lung cancer

detection.

1. Introduction

Lung cancer remains one of the leading causes of cancer-related deaths worldwide, contributing to millions of fatalities
each year. The survival rate for lung cancer patients is heavily influenced by the stage at which the disease is detected.
Early detection of lung cancer, particularly through medical imaging techniques such as Computerized Tomography
(CT) scans, can significantly improve prognosis and treatment outcomes. However, despite the advancements in
imaging technology and diagnostic techniques, lung cancer remains difficult to diagnose in its early stages. The key
challenge lies in the subtlety of early-stage symptoms, making it difficult for radiologists and clinicians to identify
potential cancerous growths in medical images [1].

The application of Machine Learning (ML) algorithms to the analysis of medical imaging data has shown promising
results in enhancing diagnostic accuracy [2]. Several studies have demonstrated that ML models, particularly those
based on Neural Networks (NNs), can identify lung cancer with a high degree of accuracy, outperforming human
radiologists in certain cases[3]. Despite these advancements, data access and data privacy remain significant obstacles,
particularly when large datasets from multiple institutions are required for training robust ML models. This is where
Federated Learning (FL) becomes a valuable solution [4]-[6].
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Federated Learning (FL) is a distributed ML paradigm where models are trained collaboratively across
decentralized devices or servers without the need to exchange the actual data. Instead of collecting sensitive medical
data in a central repository, FL allows institutions to train a shared model locally on their own data and then aggregate
the updates (e.g., model weights) from each institution. This approach ensures that sensitive patient data never leaves
the local institution, addressing privacy concerns while still allowing for the development of high-quality models[7].

FL has gained considerable attention in the healthcare domain, especially in scenarios where data privacy is
paramount, such as patient records and medical imaging. FL enables hospitals and research institutions to collaborate
on model development without having to share sensitive data across borders or between organizations. For example,
multiple hospitals may collaborate to build a model for lung cancer detection, each training the model on their local
datasets of CT scans and then contributing model updates to a central server, where the updates are aggregated to
improve the global model. This collaborative training process ensures the preservation of privacy and complies with
regulations like HIPAA and GDPR, which govern the handling of healthcare data. However, while FL offers
significant advantages in terms of privacy and security, it also introduces new challenges, particularly with regard to
data heterogeneity [8], [9].

In real-world applications of Federated Learning, the data across different institutions is rarely independent and
identically distributed (11D). In fact, medical datasets are often non-11D, meaning that the data from different hospitals
or institutions may differ significantly in terms of patient demographics, imaging protocols, or even the equipment
used for scans. For example, one hospital might have a dataset dominated by cases of benign tumors, while another
might have more severe cases of lung cancer. Additionally, one institution might have a high-resolution dataset with
detailed CT scans, while another might have lower-quality scans due to resource constraints. These differences can
lead to a lack of convergence or poor performance in the Federated Learning model, as the model fails to generalize
well across the various datasets.

The heterogeneity of data in Federated Learning scenarios is one of the primary challenges to overcome to make
FL models effective in healthcare applications like lung cancer detection. The standard Federated Averaging (FedAvg)
algorithm used for model aggregation in FL assumes that the data is 11D across all participants, and it averages the
local model updates to form the global model. However, when the data is non-11D, this approach can result in biased
updates, slow convergence, and poor performance, especially on unseen data [10].

To address the issue of data heterogeneity, there is an increasing need for more sophisticated aggregation techniques
in Federated Learning such as FedProx [11], FedMA [12], and FedAvg+ [10], [13]. These techniques aim to improve
the model's ability to handle non-11D data, ensuring that the global model achieves faster convergence, better accuracy,
and enhanced generalization. By incorporating these advanced aggregation techniques, we can improve the robustness
and generalization ability of Federated Learning models, making them more applicable to real-world healthcare
settings, where data is often diverse and non-IID.

This paper presents a novel Federated Learning approach for lung cancer detection, focusing on the integration of
advanced aggregation techniques to handle non-1ID data. We evaluated three advanced aggregation methods:
FedProx, FedMA, and FedAvg+, in the context of a lung cancer detection task using CT scan images. These techniques
are designed to improve model convergence, accuracy, and generalization across multiple hospitals with
heterogeneous data. We demonstrate the effectiveness of these techniques by applying them to the Kaggle lung cancer
dataset and comparing the performance of the advanced aggregation methods against the baseline FedAvg approach.
The main contributions of this paper are:

e The integration of FedProx, FedMA, and FedAvg+ to tackle the challenges of data heterogeneity in Federated

Learning.

e An evaluation of these aggregation techniques in the context of lung cancer detection, using the Kaggle CT scan
dataset.

e A detailed comparison of the model’s performance in terms of accuracy, sensitivity, and other performance
metrics.

e Insights into how these advanced aggregation techniques can enable more accurate, scalable, and privacy-
preserving lung cancer detection models in real-world healthcare scenarios.
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The rest of the paper is structured as follows: Section 2 provides a review of the related work in Federated Learning,
aggregation techniques, and their application to medical imaging and lung cancer detection. Section 3 outlines the
methodology, including the Federated Learning setup, the advanced aggregation techniques, and the experimental
design. Section 4 presents the experimental results, comparing the performance of the proposed approach with the
baseline FedAvg method. Section 5 concludes the paper with a discussion of the results, limitations of the study, and
potential directions for future work.

2. Related Works

Lung cancer detection has greatly benefited from advancements in machine learning (ML) and deep learning (DL),
particularly in medical imaging analysis. However, privacy concerns and data-sharing restrictions limit the
development of robust centralized models. Federated Learning (FL) has emerged as a promising solution that allows
multiple healthcare institutions to train models collaboratively while preserving patient data privacy. This section
reviews recent studies on lung cancer detection using FL, addressing the challenges of data heterogeneity and
exploring advanced aggregation techniques that enhance FL model performance.

2.1 Federated Learning for Lung Cancer Detection

Traditional ML models for lung cancer detection often rely on centralized datasets, where hospitals and research
institutions share patient data to train a single robust model. While these centralized approaches have shown high
accuracy in medical imaging tasks, they pose significant privacy risks and regulatory challenges, especially under
stringent data protection laws such as HIPAA and GDPR [14]. Federated Learning (FL) provides an alternative by
enabling distributed training, where models are updated locally on hospital servers, and only model parameters are
shared, ensuring patient data confidentiality.

Ardilaetal. in [15] demonstrated that deep learning models trained on large-scale lung cancer datasets outperformed
radiologists in nodule detection and malignancy prediction [15]. The authors proposed a deep learning model that
analyzed both current and prior CT scans to predict lung cancer risk. The model achieved a 94.4% AUC on 6,716
cases from the National Lung Cancer Screening Trial and performed similarly on an independent validation set of
1,139 cases. In reader studies, it outperformed six radiologists when prior scans were unavailable, reducing false
positives by 11% and false negatives by 5%. When prior scans were available, its performance matched that of
radiologists. This demonstrates the potential of deep learning to enhance lung cancer screening accuracy, efficiency,
and global adoption.

However, the availability of such large data sets remains a challenge due to privacy concerns. To address this, the
authors in [16] applied FL to medical imaging, proving its effectiveness in training robust models while preserving
sensitive patient data [16]. In the literature [17], numerous solutions leverage Federated Learning, a method that
enables training deep learning models on large-scale datasets distributed across multiple data centers. This approach
ensures privacy by eliminating the need to transfer sensitive patient data. This paper aims to analyze state-of-the-art
solutions, highlighting key workflows and methodologies. It examines the datasets used, architectural choices, and
prevalent challenges encountered in medical applications. Additionally, the study explores common limitations in
existing works and discusses potential future advancements to overcome these challenges.

A recent study by authors in [18] introduced an FL-based approach for lung nodule classification, demonstrating
that FL-trained models achieved accuracy comparable to centralized models while ensuring data security. This study
demonstrates that federated learning across ten institutions achieves 99% of the model quality obtained with
centralized data. It evaluates generalizability on external institutions and analyzes the impact of data distribution on
model performance. The findings highlight that multi-institutional collaborations enhance model quality despite
potential errors introduced by the federated approach. A comparison with other collaborative-learning methods
confirms the superiority of federated learning. The study also discusses practical implementation aspects, emphasizing
its potential to enable training on large-scale datasets, thereby advancing precision and personalized medicine.

Dayan et al. [19] further validated FL’s effectiveness in radiology applications, showing that it improved model
generalization across diverse medical imaging dataset. In this study, we utilized data from 20 institutes worldwide to
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train a Federated Learning (FL) model named EXAM (Electronic Medical Record (EMR) Chest X-ray Al Model),
designed to predict the future oxygen needs of symptomatic COVID-19 patients. The model takes into account vital
signs, laboratory data, and chest X-rays as inputs. EXAM achieved an average area under the curve (AUC) greater
than 0.92 for predicting outcomes at both 24 and 72 hours after the patient's initial presentation to the emergency
room. It demonstrated a 16% improvement in average AUC across all participating sites and a 38% increase in
generalizability compared to models trained on data from a single site. At the largest independent test site, EXAM
reached a sensitivity of 0.950 and specificity of 0.882 for predicting the need for mechanical ventilation or death
within 24 hours. This study highlights how FL enabled swift collaboration in data science without the need for data
exchange, resulting in a model that generalized well across diverse, unharmonized datasets for predicting clinical
outcomes in COVID-19 patients, paving the way for wider adoption of FL in healthcare.

Despite these advancements, a major limitation of FL is data heterogeneity, where medical datasets across
institutions differ in imaging protocols, scanner types, and patient demographics. Standard FL methods like Federated
Averaging (FedAvg) assume data is Independent and Identically Distributed (11D), but real-world medical data is often
non-11D, leading to slow convergence and suboptimal model performance [20]. FedAV(g can be used to build models
on distributed clinical data, such as electronic health records, without the need for data exchange or centralization[21].
In [22], the authors introduced an FL-based method for detecting lung cancer in medical images, utilizing Transfer
Learning to set initial weights. With this approach, we achieved an impressive accuracy of 91.03% in lung cancer
detection. This highlights the potential of FL in enabling accurate and privacy-preserving medical diagnoses.

To overcome this, researchers have proposed advanced aggregation techniques such as FedProx, FedMA, and
FedAvg+ to improve FL model performance in non-11D settings.

2.2 Advanced Aggregation Techniques in Federated Learning

To mitigate the effects of data heterogeneity in FL, researchers have introduced enhanced aggregation techniques that
improve model convergence and classification accuracy [23].

o FedProx: FedProx is a federated optimization algorithm designed to tackle the challenges of heterogeneity
from both theoretical and empirical perspectives. A key insight in developing FedProx is recognizing the
interplay between system and statistical heterogeneity in federated learning. Li et al. (2020) [24] proposed
FedProx, which incorporates a proximal term into the loss function to stabilize training in heterogeneous
environments. Unlike FedAvg, which assumes uniform local updates, FedProx allows individual institutions
to perform varying numbers of local updates while maintaining model consistency. Studies applying FedProx
in medical imaging have demonstrated improved convergence and robustness in non-11D settings [25].

e FedMA: Wang et al. [26] introduced FedMA, a model-matching algorithm that preserves the structural
relationships of local models during aggregation. Unlike FedAvg, which simply averages model weights,
FedMA identifies and matches similar neurons across different local models before aggregation. This method
has been shown to be effective in preserving fine-grained imaging features in FL-based medical applications
[12].

e FedAvg+: is an extension of the Federated Averaging (FedAvg) algorithm, designed to enhance the
performance of Federated Learning (FL) in scenarios involving non-Independent and Identically Distributed
(non-11D) data. While FedAvg operates by averaging model updates from multiple clients, FedAvg+
incorporates additional mechanisms to address challenges arising from data heterogeneity among clients.
This adaptation aims to improve model convergence and generalization in federated settings where data
distributions vary significantly across clients [10], [27].

The studies discussed above highlight the potential of FL in lung cancer detection by enabling privacy-preserving
collaboration among hospitals. While FedAvg serves as a baseline aggregation method, its limitations in handling data
heterogeneity necessitate the use of advanced techniques like FedProx, FedMA, and FedAvg+. These methods
improve model stability, convergence speed, and classification accuracy, making FL a viable solution for scalable
lung cancer detection across diverse healthcare institutions. In this paper, we build upon these advancements by
implementing and evaluating FedProx, FedMA, and FedAvg on a real-world lung cancer dataset. Our experimental
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results assess their impact on detection accuracy, convergence speed, and overall model robustness in non-11D medical
environments.

3. The Proposed Model

In this section, we introduce the proposed Federated Learning (FL) model for lung cancer detection, which integrates
advanced aggregation techniques and the K-Nearest Neighbors (KNN) classifier to address the challenges posed by
data heterogeneity in medical imaging. Our model incorporates three aggregation methods—FedProx, FedMA, and
FedAvg+—to enhance classification accuracy and robustness. Our approach systematically assesses each aggregation
method independently to gauge its effectiveness. Additionally, we investigate hybrid combinations of these
techniques, analyzing their influence on model accuracy and robustness to identify the most optimal aggregation
strategy. These techniques improve convergence speed, model performance, and adaptability across non-11D datasets
commonly found in healthcare institutions.

3.1 Federated Learning Framework

The Federated Learning framework adopted in this study follows the standard FL process, where each participating
institution (or hospital) trains a local model on its own dataset and periodically shares model updates (i.e., model
weights) with a central server. The central server aggregates these updates to form a global model, which is then
distributed back to the participating institutions for further training. This collaborative learning approach ensures that
sensitive patient data never leaves the local institution, thus preserving privacy while leveraging a collective dataset
to improve model performance. The FL framework typically operates in rounds as shown in Figure 1, with each round
consisting of the following steps:
1. Local Training: Each participating institution trains a local model using its own dataset.
2. Model Update: The local model updates are sent to the central server.
3. Model Aggregation: The central server aggregates the local model updates using one of the advanced
aggregation techniques (FedProx, FedMA, or FedAvg+).
4. Global Model Update: The aggregated model is distributed back to all institutions for further training in the
next round.

Central FL Server |

— -
— / \ H"“‘-—___q__q_

Distribute Global Modé_lp Distribute Global Model Distribute Global Model \

. . '

‘ Hospital 1 Hospital 2 Hospital N
Local Training Local Training Local Training Update Global Model
Local Model 1 ‘ ‘ Local Model 2 ‘ ‘ Local Model N
\ '. | !
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Figl. Federated Learning (AL) architecture for Lung Cancer Detection Model
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3.2 Advanced Aggregation Techniques

In Federated Learning, aggregation techniques play a crucial role in balancing local updates and ensuring global model
stability. Our study evaluates three advanced aggregation techniques designed to enhance performance in non-11D
healthcare data settings:

3.2.1 FedProx

FedProx (Federated Proximal) extends the standard FedAvg approach by introducing a proximal term to mitigate the
impact of heterogeneous data distributions. This technique stabilizes local training by restricting drastic model weight
deviations and ensures faster convergence and better generalization across diverse hospital datasets. Mathematically,
FedProx modifies the loss function by adding a proximal term:

u
lreaprox(W) = l(w) + E{W — wt}?

where w represents local model parameters, wt is the global model, and u is a hyperparameter controlling the strength
of the constraint.

3.2.2 FedMA

FedMA (Federated Matched Averaging) is an adaptive aggregation technique that aligns neuron representations across
different local models before averaging. Unlike FedAvg, which assumes parameter-wise alignment, FedMA
dynamically matches neurons based on their importance, leading to more effective model fusion in heterogeneous
settings.FedMA performs the following steps:

1. Ildentifies corresponding neurons across local models.

2. Matches them based on activation patterns.

3. Averages the matched neurons to create a more structurally aligned global model.
This method is particularly useful for lung cancer detection, as variations in CT scan datasets across hospitals can lead
to differing feature representations that require careful aggregation.

3.2.3 FedAvg+

FedAvg+ is an enhanced version of FedAvg that incorporates adaptive learning rate adjustments based on local dataset
characteristics. Unlike FedAvg, which treats all local updates equally, FedAvg+ assigns different learning rates based
on data distribution, prioritizes well-generalized models while reducing the impact of outliers, and improves
convergence speed and reduces performance fluctuations in non-11D environments. The aggregation function in
FedAvg+ is given by:

K
Wiy = Z O Wi
K=1
where «a, is a weighting factor computed based on local model quality.

3.3 Implementation and Dataset

The flow chart of the proposed model is shown in Figure 2. The flowchart outlines the step-by-step process of the
proposed Federated Learning (FL) model for lung cancer detection, integrating FedProx, FedMA, and FedAvg+
aggregation techniques to address data heterogeneity. The FL process for lung cancer detection begins with multiple
hospitals or medical institutions that voluntarily participate in the FL framework. Each hospital maintains a local
dataset consisting of CT scan images of patients, which are used for lung cancer detection. Unlike traditional machine
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learning approaches that require centralized data storage, FL allows hospitals to collaboratively train a shared model
while keeping sensitive patient data within their local servers.
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Fig2. The Block diagram of the proposed Advanced FL Model for Lung Cancer Detection.

3.3.1. Local Model Training at Each Hospital

Once the FL process is initiated, each participating hospital trains a deep learning model locally using its own dataset.
The model learns to identify patterns in CT scan images that indicate the presence of lung cancer. Importantly, this
training occurs independently at each hospital, ensuring that patient data remains private and is never shared outside
the institution. Instead of transmitting raw images or patient records, only the learned model parameters (such as
weights and gradients) are used for further processing.

3.3.2. Secure Model Update Transmission

Upon completing local training, each hospital sends only its model updates (i.e., optimized weights and gradients) to
a central Federated Learning server. These updates contain crucial learning insights but do not include actual patient
data, thereby maintaining strict privacy and security measures in compliance with healthcare regulations.
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3.3.3. Aggregation of Model Updates at the Central Server

The central FL server gathers model updates from all participating hospitals and performs an aggregation step to
integrate these contributions into a single, optimized global model. To enhance learning performance, we employ
three advanced aggregation techniques:

e FedProx: Introduces a regularization term to mitigate variations in hospital datasets, ensuring stability in
model updates.

e FedMA: Aligns and merges similar neurons across models, improving learning efficiency and maintaining
structural coherence.

e FedAvg+: An advanced version of FedAvg, designed to enhance model performance and convergence in
non-11D medical datasets.

To ensure optimal learning from diverse hospital datasets, which vary in patient demographics, imaging protocols,
and scanner types, our approach evaluates each aggregation method separately. Additionally, we explore hybrid
combinations of these techniques, assessing their impact on overall model accuracy and robustness to determine the
most effective aggregation strategy.

3.3.4. Distribution of the Updated Global Model

After the aggregation step, the newly optimized global model is redistributed to all hospitals. Each institution
downloads and fine-tunes this model using its own local dataset, allowing it to adapt to hospital-specific characteristics
while still benefiting from the collective knowledge gained from other institutions.

3.3.5. Convergence Check and Iterative Training

At the end of each training round, the system evaluates whether the global model has achieved the desired level of
accuracy and generalization. This evaluation is performed based on predefined convergence criteria, such as stability
in model performance across multiple rounds.

e If the convergence criteria are met (Yes), the model is considered sufficiently trained and is finalized for
deployment.

o If the model has not yet converged (No), additional training rounds are conducted. The hospitals continue
their local training, send updated model parameters to the central server, and undergo another round of
aggregation and refinement. This iterative process continues until the model reaches an optimal state.

3.3.6. Deployment for Real-World Lung Cancer Detection

Once the global model has achieved the desired accuracy and stability, it is deployed in real-world hospital settings.
Radiologists and medical professionals can now utilize the trained Al model to analyze CT scan images with high
precision. The deployed model assists in:

e Early lung cancer detection, helping doctors make timely and accurate diagnoses.

¢ Reducing manual workload by providing automated, Al-assisted image interpretation.

e Enhancing medical decision-making by offering insights based on large-scale, multi-institutional training
data.

This FL-based approach ensures that hospitals can collaborate in Al-driven research and diagnosis while strictly
adhering to patient privacy regulations. It also enables scalable and privacy-preserving lung cancer detection,
ultimately improving healthcare outcomes.

3.4 Impact of KNN Classifier

The K-Nearest Neighbors (KNN) classifier plays a crucial role in the proposed FL framework by leveraging its ability
to classify lung cancer cases based on similar measurements. In this study, we thoroughly analyze the impact of KNN
across different FL settings to assess its effectiveness in medical imaging applications. KNN is particularly well-suited
for pattern recognition in lung cancer imaging due to its non-parametric nature, which allows it to adapt to complex
and high-dimensional datasets without requiring explicit assumptions about data distribution. On the other hand,
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unlike deep learning models that require extensive labeled data for training, KNN can perform well even with limited,
imbalanced, or non-11D datasets commonly found in federated learning settings.

By embedding KNN within the FL framework, we ensure that lung cancer detection benefits from collaborative
model training across hospitals while maintaining patient privacy. Figure 3 explores the steps of the integration of
KNN into the Federated Learning ModelThe integration follows these steps:

1. Local Feature Extraction & Training: Each hospital preprocesses its dataset of CT scan images, extracting
features relevant to lung cancer detection. The local KNN classifier is then trained on these features.

2. Model Update Transmission: Instead of sharing raw data, hospitals send encrypted KNN model parameters
(e.g., feature distances and weight distributions) to the central FL server.

3. Aggregation of KNN Models: The central FL server applies FedProx, FedMA, or FedAvg+ to aggregate the
KNN models, ensuring that local variations in imaging protocols, scanner types, and patient demographics
are accounted for.

4. Global Model Redistribution: The refined global model is sent back to participating hospitals, enabling them
to benefit from collective intelligence while maintaining data privacy.

Local Feature Extraction
and Training

/

Extract features from CT
scans

'

Model Update Transmission

Send encrypted KNN
L Send refined model back
parameters

'

Aggregation of KNN Models

| )
Apply FedProx FedMA
FedAve

W

Global Model Redistribution

Fig.3. Steps of the integration of KNN into the Federated Learning Model
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4. Performance Evaluation and Experimental Results

In this study, the MATLAB software environment was employed to implement and evaluate the Federated Learning
(FL) model for lung cancer detection using CT scan images. The configuration is designed to replicate a realistic
scenario in which medical institutions participate in the federated learning process while keeping their data localized
and private. This section will describe the datasets, evaluation metrics, experimental configurations, and comparative
analysis used to validate your FL-based KNN model for lung cancer detection.

4.1 Dataset Description

The dataset used in this study comprises CT scan images of lung tissue, collected from multiple healthcare institutions,
including hospitals and medical centers. To ensure patient privacy, all data undergo anonymization and encryption.
This dataset integrates contributions from a diverse range of national and international public and private
organizations, including medical clinics and hospitals. Each participating institution maintains control over its local
dataset, preserving data sovereignty while enabling collaborative learning. For this study, the dataset was sourced
from the Kaggle open-source platform[28].

The collected dataset consists of a total of 804 CT medical images, with 159 images categorized as normal and 645
images representing abnormal cases. These images are then distributed between two clients, each receiving 402
images. The images are preprocessed by normalizing pixel intensities, resizing to a uniform dimension, and extracting
relevant features using edge detection and histogram analysis.

4.2 Evaluation Metrics

The proposed approach systematically evaluates each aggregation method individually to assess its unique
contribution to model performance. This involves conducting controlled experiments where each technique—
FedProx, FedMA, and FedAvg+—is applied separately to measure its impact on classification accuracy,
generalization capability, and computational efficiency.

Beyond individual evaluations, we further explore hybrid combinations of these aggregation techniques to determine
whether integrating multiple methods can yield superior results. This involves designing a multi-strategy aggregation
framework, where different aggregation methods are either alternated across training rounds or selectively applied to
subsets of local models based on their dataset characteristics. By systematically analyzing these hybrid approaches,
we assess their collective impact on model accuracy, convergence speed, and resilience to variations in medical
imaging data.

Through extensive comparative assessments, we aim to identify the most effective aggregation strategy that
optimally balances model accuracy, computational efficiency, and robustness to data heterogeneity, ultimately
improving lung cancer detection in a federated learning setting.

To assess the performance of the proposed Federated Learning (FL) model for lung cancer detection using K-Nearest
Neighbors (KNN), we utilize several evaluation metrics to comprehensively measure the model's ability to correctly
classify CT scan images as either normal or abnormal. These metrics are essential for understanding the effectiveness
of the model in real-world clinical applications, where high diagnostic accuracy and reliable performance are crucial
for early lung cancer detection. The evaluation metrics employed in this study include accuracy, sensitivity, specificity,
precision, and the confusion matrix, each of which provides unique insights into the model's performance across
different classification tasks.

e Accuracy: Accuracy is a fundamental metric that reflects the overall proportion of correctly classified
samples (both normal and abnormal) relative to the total number of samples. It provides a general indication
of how well the model performs across all classes. Mathematically, accuracy is computed as:

TP + TN
Total number of samples

Accuracy (Acc.) =

10
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where TP denotes true positive cases (correctly classified abnormal cases), and TN denotes true negative cases

(correctly classified normal cases). Higher accuracy indicates a better overall performance of the model.

e Sensitivity (Recall): Sensitivity, also known as recall or the true positive rate, measures the proportion of
actual positive cases (abnormal cases) correctly identified by the model. It is particularly important in medical
applications, where missing a positive case (i.e., failing to detect cancer) could have severe consequences.
Sensitivity is calculated as:

TP

TP+ FN

A high sensitivity is critical in ensuring that the model can effectively identify as many positive cases as possible,

reducing the risk of false negatives (FN).

e Specificity: Specificity, or the true negative rate, measures the proportion of actual negative cases (normal
cases) that are correctly identified by the model. This metric is important to avoid misclassifying healthy
patients as abnormal, which could lead to unnecessary treatments or further tests. Specificity is defined as:

Recall(Rec) =

Specificity (Spe.) = TN+ FP

High specificity ensures that the model minimizes false positives, making it an essential metric for balancing

sensitivity and ensuring accuracy in normal case detection.

e Precision: Precision measures the proportion of predicted positive cases (abnormal cases) that are actually
correct. It helps assess how well the model avoids false positives, ensuring that when the model predicts an
abnormal case, it is most likely correct. Precision is calculated as:

Precision (Pre.) = TP
recision re.) = TP + FP
High precision indicates that the model is effective at minimizing the misclassification of normal cases as

abnormal.

e Confusion Matrix: The confusion matrix is a comprehensive tool that summarizes the performance of the
classification model by showing the counts of true positives, true negatives, false positives, and false
negatives. This matrix allows for a more detailed understanding of how the model is performing in each class
(normal and abnormal) and can be used to derive the other evaluation metrics (accuracy, sensitivity,
specificity, and precision).

In this paper, these metrics were calculated for each participating hospital's local dataset, as well as for the
aggregated global model. By evaluating the model performance across different hospitals with potentially varying
data distributions, we can ensure that the FL approach is robust, effective, and capable of achieving high
diagnostic performance in diverse real-world clinical settings.

4.3 Experimental Results and Comparative Analysis

In this section, we present the experimental results of applying our Federated Learning (FL) model for lung cancer
detection using the K-Nearest Neighbors (KNN) classifier. The results are organized into two subsections: one for
the evaluation of the aggregation methods used separately and the other for the evaluation of the combination of
aggregation methods. Each subsection includes the performance metrics (accuracy, sensitivity, specificity, precision,
and confusion matrix) obtained from the experiments, as well as insights into the model’s behavior under different
conditions.

4.3.1  Results Using Aggregation Methods Separately

In this part, the performance of the FL model was evaluated using each aggregation method (FedProx, FedMA, and
FedAvg+) individually. These methods were tested separately to assess their individual impact on the lung cancer
detection task. Table 2 summarizes the performance of the FedProx, FedMA, and FedAvg+ methods based on the
evaluation metrics.
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TABLE 2.
Performance Metrics for Different Aggregation Methods in FL + KNN Classifier

FL aggregation Weight FL + KNN Classifier
method Factor Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)
FedAvg+ 0.17 98.56 98.66 98.15 99.55
FedProx 0.33 98.20 98.21 98.15 99.55
FedMA 0.17 99.28 99.55 98.15 99.55
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Fig.4. The confusion Matrix of the FedProx, FedMA, and FedAvg+ separately.
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The FedAvg+ method, which applies adaptive learning rates during aggregation, achieved an accuracy of 98.56%,
sensitivity of 98.66%, specificity of 98.15%, and precision of 99.55%. These results indicate that FedAvg+ is effective
in maintaining a balanced model performance across different hospital datasets. However, it was slightly outperformed
by FedProx technique in terms of sensitivity and accuracy.

The FedProx method, which introduces a proximal term to improve model stability in heterogeneous data
environments, achieved an accuracy of 98.20%, sensitivity of 98.21%, specificity of 98.15%, and precision of 99.55%.
While FedProx provided comparable precision and specificity to FedAvg+, it showed slightly lower accuracy,
suggesting that it might be less effective in fully capturing variations in local datasets.

The FedMA method, which aligns neurons before averaging to enhance model fusion, delivered the highest
performance among the three methods, achieving 99.28% accuracy, 99.55% sensitivity, 98.15% specificity, and
99.55% precision. The superior sensitivity of FedMA suggests that it is particularly effective in correctly identifying
abnormal lung cancer cases, making it a highly suitable choice for medical image classification. Figure 4 shows the
confusion Matrix of the FedProx, FedMA, and FedAvg+ separately.

5. Conclusion and Future Work

In this paper, we developed a Federated Learning (FL) model integrated with the K-Nearest Neighbors (KNN)
classifier for lung cancer detection using CT scan images. To address data heterogeneity and enhance model
performance, we employed three advanced FL aggregation techniques—FedProx, FedMA, and FedAvg+—
individually. Our experimental results demonstrated that FedMA approaches significantly improve classification
accuracy, sensitivity, specificity, and precision while maintaining data privacy and security across decentralized
healthcare institutions.

Among the individual aggregation methods, FedMA achieved the highest accuracy of 99.28%, while FedAvg+ and
FedProx also exhibited strong performance.

For future work, we aim to expand our dataset by incorporating a larger and more diverse collection of CT scan
images from multiple healthcare institutions to further validate the model’s generalization capability. Additionally,
optimizing the aggregation strategy by developing adaptive hybrid approaches that dynamically adjust based on data
distribution and hospital-specific characteristics will be explored. Enhancing model efficiency is another key focus,
particularly by reducing computational overhead in FL training while improving communication efficiency between
local clients and the central server. Moreover, we plan to incorporate deep learning models, such as convolutional
neural networks (CNNs), alongside KNN to enhance feature extraction and classification performance in FL-based
medical applications. Finally, real-world deployment of the proposed framework will be pursued, integrating it into
computer-aided diagnosis (CAD) systems to assist radiologists in early lung cancer detection. By addressing these
challenges, our research aims to further improve the effectiveness and applicability of FL-based lung cancer detection,
ensuring more accurate, secure, and scalable Al-driven medical diagnostics.
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