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 The contamination of water resources by transition metals such as manganese (Mn²⁺), cobalt 
(Co²⁺), and copper (Cu²⁺) poses significant environmental and health concerns, necessitating 
the development of sustainable treatment solutions. This study explores the use of activated 
carbon derived from reed biomass as a low-cost, eco-friendly adsorbent for metal removal. An 
Artificial Neural Network (ANN) model was developed using a dataset of 435 experimental 
entries and trained on seven input variables: solution pH, contact time, initial ion 
concentration, adsorbent dosage, specific surface area (SSA), point of zero charge (pHpzc), 
and surface functional group intensity (SFG). The ANN optimized using the Levenberg–
Marquardt algorithm with one hidden layer of eight neurons, demonstrated high predictive 
accuracy, achieving R² values of 0.949 (Mn²⁺), 0.948 (Co²⁺), and 0.923 (Cu²⁺). Sensitivity 
analysis indicated that pH, contact time, SSA, and SFG were the most influential factors. A 
user-friendly graphical interface was also developed for real-time adsorption predictions. 
These findings highlight the effectiveness of reed-derived activated carbon and the ANN 
model as robust tools for forecasting and optimizing heavy metal removal from wastewater. 
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1. Introduction 

The escalating contamination of aquatic ecosystems by heavy metals has become a matter of serious environmental 
and public health concern worldwide[1], [2]. Toxic elements such as lead (Pb), zinc (Zn), copper (Cu), manganese 
(Mn), cobalt (Co), nickel (Ni), and cadmium (Cd) are commonly discharged into water bodies through diverse 
anthropogenic activities including electroplating, metal mining, tanneries, fertilizer industries, and battery 
manufacturing[3], [4]. Unlike many organic pollutants, heavy metals are non-biodegradable and tend to bioaccumulate 
in living organisms, potentially entering the food chain and exerting toxicological effects such as carcinogenicity, 
neurotoxicity, and organ damage in humans and animals[5]–[7]. This persistence and mobility necessitate the 
development of efficient and sustainable technologies for their removal from industrial and municipal wastewater 
streams[8], [9]. 
Among the numerous physicochemical and biological treatment strategies developed for metal removal including 
chemical precipitation, ion exchange, membrane filtration, coagulation–flocculation, and bioremediation adsorption 
has emerged as one of the most promising due to its simplicity, low cost, and high efficiency even at low metal 
concentrations[8], [10]. Activated carbon (AC), owing to its high specific surface area, abundant porosity, and 
modifiable surface functional groups, has long been recognized as a potent adsorbent for various pollutants including 
heavy metals[11], [12]. The use of low-cost activated carbons derived from agricultural or industrial wastes further 

https://astj.journals.ekb.eg/
mailto:merna.ahmed@et5.edu.eg


Merna El shafie et al. / Application of Machine Learning in Predicting Heavy Metal Uptake by Activated Carbon Adsorbents 

 

2 

 

enhances the economic and environmental appeal of this technique. However, the adsorption process is inherently 
multifactorial, affected by a complex interplay of solution chemistry (e.g., pH, ionic strength), adsorbent properties 
(e.g., surface area, point of zero charge, functional groups), and operational parameters (e.g., contact time, dosage, 
initial metal concentration .[13]–[17]. 
Traditional approaches to studying adsorption systems often rely on empirical models or one-factor-at-a-time 
experiments, which are limited in scope and fail to capture the interactive and nonlinear nature of real-world 
systems[13], [18], [19]. In recent years, the advent of machine learning (ML) has provided powerful new avenues for 
modeling and optimizing adsorption processes. ML techniques are capable of identifying intricate patterns and 
relationships within large datasets, offering high predictive accuracy without prior assumptions about the form of the 
underlying function[20]–[22]. 
Artificial Neural Networks (ANNs), in particular, are widely utilized for environmental modeling due to their ability 
to approximate complex nonlinear functions and generalize from limited data[23]–[25]. Other machine learning 
algorithms such as Random Forest (RF), Gradient Boosting Decision Trees (GBDT), and Support Vector Regression 
(SVR) have also been successfully employed to model various aspects of water and wastewater treatment 
systems[26]–[28]. These algorithms can be trained to predict adsorption efficiency based on multiple input variables 
including physicochemical characteristics of the adsorbent and the solution, allowing for rapid scenario analysis and 
optimization[29]–[32]. 
The integration of ML techniques into adsorption science enables not only high-precision prediction but also provides 
interpretability tools such as sensitivity analysis and feature importance ranking, which are essential for practical 
applications. These tools allow researchers and engineers to identify the most influential parameters governing metal 
uptake and guide the rational design of optimized treatment systems[33]–[35]. 

1.1. Research Significance and Scope   

The present study focuses on the application of an Artificial Neural Network (ANN) model to predict the adsorption 
efficiency of three heavy metals manganese (Mn), cobalt (Co), and copper (Cu) using activated carbon prepared from 
reed biomass. A comprehensive experimental dataset was used, encompassing key input variables such as solution 
pH, contact time, initial metal ion concentration, adsorbent dosage, specific surface area, point of zero charge, and 
surface functional group intensity. These parameters were selected based on their known influence on adsorption 
performance. The ANN model was trained and validated to forecast the percentage adsorption efficiency for each 
metal ion, and its predictive performance was assessed using statistical indicators including the coefficient of 
determination (R²) and root mean square error (RMSE). Additionally, sensitivity analysis was conducted to identify 
the most influential variables affecting the adsorption process. The findings of this work aim to support the 
development of reliable, data-driven approaches for optimizing biosorbent-based treatment systems for industrial 
wastewater remediation. 

2. Materials and Methods  

To develop an ANN model for predicting the adsorption efficiency of Mn²⁺, Co²⁺, and Cu²⁺ ions using activated carbon 
derived from reed biomass, the following methodological steps were undertaken : 

• A comprehensive dataset was compiled exclusively from literature sources, focusing on experimental studies 
involving the adsorption of Mn²⁺, Co²⁺, and Cu²⁺ ions onto reed biomass-derived activated carbon . 

• The final dataset consisted of 435 complete experimental data entries. These entries included unequally 
distributed records for the three metal ions, based on the availability of reported data. Each record contained 
seven key input parameters: solution pH, contact time, initial metal ion concentration, adsorbent dosage, 
specific surface area (SSA), point of zero charge (pHpzc), and surface functional group intensity (SFG). 

• Input features were selected based on adsorption science and their statistical relevance. Entries with missing 
values were either excluded or completed using mean imputation to ensure dataset integrity. 
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• An Artificial Neural Network (ANN) model was constructed with a single hidden layer, where the number 
of neurons was varied from 5 to 15 to optimize performance. The Levenberg–Marquardt (LM) algorithm was 
employed for training . 

• The optimal ANN configuration was selected based on key performance metrics, including the coefficient of 
determination (R²) and the root mean square error (RMSE), evaluated on both training and unseen testing 
subsets . 

• To assess the model’s predictive power, the ANN’s outputs were validated against observed experimental 
trends from the literature . 

• A sensitivity analysis was carried out to determine the relative influence of each input parameter on the 
adsorption efficiency for Mn²⁺, Co²⁺, and Cu²⁺ ions . 

• A graphical user interface (GUI) was developed to provide an accessible prediction tool, allowing users to 
estimate metal adsorption efficiency under varied conditions. 

A simplified methodology flowchart illustrating the full ANN development process is provided in Fig. 1. 

 
                                                      

2.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                   
Data Collection and Feature Selection   

Experimental data for the adsorption of Mn²⁺, Co²⁺, and Cu²⁺ ions using activated carbon derived exclusively from 
reed biomass were obtained through a combination of laboratory experiments and curated literature sources. A total 
of 435 data points were compiled to reflect a wide range of operating conditions relevant to heavy metal removal in 
aqueous solutions. All data were extracted directly from experimental measurements, figures, and tables without 
author interpretation bias[36], [37], [46], [47], [38]–[45]. 
The dataset was organized into three primary categories: adsorbent characteristics, adsorption process conditions, and 
fixed properties of the target metal ions. Seven key variables were selected as input parameters for the Artificial Neural 
Network (ANN) model based on their scientific relevance and data availability: 

• solution pH (pH_sol), 
• contact time (t, min), 
• initial metal ion concentration (C₀, mg/L), 
• adsorbent dosage (D, g/L), 
• specific surface area (SSA, m²/g), 
• point of zero charge (pHpzc), and 
• surface functional group intensity (SFG, arbitrary units from FTIR peaks). 
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Only complete data entries with non-missing values for all seven variables were used to train and test the ANN. 
Although the physicochemical properties of the metal ions, such as ionic radius and electronegativity, are important 
to adsorption mechanisms, these were treated as fixed characteristics per ion type and thus were not included as ANN 
inputs. 
The Surface Functional Group Intensity (SFG) parameter was quantified based on Fourier-transform infrared 
spectroscopy (FTIR) analysis of the activated carbon samples. Specifically, SFG values were derived from the 
normalized absorbance intensities of characteristic peaks corresponding to key functional groups known to contribute 
to metal adsorption. These included the hydroxyl (–OH) stretching vibration around ~3420 cm⁻¹, carbonyl (C=O) 
stretching near ~1710 cm⁻¹, and carboxyl (–COOH) symmetric/asymmetric bending between ~1380 and ~1450 cm⁻¹. 
The individual absorbance values for these peaks were normalized and then combined to generate a composite SFG 
score, representing the relative intensity of adsorption-relevant surface functionalities across different samples. 
 
Any missing values in SFG or pHpzc were handled using mean imputation to ensure dataset completeness. Data 
normalization and scaling procedures were applied before model development and are detailed in the Supporting 
Information (Table  S1 to Table S3). 

2.2. Dataset Description 

In this study, an artificial neural network (ANN) model was developed to predict the adsorption efficiency (%) of 
heavy metal ions (Mn²⁺, Cu²⁺, and Co²⁺) using activated carbon-based adsorbents. The model considers key 
physicochemical parameters that significantly influence adsorption behavior. The input variables include solution pH 
(pH_sol), contact time (min), initial concentration (C₀, mg/L), adsorbent dosage (g/L), specific surface area (SSA, 
m²/g), point of zero charge (pHpzc), and surface functional groups intensity (SFG, a.u.). The output variable is the 
adsorption efficiency (%) for each heavy metal ion . 
Tables 1 to Table 3 present the statistical summary of the dataset including minimum, maximum, average, and 
standard deviation values for all variables.  
Surface Functional Group Intensity (SFG) is expressed in arbitrary units (a.u.), as it is calculated from normalized 
FTIR absorbance values. The use of a.u. is standard for spectroscopic data where relative comparisons of peak 
intensities are made rather than absolute quantification. This approach allows for consistent representation of 
functional group presence across all samples. 
 

TABLE 1 
 Statistical Summary of Input and Output Variables (Mn²⁺) 

Variable Mean Std. Dev. Min Max 

pH_sol 6.21 1.11 4.62 7.80 

Time (min) 72.33 26.30 37.00 109.00 

Initial Conc. (mg/L) 44.17 17.45 21.00 70.00 

Dosage (g/L) 0.495 0.131 0.36 0.74 

SSA (m²/g) 822.33 74.47 702.00 907.00 

pHpzc 6.67 0.25 6.35 6.90 

SFG (a.u.) 0.823 0.031 0.76 0.84 

Adsorption Efficiency (%) 84.85 5.65 76.70 
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TABLE 2 
Statistical Summary of Input and Output Variables (Co²⁺) 

Feature Mean Std Dev Min Max 
pH_sol 5.55 0.74 4.2 6.6 

Time (min) 71.17 26.12 30 120 
Initial Conc. (mg/L) 59.6 25.16 20 100 

Dosage (g/L) 0.465 0.1 0.33 0.7 
SSA (m²/g) 828.57 23.88 790 860 

pHpzc 6.48 0.15 6.2 6.8 
SFG (a.u.) 0.799 0.028 0.75 0.85 

Adsorption Efficiency (%) 88.97 3.29 84 96 

 

TABLE 3 
Statistical Summary of Input and Output Variables (Cu²⁺) 

Feature Mean Std Dev Min Max 
pH_sol 5.4 0.96 4 6.5 

Contact Time (min) 69 32.86 30 120 
Initial Conc. (mg/L) 32 13.51 15 50 

Dosage (g/L) 0.52 0.15 0.3 0.7 
SSA (m²/g) 819 23.02 790 850 

pHpzc 6.52 0.16 6.3 6.7 
SFG (a.u.) 0.786 0.038 0.74 0.84 

Adsorption Efficiency (%) 88.26 3.57 82.9 92.3 

 

 

The ANN model aims to uncover the nonlinear relationships between these input parameters and metal ion uptake 
efficiency. Figs. 2 to Fig.4 show the frequency distribution of the key input variables, confirming a diverse and 
balanced dataset suitable for training, validation, and testing purposes. 
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Fig. 2. Frequency distribution of the input, and output variables for Mn²⁺ ions. 
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Fig. 3. Frequency distribution of the input, and output variables for Co²⁺ ions. 
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Fig. 4. Frequency distribution of the input, and output variables for Cu²⁺ ions. 

 

 

2.3. Effective Parameters and Correlation 

Figs. 5 to Fig. 7 illustrate the correlation between various input parameters and the adsorption efficiency (%) for Mn²⁺, 
Cu²⁺, and Co²⁺ ions. The correlation matrices reveal that solution pH (pH_sol) consistently exhibits a moderate positive 
correlation with adsorption efficiency across all three metal ions, indicating its role in enhancing electrostatic 
interactions between the negatively charged activated carbon surface and positively charged metal ions. Contact time 
shows a moderate to strong positive correlation, emphasizing its importance in facilitating prolonged interaction 
between the adsorbent and adsorbate. Specific surface area (SSA) demonstrates a strong positive correlation for all 
ions, highlighting its critical role in providing more active adsorption sites. Adsorbent dosage also shows a notable 
positive correlation, suggesting that higher dosages increase binding site availability, though diminishing returns are 
expected beyond saturation levels. Initial metal concentration (C₀) displays a weak to moderate negative correlation, 
implying that lower concentrations lead to more effective removal due to greater availability of adsorption sites. 
Surface functional group intensity (SFG) exhibits a moderate to strong positive correlation, indicating that higher SFG 
values enhance uptake performance by providing additional binding functionalities such as carboxyl or hydroxyl 
groups. Conversely, pHpzc shows mixed effects, with weak negative correlations observed for Cu²⁺ and Co²⁺, 
suggesting that lower pHpzc values may favor adsorption in these cases. Overall, pH_sol, contact time, and SSA 
emerge as the most influential factors, validating empirical trends and guiding feature selection for ANN model 
training and optimization . 
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Fig. 5. Correlation plot between each input variable and the Adsorption efficiency in the dataset for Mn²⁺ ions. 

 

Fig. 6. Correlation plot between each input variable and the Adsorption effeciency in the dataset for Co²⁺ ions. 
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Fig. 7. Correlation plot between each input variable and the Adsorption efficiency in the dataset for Cu²⁺ ions. 

3. ANN Architecture and Model Training  

An artificial neural network (ANN) consists of interconnected processing elements called neurons, which operate in 
layers. Each connection has an associated weight that influences the strength of the signal passed from one neuron to 
the next. During training, the ANN randomly assigns weights and subsequently adjusts them through backpropagation 
a process that minimizes the prediction error by comparing outputs to actual target values. The network then updates 
weights using a learning algorithm based on the gradient of the loss function. 
The strength of ANN lies in its ability to model nonlinear and complex relationships between input and output 
variables, even without prior knowledge of the system dynamics. In this study, the ANN was designed to predict 
adsorption efficiency (%) of heavy metals (Mn²⁺, Cu²⁺, Co²⁺) using seven input variables: solution pH (pH_sol), 
contact time (min), initial concentration (C₀), adsorbent dosage (g/L), specific surface area (SSA), point of zero charge 
(pHpzc), and surface functional groups (SFG). 
As shown in Eq. (1), the input signals are weighed and summed, then passed through an activation function such as 
the tang-sigmoid (Eq. 2). The final output is computed by another transformation using a purelin function (Eq. 3): 
𝑆𝑆𝑗𝑗 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗𝑛𝑛

𝑖𝑖=1                                                                                                                                           Eq.1 

𝑦𝑦𝑗𝑗 = 𝑓𝑓�𝑆𝑆𝑗𝑗� = �1 + 𝑒𝑒𝑒𝑒𝑒𝑒−�2𝑆𝑆𝑗𝑗�� − 1,                                                                                                             Eq.2 

𝑦𝑦𝑘𝑘 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑘𝑘𝑚𝑚
𝑗𝑗=1 �,                                                                                                                 Eq.3 

where 𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗  is the weighted sum generated at the jth hidden   neuron; 𝑥𝑥𝑖𝑖  is the input value from the ith input neuron; 
𝑤𝑤𝑖𝑖𝑖𝑖 and 𝑤𝑤𝑗𝑗𝑗𝑗 are the weights added to the hidden layer and the output layer neurons, respectively; 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 
are the  biases added to the hidden layer and the output layer neurons, respectively; 𝑦𝑦𝑗𝑗  is the processed output from 
the jth hidden neuron; 𝑦𝑦𝑘𝑘 is the processed output from the kth output neuron; n is the number of input neurons, and m 
is number of neurons in the hidden layer. 
All inputs were normalized in the range of (-1, 1) to ensure convergence and improve the learning efficiency of the 
ANN using Eq. (4): 
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𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 = 2 × (𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

− 1                                                                                                          Eq.4 

where 𝑋𝑋 represents the data sample,  𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛represents the normalized data sample, while 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 are the 
minimum and maximum values of the data for the parameter under consideration . 
The dataset was divided into three subsets: 70% for training, 15% for testing, and 15% for validation. The Levenberg-
Marquardt (LM) algorithm was employed for training due to its rapid convergence and accuracy in nonlinear 
regression problems . 
A sensitivity analysis was conducted by varying the number of neurons in the hidden layer from 5 to 15 across 11 
learning algorithms to identify the best ANN architecture. The performance was evaluated based on the mean squared 
error (MSE) for training, validation, and testing sets. The optimal model consisted of seven input neurons, one hidden 
layer with 8 neurons, and one output neuron. This configuration yielded the lowest MSE values across all datasets, 
confirming its suitability for adsorption efficiency prediction in this context. Tables S4, S5, and S6 represent the 
results. The numbers in bold (4.95E-06, 4.01E-05, and 4.88E-04) indicate the values of the best training performance, 
the best validation performance, and the best testing performance, respectively. The 1st algorithm (the LM algorithm) 
with 8 neurons in one hidden layer showed the best performance. The final ANN model comprises an input layer with 
eight inputs, an output layer with two outputs, and a hidden layer with eight neurons. 

3.1. ANN Model Performance and Regression Analysis 

Fig. 8 presents the training, validation, and testing performance curves along with regression plots of the ANN model 
used to predict the adsorption efficiency of Mn²⁺, Co²⁺, and Cu²⁺ ions onto activated carbon. The model demonstrated 
rapid convergence and high predictive accuracy across all three datasets, with the minimum mean squared error (MSE) 
achieved at different epochs 5th epoch for Mn²⁺, 9th for Co²⁺, and 3rd for Cu²⁺ indicating optimal generalization and 
minimal overfitting for each respective ion. The regression plots reveal excellent agreement between actual and 
predicted values, as evidenced by the high coefficients of determination (R²) as shown in Figs.9 to Fig11: for Mn²⁺, 
R² values were 0.950 (training), 0.949 (testing), 0.904 (validation), and 0.946 (overall); for Co²⁺, the corresponding 
R² values were 0.923, 0.948, 0.914, and 0.922; while for Cu²⁺, they reached even higher levels at 0.922, 0.923, 0.935, 
and 0.927 respectively. These consistently high R² values across all subsets confirm a strong linear relationship 
between experimental and predicted outputs, demonstrating that the model effectively captured the underlying 
adsorption behavior for each metal ion. Furthermore, the close alignment of performance metrics across training, 
validation, and testing phases highlights the robustness, stability, and generalizability of the ANN model. With such 
high predictive accuracy and consistent performance, the trained model can now be "frozen" and applied for reliable 
forecasting of adsorption efficiency under new experimental conditions in activated carbon-based heavy metal 
removal systems. 
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a) Mn²⁺ ions                                                         b ) Co²⁺ ions 

 

c ) Cu²⁺ ions 

Fig. 8. Performance of the ANN training process a) Mn²⁺ ions, b ) Co²⁺ ions, and c ) Cu²⁺ ions. 
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Fig. 9. Regression analysis for training, validation, testing, and all data of ANN model for Mn²⁺ ions . 

 

  

  
Fig. 10. Regression analysis for training, validation, testing, and all data of ANN model for Co²⁺ ions. 
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Fig. 11. Regression analysis for training, validation, testing, and all data of ANN model for Cu²⁺ ions. 

3.2. Graphical User Interface (GUI) Development 

A graphical user interface (GUI) was developed in this study based on the optimized ANN model to serve as a user-
friendly tool for predicting the adsorption efficiency of heavy metal ions using activated carbon-based adsorbents. 
The designed GUI is shown in Fig. 12. This tool enables users to input key experimental parameters such as initial 
pH of the solution, contact time, initial metal ion concentration, adsorbent dosage, specific surface area (SSA), point 
of zero charge (pHpzc), and surface functional group intensity (SFG). Upon entering these seven inputs, the GUI 
instantly predicts the adsorption efficiency (%) as the output. For accurate and reliable predictions, the input values 
should fall within the statistical ranges described in Tables 1 to 3, which reflect the dataset used for model training. 
The current version of the GUI is intended for internal academic use and is not publicly available for download. 
Additionally, users are advised that inputs falling significantly outside the training data range may result in lower 
prediction accuracy due to model extrapolation limitations. This predictive tool is intended to assist researchers and 
practitioners in rapidly estimating adsorption performance without the need for extensive laboratory trials. 
 



Merna El shafie et al. / Application of Machine Learning in Predicting Heavy Metal Uptake by Activated Carbon Adsorbents 

 

16 

 

 
Fig. 12. Graphical user interface (GUI) for the proposed ANN model. 

3.3. Model Limitations 

While the developed ANN model demonstrated strong predictive performance within the bounds of the training 
dataset, it is important to recognize certain limitations. First, the model was trained exclusively on experimental data 
for Mn²⁺, Co²⁺, and Cu²⁺ ions using reed biomass-derived activated carbon. As such, its predictive accuracy may 
decline when applied to other heavy metal ions with different physicochemical properties or sorption mechanisms. 
Second, the model's reliability is constrained to the range of input values present in the training dataset. Predictions 
generated from input values that fall significantly outside these ranges may result in extrapolation errors or reduced 
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performance. Therefore, users are advised to interpret such outputs with caution and consider further model retraining 
or hybridization when extending its use to new systems or broader conditions. 
 

4. Summary and Conclusions  

This study developed and validated an ANN model to predict the adsorption efficiency of Mn²⁺, Co²⁺, and Cu²⁺ ions 
using reed biomass-derived activated carbon. Using 435 literature-based experimental records and seven input 
variables (pH, contact time, initial concentration, dosage, SSA, pHpzc, and SFG), the model was optimized with the 
Levenberg–Marquardt algorithm. The best performance was achieved with one hidden layer of eight neurons, yielding 
high accuracy across all ions. Sensitivity analysis identified pH, contact time, SSA, and SFG as key predictors. A GUI 
was also created to facilitate real-time efficiency prediction, demonstrating ANN’s potential in environmental 
modeling. The following is a summary of the study's key conclusions: 

1. The ANN model accurately predicted the adsorption efficiency of Mn²⁺, Co²⁺, and Cu²⁺ ions using reed 
biomass-based activated carbon. 

2. The best-performing ANN architecture included seven input neurons, one hidden layer with 8 neurons, and 
one output neuron, optimized using the Levenberg–Marquardt algorithm . 

3. High predictive accuracy was achieved with R² values exceeding 0.92 and low RMSE, MAE, and MBE 
values across all datasets (training, validation, testing) . 

4. pH, contact time, SSA, and SFG were identified as the most critical factors influencing metal ion removal . 
5. A user-friendly Graphical User Interface (GUI) was created to facilitate practical application of the model 

for experimental prediction . 
6. The model demonstrated strong generalization, minimal overfitting, and applicability across different metal 

ion systems. 

5. Future work 

1. Incorporate additional metal ions (e.g., Pb²⁺, Zn²⁺, Ni²⁺) and extend the ANN model to multi-ion competitive 
adsorption scenarios. 

2. Explore the integration of hybrid machine learning models (e.g., ANN-GA, ANN-SVR) to enhance 
predictive performance and interpretability . 

3. Validate the ANN model using real-time experimental data or pilot-scale studies to ensure reliability in 
practical field applications . 

4. Implement adaptive learning algorithms to update the model continuously as new experimental data becomes 
available. 

5. Expand the GUI into a web-based or mobile platform for wider accessibility among researchers, 
environmental engineers, and industrial practitioners . 

6. Investigate feature selection techniques and uncertainty quantification methods to improve model 
transparency and robustness. 
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