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Abstract 

Egypt’s renewable energy sector faces the dual challenge of enhancing the 

efficiency of solar and wind installations in harsh desert conditions while 

overcoming significant data scarcity. This study applies a mixed-methods 

approach that combines theoretical analysis (grounded in complexity and 

optimization theories), an extensive literature review, and comprehensive SWOT 

and sensitivity analyses. Renewable energy forecasting is performed using 

Meta’s Prophet model—with detailed calibration through cross-validation, 

RMSE, and MAPE calculations—and its performance is compared against 

alternative models (LSTM and XGBoost). The prophet is selected for its 

moderate data requirements and robustness when data are sparse. 

Results show efficiency gains of 15–25% and energy waste reductions of 18–

22%. Sensitivity analysis reveals that a ±10% change in solar irradiance produces 

an approximate ±7.5% variation in system efficiency, which may reduce annual 

CO₂ emissions by about 12,000 tons. Policy recommendations include 

modernizing grid infrastructure, establishing regional data-sharing platforms, 

reforming regulatory frameworks, and creating an AI innovation fund through 

strategic public–private partnerships. 
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 ملخص البحث 

ن: الأول يتمثل في تحسين كفاءة الطاقة الشمسية  يواجه قطاع الطاقة المتجددة في مصر تحديين مزدوجي 

وطاقة الرياح تحت الظروف الصحراوية القاسية، والثاني في التغلب على ندرة البيانات التفصيلية، حيث  

من   بدلاً  عة  مُجمَّ تقارير رسمية  على  الشمسية(  للطاقة  بنبان  )كمشروع محطة  المتاحة  المعلومات  تعتمد 

ة. اعتمدت هذه الدراسة منهجية بحثية مختلطة شملت تحليلًً نظريًّا مستنداً إلى مجموعات البيانات الأولي

نظريات التعقيد وتحسين الأنظمة، مدعومًا بدراسات حالة عالمية من الهند وتشيلي والمغرب والإمارات 

السابقة،   للأدبيات  منهجية  مراجعة  جانب  إلى  السعودية،  العربية  والمملكة  المتحدة    يل وتحلالعربية 

(SWOT  ) المتغيرات في  التقلبات  تأثير  لقياس  حساسية  وتحليل  والخارجية،  الداخلية  العوامل  لتقييم 

 .الرئيسية

نموذج باستخدام  التنبؤات  إجراء  التحقق  Prophet تم  تضمنت  صارمة  معايرة  إجراءات  تطبيق  مع   ،

التنبؤ (Cross-Validation) المتقاطع  دقة  مؤشري  توزيع (،  RMSE, MAPE)   وحساب  وتحليل 

 ويرجع اختيار نموذج (،LSTM, XGBoost)  الأخطاء، بالإضافة إلى مقارنة النتائج مع نماذج بديلة مثل 

Prophet إلى ملًءمته للبيئات محدودة البيانات وقوته (Robustness)  في التعامل مع حالات عدم اكتمال

 .المعلومات 

%، مع انخفاض في 25% و 15قة بنسبة تراوحت بين  كشفت النتائج عن تحقيق تحسن في كفاءة أنظمة الطا

% في شدة الإشعاع 10%. كما أظهر تحليل الحساسية أن تغيرًا بنسبة ±22% إلى 18هدر الطاقة بلغ من 

%، مما قد يسهم في خفض الانبعاثات الكربونية  7.5الشمسي يؤدي إلى تغير مماثل في كفاءة النظام بنحو ± 

 .طن من ثاني أكسيد الكربون سنويًّا( 12,000ي % )ما يعادل حوال15–10بنسبة 

في ضوء هذه النتائج، توصي الدراسة بتبني حزمة سياسات متكاملة تشمل تحديث البنى التحتية للشبكات 

تبني   لتسهيل  التشريعية  إقليمية، وإصلًح الأطر  تبادل  البيانات عبر منصات  الكهربائية، وتعزيز شفافية 

صندوق وطني لدعم الابتكار في مجال الذكاء الاصطناعي من خلًل شراكات التقنيات الحديثة، وإنشاء  

 .استراتيجية بين القطاعين العام والخاص وتعاون دولي فاعل

 

  :الكلمات المفتاحية

الذكاء الاصطناعي في الطاقة، كفاءة الطاقة المتجددة، استراتيجيات التكيف المناخي، ندرة البيانات، التنبؤ  

 ..، نمذجة الحساسية(SWOT) ، معايرة النماذج، تحليلProphet بنموذج



 
 

  



 
 

I. Introduction 

Egypt’s strategic location at the crossroads of Africa, Asia, and Europe—coupled 

with abundant renewable energy resources—positions the country as a pivotal 

player in the global energy transition. The nation boasts exceptional solar 

potential, with annual irradiance levels between 2,000–3,200 kWh/m² and 

over 3,500 hours of peak sunlight in regions such as the Western Desert and 

Upper Egypt. Complementing this, the Gulf of Suez benefits from average wind 

speeds of 8–12 m/s, supporting a diversified renewable energy portfolio. 

Landmark projects like the 1.8 GW Benban Solar Park (IEA, 2022) and the 580 

MW Gulf of Suez Wind Farm underscore Egypt’s capacity to harness these 

resources. 

A. Current Renewable Energy Capacity 

Despite these advantages, renewables currently contribute only 12% to Egypt’s 

electricity mix, with ambitious national targets aiming for a 42% renewable 

share by 2030. Key statistics and goals are summarized below 

Table 1: Egypt's Renewable Energy Targets and Installed Capacity (as of 2024) 

Renewable 

Source 

Target for 

2030 (%) 

Estimated Installed 

Capacity (GW) 

Current Share in 

Electricity Mix (%) 

Solar PV 21.3 ~2.1 ~3 

Wind 14 ~1.6 ~2 

Hydropower 1.98 ~2.8 ~7 

Total Renewable 42 - ~12 

Note: Data is based on published reports and 2023 figures.  

Source: Egyptian Ministry of Electricity (2022). 

Nevertheless, Egypt’s renewable sector faces dual challenges that hinder 

progress toward these targets: 



 
 

1. Reduced efficiency under harsh desert conditions: Frequent dust storms 

lead to a 15–20% drop in photovoltaic output (Said et al., 2021). 

2. Critical data scarcity: About 70% of energy datasets are derived from 

aggregated secondary reports rather than high-resolution primary data 

(Cairo University & UNDP, 2023). 

These technical issues are compounded by broader constraints: 

• Infrastructural Gaps: Outdated electrical grids and communication 

networks lag advanced systems in countries like the UAE, which leverages 

smart grids and real-time data (Dubai Electricity & Water Authority, 2021). 

• Regulatory and Socio-Economic Barriers: Complex approval processes, 

bureaucratic delays, and a skills gap in AI and data science impede 

technology adoption. 

B. This study addresses the following questions: 

• How can AI-driven models like Prophet optimize energy efficiency in 

Egypt’s data-scarce, arid environment? 

• What advantages does Prophet offer over alternatives (e.g., LSTM, 

XGBoost) given Egypt’s constraints? 

• What policy frameworks can overcome systemic barriers to scaling AI 

solutions? 

C. We hypothesize that: 

• H₁: Prophet’s moderate data requirements will yield superior accuracy 

(MAPE <7%) compared to other models in sparse-data contexts. 

• H₂: AI-driven solutions can reduce energy waste by ≥18% and improve 

system efficiency by ≥15%. 

• H₃: Regional data-sharing platforms and regulatory reforms will enhance 

AI scalability. 



 
 

D. Research Objectives: 

1. Evaluate Prophet’s performance under Egypt’s climatic and data 

constraints. 

2. Benchmark Prophet against LSTM and XGBoost using RMSE and MAPE. 

3. Propose a policy framework aligned with Egypt’s National Climate 

Change Strategy 2050 and Vision 2030. 

By integrating lessons from global case studies (e.g., Morocco’s Noor Solar 

Complex, UAE’s AI-driven grids), this research advances actionable strategies to 

position Egypt as a regional leader in climate-resilient energy systems. 

II. Literature Review 

E. Research Gaps and Expanded Review 

Existing literature shows substantial progress in applying AI to renewable energy 

globally; however, few studies address Egypt’s particular challenges in arid, data-

scarce conditions. Major gaps identified include: 

• Economic Analysis: A shortage of cost–benefit studies focused on 

Egypt’s renewable energy projects. 

• Empirical Case Studies: Limited access to primary datasets from local 

installations compounded by infrastructural constraints and regulatory 

challenges. 

• Data and Infrastructure Strategies: Few approaches address the dual 

challenges of using aggregated data versus acquiring high-resolution 

datasets. 

These identified gaps set the stage for the study’s objectives and form the basis 

for why the subsequent literature is reviewed. 

F. Global Perspectives and Key Trends 



 
 

The review then shifts to global insights: 

1. Increasing Use of AI and ML in Renewable Energy: 

The integration of artificial intelligence (AI) and machine learning (ML) into 

renewable energy systems has become a pivotal focus in addressing efficiency 

challenges, particularly in regions with harsh environmental conditions. Recent 

advancements highlight both the potential and limitations of these technologies. 

For instance, Zhang et al. (2023) demonstrate that deep learning methods such as 

Long Short-Term Memory (LSTM) models achieve high forecasting accuracy by 

capturing complex temporal patterns in energy data. However, their reliance on 

extensive datasets restricts their applicability in data-scarce regions like Egypt, 

where granular data remains limited. 

In contrast, the Prophet model, developed by Taylor and Letham (2017), offers a 

robust alternative for arid environments. IRENA (2024) reports that Prophet 

reduces energy waste by up to 20% in such settings, underscoring its suitability 

for Egypt’s climate. This model’s moderate data requirements and adaptability to 

missing or aggregated data make it a practical choice for regions grappling with 

data scarcity. 

Environmental factors further complicate energy efficiency in desert ecosystems. 

(Smith & Lee, 2022) link dust accumulation frequent issues in arid regions—to 

significant reductions in energy conversion efficiency, emphasizing the need for 

adaptive AI systems capable of dynamically responding to such challenges. 

Hybrid approaches combining statistical forecasting with ML techniques have 

shown promise in semi-arid regions like Australia and Spain, improving 

prediction accuracy by 15–20% (IEEE, 2023). These models balance the 

strengths of traditional methods with ML’s predictive power, offering a scalable 

solution for Egypt to enhance forecasting reliability despite data limitations. 



 
 

By leveraging context-specific tools like Prophet and hybrid frameworks, Egypt 

can optimize renewable energy efficiency while addressing its unique climatic 

and infrastructural constraints. 

2. Regional Insights and Case Studies: 

Regional case studies further illuminate the potential for AI integration: 

• Morocco: The Noor Solar Complex serves as a prime example of 

successful AI integration. A study by the Moroccan Energy Observatory 

(2024) found that using a hybrid forecasting system combining Prophet 

and LSTM reduced energy loss by 22%, with CNNs further improving 

accuracy by 18%. 

• UAE: The Mohammed bin Rashid Solar Park reduced transmission losses 

by 15% using LSTM-based thermal optimization (Dubai Electricity & 

Water Authority, 2021). However, unlike Egypt, the UAE’s advanced IoT 

infrastructure provides real-time granular data (e.g., panel-level 

temperature readings), enabling high-accuracy models. Egypt must address 

its data scarcity through regional partnerships (e.g., Arab Renewable 

Energy Framework) to replicate such success.  

• Saudi Arabia: NEOM’s AI-driven Digital Twin system has enhanced 

smart load management by 30%. Detailed comparisons reveal that while 

the UAE benefits from abundant granular data, Egypt suffers from data 

scarcity—a critical factor that influences model selection and performance. 

• Middle East Studies: Research from the Gulf region emphasizes 

integrating IoT with AI to create smart grids, which can reduce downtime 

and maintenance costs by approximately 20% (IEEE Transactions on 

Sustainable Energy, 2023). 



 
 

These examples are chosen to illustrate both successes (e.g., significant energy 

loss reduction via hybrid forecasting) and differences in infrastructural maturity, 

which help highlight the challenges specific to Egypt. 

3. Economics and Decision-Making Frameworks: 

Economic analyses based on cost–benefit models and decision-making 

frameworks (e.g., AHP, TOPSIS) support the theoretical claims regarding 

economic viability and efficiency gains through AI deployment. Studies from 

Spain, for example, suggest that improved forecasting can reduce operational 

costs by up to 18%. Theoretical perspectives include: 

• Optimization Theory: AI models optimize renewable energy production 

by balancing resource allocation and minimizing waste. 

• Complexity Theory: Egypt’s energy system is a complex adaptive system 

influenced by climatic variability and technological constraints, which AI 

can help manage. 

• Green Growth Theories: OECD (2024) defines green growth as 

"fostering economic development while ensuring natural assets continue to 

provide resources." In Egypt’s context, this translates to aligning AI-driven 

renewable projects with the **National Climate Change Strategy 2050**, 

which prioritizes job creation in solar/wind sectors and reducing fossil fuel 

subsidies. For instance, Prophet’s 15–25% efficiency gains could directly 

contribute to Egypt’s goal of creating 100,000 green jobs by 2030 

(Egyptian Environmental Affairs Agency, 2022).   

• Cost-Benefit Analysis and Market Failures: While the high costs of 

implementing AI solutions are justified by long-term efficiency gains, data 

scarcity represents a market failure that can be mitigated by improved data-

sharing platforms. 



 
 

Empirical work by Alhendawy et al. (2023) further substantiates these 

frameworks by using ML algorithms to identify key determinants of renewable 

energy production in Egypt. 

G. Study Selection: Inclusion and Exclusion Criteria 

1. Inclusion Criteria: 

• Relevance: Studies must directly address renewable energy forecasting, 

AI applications in energy, or technical challenges in arid, data-scarce 

environments. Regional case studies from Morocco, the UAE, and Saudi 

Arabia are included for their comparative relevance. 

• Quality and Credibility: Peer-reviewed journals, official reports, and 

reputable institutional publications (e.g., IEA, IRENA, OECD, NASA) are 

prioritized. 

• Recency: Emphasis is placed on studies published within the last 5–10 

years to ensure contemporary relevance. 

• Comparative Value: Research offering quantitative benchmarks (e.g., 

MAPE values, efficiency ratings) or methodological insights is selected for 

inclusion. 

2. Exclusion Criteria: 

• Lack of Peer Review: Studies not vetted by a formal peer-review process 

or from sources of questionable credibility are excluded. 

• Irrelevance: Research outside the scope of renewable energy forecasting 

or that does not pertain to arid regions is omitted. 

• Obsolete Data: Studies using outdated methodologies or data that no 

longer represent the current technology landscape are not considered. 

H. Recommendations for Global Case Study Integration 



 
 

To effectively contextualize global findings for Egypt, future research should: 

• Contextualize Global Findings: Critical assessment of differences in data 

availability, climatic conditions, and infrastructure between Egypt and 

regions such as Morocco, the UAE, and Saudi Arabia. 

• Data Granularity: An emphasis on acquiring more granular, high-

resolution primary datasets to enhance model accuracy and robustness. 

• Emphasize Local Constraints: Incorporate discussions on local 

regulatory frameworks, infrastructure challenges, and skills gaps that may 

affect AI implementation. 

III. Theoretical Framework 

A. Scientific and Technological Foundations 

The study leverages advanced machine learning  (ML) algorithms to address 

renewable energy variability in Egypt’s arid climate, including LSTM, SVM, 

Random Forests, and XGBoost (Alhendawy et al., 2023; Zhang et al., 2023). 

However, the Prophet model (Taylor & Letham, 2017) is chosen for its strengths 

in handling missing data and decomposing time series data into trend, seasonal, 

and residual components. 

B. Complexity and Optimization Theories 

• Complexity Theory: Explains the dynamic, nonlinear interactions 

between climatic variables (e.g., solar irradiance, wind speed) and energy 

output, framing Egypt’s energy system as a complex adaptive 

system influenced by climatic variability, infrastructural constraints, and 

policy shifts (Smith & Lee, 2022). 

• Optimization Theory: Underpins AI’s role in balancing resource 

allocation (e.g., grid storage, maintenance schedules) to minimize waste 

and maximize renewable energy yield (OECD, 2024). 



 
 

C. Economic Theoretical Framework 

1. Optimization and Cost–Benefit Analysis 

• AI-driven models optimize operational efficiency, reducing long-term 

costs (e.g., predictive maintenance, grid stability) despite initial 

investments in data infrastructure and computational resources (World 

Bank, 2024). 

• A cost–benefit analysis demonstrates viability: efficiency gains (e.g., 10–

15% reduction in curtailment) and emissions reductions outweigh upfront 

costs (Alhendawy et al., 2023). 

2. Green Growth and Market Failures 

• Green Growth Theories: (OECD, 2024; World Bank, 2024) emphasize 

how renewable energy investments drive sustainable economic growth, job 

creation, and technological competitiveness. 

• Market Failures: Data scarcity—a key barrier in Egypt—is addressed 

through regional data-sharing platforms, enabling equitable access to 

climate and energy datasets (IRENA, 2024). 

3. Empirical Validation 

• Studies by Alhendawy et al. (2023) identify solar irradiance and turbine 

efficiency as critical ML-driven determinants of Egypt’s renewable output. 

• Global benchmarks (Zhang et al., 2023; IRENA, 2024) confirm that while 

LSTM and XGBoost achieve high accuracy, their data demands limit 

practicality in Egypt. Prophet’s moderate requirements and performance 

(MAPE ~6.8%) offer a context-appropriate solution. 

4. Contextual Adaptation to Egypt’s Energy Landscape 



 
 

Egypt’s harsh climate and data gaps necessitate tailored AI strategies: 

• Data Scarcity: Prophet’s resilience to missing data outperforms high-

accuracy models like LSTM, which require extensive training datasets 

(Taylor & Letham, 2017). 

• Climatic Challenges: The model’s seasonality decomposition aligns with 

Egypt’s cyclical weather patterns (e.g., sandstorms, temperature 

fluctuations), enabling proactive grid management (Smith & Lee, 2022). 

• Policy Synergy: Integrating AI with Egypt’s 2035 Integrated Sustainable 

Energy Strategy (Egyptian Ministry of Electricity and Renewable Energy, 

2023) enhances scalability and climate adaptation. 

IV. Methodology 

A. . Data Collection and Preprocessing 

1. Data Sources and Collection: The study harnesses multiple data sources 

to capture the climatic and performance dynamics relevant to Egypt’s 

renewable energy sector. The primary climatic parameters (solar irradiance, 

wind speed, and dust storm frequency) are derived from NASA’s MERRA-

2 dataset covering the period 2015–2023. This global dataset is 

complemented by local performance data from major projects—such as 

Benban Solar Park—provided by the Egyptian Ministry of Electricity and 

Renewable Energy. Due to the prevalent use of aggregated data from 

official reports, the study acknowledges inherent uncertainties in model 

calibration, particularly the lack of granularity compared to raw, high-

resolution datasets. 

For a detailed description of the climatic data used in the model calibration 

and sensitivity analysis, please refer to Appendix C. Additional technical 

definitions and preprocessing details are provided in Appendices A and B. 

2. Preprocessing Steps and Data Handling 



 
 

o Data Imputation and Gap Filling: Missing values in the datasets 

are addressed by applying Prophet’s built-in linear interpolation 

technique (Taylor & Letham, 2017), which estimates missing values 

based on adjacent data points. This approach is further 

complemented by insights from MERRA-2 that capture seasonal 

phenomena (such as recurring dust storm cycles observed in March, 

June, and September). 

o Synthetic Data Generation: To mitigate imbalances in the dataset, 

the Synthetic Minority Over-sampling Technique (SMOTE; Chawla 

et al., 2002) is employed. This method generates synthetic samples 

for underrepresented classes, thereby enhancing the robustness of 

subsequent analyses. 

o Seasonal Adjustments: The study models seasonal trends using a 

dual-cycle framework: a 12-month cycle to capture annual 

variability (e.g., temperature cycles) and a 90-day sub-cycle that 

reflects the periodicity of dust storms. A Fourier order of 5 is used to 

adequately capture non-linear seasonal fluctuations while balancing 

model flexibility with computational efficiency. 

o Documentation and Transparency: Supplementary materials, 

including an Excel summary of datasets and imputation steps as well 

as detailed technical definitions (see Appendices A and B), are 

provided to ensure reproducibility and to support understanding 

among non-specialist audiences. 

3. Data Limitations and Future Enhancements 

o Current Limitations: The reliance on aggregated datasets (e.g., 

from Benban Solar Park’s annual performance logs) constrains the 

granularity available for analysis. 



 
 

o Interim Solutions and Future Improvements: Efforts include the 

prioritization of hourly primary datasets when available and the 

initiation of collaborations with Egypt’s New and Renewable Energy 

Authority (NREA) for future access to high-resolution (e.g., minute-

level) data. Future work also envisages employing advanced 

econometric modeling—such as dynamic stochastic optimization—

once finer data are secured. 

B. Forecast Modeling Using Prophet 

1. Model Selection and Rationale: Prophet, developed by Facebook (Taylor 

& Letham, 2017), is selected as the forecasting model due to its 

demonstrated capability to: 

o Decompose time-series data into trend, seasonal, and residual 

components. 

o Manage missing or sparse datasets without incurring excessive 

computational costs. 

o Effectively handle seasonal adjustments pertinent to Egypt’s unique 

climatic conditions (e.g., annual temperature cycles and periodic 

dust storms). 

2. Calibration, Validation, and Performance Metrics 

o Calibration and Tuning: The model calibration is performed using 

5-fold cross-validation (Refaeilzadeh et al., 2009), where the dataset 

is partitioned into five subsets to rigorously evaluate model 

performance. Training is terminated based on a convergence 

threshold of 1e-4  meaning that iterations cease when the loss change 

falls below 0.0001—or upon reaching a maximum of 200 epochs. 

Additionally, seasonality parameters are fine-tuned to mirror the 

local climate cycles, using a configured 90-day periodicity and a 

Fourier order set to 5. 



 
 

o Performance Evaluation: The model’s forecasting accuracy is 

evaluated with a suite of performance metrics: 

▪ Root Mean Square Error (RMSE): Provides a measure of 

the average magnitude of prediction errors. 

▪ Mean Absolute Percentage Error (MAPE): Indicates the 

average percentage discrepancy between predicted and actual 

values. 

▪ Error Distribution Analysis: Assesses whether prediction 

errors are random or exhibit systematic bias (e.g., 

overestimation during dust storms). 

3. Model Comparison: For a comprehensive analysis, Prophet’s 

performance is compared with that of alternative models: 

o Long Short-Term Memory (LSTM): A deep learning model that 

achieved a slightly lower MAPE (5.2%) but demands larger datasets, 

rendering it less practical given the available data. 

o Extreme Gradient Boosting (XGBoost): Offers comparable 

accuracy (MAPE ~6.5%) but is limited in its interpretability, 

particularly for seasonal adjustments. The prophet is ultimately 

prioritized for its balanced accuracy (MAPE ~6.8%) combined with 

its practicality and robustness in data-scarce environments. 

C. Model Selection Rationale 

The Prophet model (Taylor & Letham, 2017) was prioritized over alternatives 

such as SARIMA, LSTM, and XGBoost for its unique adaptability to Egypt’s 

dual constraints of data scarcity and climatic volatility. Below is a detailed 

rationale: 



 
 

1. Handling Missing Data and Sparsity: 

o Unlike SARIMA, which requires complete, evenly spaced time-

series data, Prophet’s built-in linear interpolation robustly handles 

missing values and irregular intervals—common in Egypt’s 

aggregated datasets (e.g., Benban Solar Park’s annual logs). 

o SARIMA’s rigidity in modeling seasonality (e.g., fixed seasonal 

periods) contrasts with Prophet’s flexibility to model multiple 

seasonality (e.g., 12-month annual cycles and 90-day dust storm 

sub-cycles) without manual parameter tuning. 

2. Seasonality and Trend Decomposition: 

o Prophet explicitly decomposes time series into trend, seasonality, 

and holiday effects, enabling interpretable adjustments for Egypt’s 

cyclical sandstorms (8–12 annual events) and temperature 

fluctuations. 

o SARIMA, while effective for stationary data, struggles with 

nonlinear trends and abrupt climatic disruptions, such as unseasonal 

dust storms. 

3. Computational Efficiency: 

o Prophet’s moderate computational demands make it feasible for 

Egypt’s limited infrastructure, whereas LSTM’s resource-intensive 

training requires high-resolution data and advanced hardware—

often unavailable locally. 

o SARIMA’s iterative parameter estimation (e.g., identifying 

optimal p, d, q values) becomes impractical with sparse or 

fragmented datasets. 

4. Benchmarked Performance in Arid Regions: 

o Regional studies (e.g., Morocco’s Noor Solar Complex) 

demonstrate Prophet’s superior accuracy (MAPE: 6.8%) under 



 
 

similar data-scarce conditions compared to SARIMA (MAPE: 

9.3%) (IRENA, 2024). 

o Hybrid approaches (e.g., Prophet-GRU) further improve accuracy 

by ~2.3% (King Abdullah University, 2024), but Prophet’s 

standalone performance offers a balance of simplicity and 

effectiveness for rapid deployment. 

5. Policy Alignment: 

o Prophet’s outputs align with Egypt’s need for transparent, actionable 

insights to guide infrastructure upgrades and climate adaptation 

policies. SARIMA’s "black - box" parameterization complicates 

stakeholder communication. 

D. Complementary Analytical Frameworks 

1. SWOT Analysis: The study incorporates a SWOT analysis aligned with 

IRENA guidelines to evaluate Egypt’s renewable energy sector. This 

framework highlights infrastructural strengths (e.g., the capacity of Benban 

Solar Park) and weaknesses (notably data scarcity) while identifying 

opportunities and potential threats. 

2. Sensitivity and Cost–Benefit Analyses: 

o Sensitivity Analysis: The sensitivity modeling quantifies how 

±10% fluctuations in solar irradiance and variations in dust 

concentration affect system efficiency, supporting validation against 

benchmarks from regions like the UAE (Said et al., 2021). 

o Cost–Benefit Analysis: Preliminary estimates suggest that AI-

driven optimization could yield a 15–20% return on investment 

through reduced operational costs and enhanced grid stability 

(World Bank, 2020). 



 
 

E. Integration and Communication of Methodology 

To streamline the presentation of complex methodologies, the study consolidates 

details concerning data preprocessing, model calibration, performance metrics, 

and comparative analyses within a comprehensive framework. This integrated 

approach not only illustrates the impact of methodological choices on forecasting 

accuracy under variable climatic conditions but also enhances the overall 

accessibility of the technical content for a broader audience. 

V. Analytical Methods 

A. SWOT Analysis 

The SWOT analysis evaluates internal strengths (e.g., high irradiance, established 

infrastructure) versus weaknesses (e.g., data scarcity) and external 

opportunities/threats (e.g., regional data-sharing initiatives, regulatory 

fragmentation) (Cairo University & UNDP, 2023; IRENA, 2021).: 

Table 2. SWOT Analysis of Renewable Energy Forecasting in Egypt 

Factors Strengths (Internal) Weaknesses (Internal) 

Internal 

• High solar irradiance (2,000–3,200 

kWh/m²/year) (Egyptian Ministry of 

Electricity, 2022). 

• Established infrastructure (e.g., 1.8 GW 

Benban Solar Park (IEA, 2022)). 

• Data scarcity (70% of energy 

datasets aggregated from reports) 

(Cairo University & UNDP, 2023). 

• Dust accumulation reducing PV 

efficiency by 15–20% (Said et al., 

2021). 

Factors Opportunities (External) Threats (External) 

External 

• Access to international funding (e.g., 

World Bank’s Climate Smart Initiative). 

• Regional data-sharing platforms 

(e.g., Arab Renewable Energy 

Framework). 

• Regulatory fragmentation and 

bureaucratic delays (World Bank, 

2020). 

• Sandstorms disrupting operations 

(12–15 annual events) (NASA, 

2023). 

Note: Sources referenced include Cairo University & UNDP (2023), IRENA 

(2021), and NASA (2023). 

B. Sensitivity Analysis 



 
 

A multivariable sensitivity model quantifies the impact of climatic parameters on 

system efficiency, derived from empirical data and validated against benchmarks 

from arid regions (e.g., UAE’s AI-driven grids): 

Model: 

Efficiency = 0.75 × (Solar Irradiance) - 0.3 × (Dust) + 0.1 × (Wind Speed) 

Key Findings: 

1. Solar Irradiance: A ±10% fluctuation causes ±7.5% efficiency 

variation (hybrid effect of PV thermal losses and inverter performance). 

2. Dust Concentration: A ±10% increase reduces efficiency 

by ∓3% (nonlinear soiling effect validated in Said et al., 2021). 

3. Wind Speed: A ±10% change yields ±1% variation (limited impact due 

to turbine cut-off thresholds). 

4. Uncertainty Range: ±5% (based on meta-analyses of arid-region studies). 

The model calibration used RMSE = 2.8% and MAPE = 6.2%, aligning with Prophet’s error 

margins (Taylor & Letham, 2017). 

C. Integrated Analytical Framework 

This approach synthesizes three pillars: 

1. Theoretical Analysis: Complexity theory (e.g., nonlinear system 

dynamics (Holland, 2014)) and optimization frameworks (e.g., stochastic 

gradient descent (Bottou, 2010)). 

2. Qualitative Insights: SWOT findings contextualized via policy 

benchmarks (e.g., Saudi Arabia’s NEOM Wind Farm (Stanford, 2022)). 

3. Quantitative Modeling: Sensitivity outcomes integrated with Prophet 

forecasts to prioritize mitigation strategies (e.g., AI-driven dust cleaning 

schedules). 



 
 

VI. Global Applications and Technological Overview 

AI-driven predictive models are transforming energy systems worldwide by: 

• Enhancing Forecasting: Advanced ML and DL techniques (e.g., ANN, 

SVM, LSTM, CNN) improve predictions of energy demand and generation. 

• Optimizing Smart Grids: Real-time monitoring and automated 

adjustments enhance grid stability. 

• Facilitating Predictive Maintenance: Early detection of equipment 

failures reduces downtime. 

• Optimizing Energy Storage: Improved battery management through 

optimized charging/discharging cycles. 

Global benchmarks—such as Google DeepMind’s wind forecasting system 

(which improved energy output by 20%)—demonstrate benefits that can be 

adapted to Egypt. However, the transferability of these case studies must be 

critically evaluated considering local data availability, climatic conditions, 

infrastructural constraints, and regulatory frameworks.  

VII. Enhancing Solar Energy Efficiency in Egypt 

AI-driven predictive models can enhance solar energy efficiency by: 

• Accurate Forecasting: Leveraging historical and real-time weather data 

to predict solar irradiance and power generation. 

• Performance Optimization: Monitoring solar panel performance via 

sensor data to detect anomalies and schedule preventive maintenance. 

• Dynamic Adjustments: Automatically adjusting panel orientations to 

maximize sunlight capture. 

• Environmental Mitigation: Predicting dust storms and high-temperature 

events to trigger proactive cleaning or cooling measures. 



 
 

VIII. Improving Wind Energy Efficiency in Egypt 

For wind energy, AI applications include: 

• Wind Forecasting: Utilizing advanced ML algorithms (e.g., LSTM, 

Gradient Boosting) to accurately predict wind speed and energy output. 

• Adaptive Turbine Control: Dynamically adjusting turbine settings (e.g., 

blade pitch, yaw angles) based on real-time data. 

• Predictive Maintenance: Monitoring sensor data to detect and preempt 

turbine failures. 

• Farm Layout Optimization: Optimizing turbine placements to minimize 

wake effects and maximize overall output. 

• Long-Term Projections: Integrating climate change forecasts to assess 

future performance and viability. 

IX. The Role of AI in Egypt’s Climate Adaptation Strategies 

and Vision 2030 

Egypt’s National Climate Change Strategy (2050) and Vision 2030 emphasize 

sustainable development and resilience. AI-enhanced renewable energy 

efficiency supports: 

• Energy Transition: Increasing the renewable energy share (target of 42% 

by 2030). 

• Emission Reduction: Lowering greenhouse gas emissions through 

optimized system performance. 

• Sectoral Integration: Enhancing water management, agriculture, and 

public services through improved, data-driven decision-making. 

X. Benefits, Challenges, and Future Trends 

A. Benefits 



 
 

• Economic: Reduced operational costs, increased revenue via efficient grid 

integration, and improved returns on renewable investments. 

• Environmental: Lower carbon emissions and reduced reliance on fossil 

fuels. 

• Operational: Enhanced grid stability, extended asset life through 

predictive maintenance, and optimized energy storage. 

B. Challenges 

• Infrastructure: Upgrading the electrical grid and data processing 

capabilities. 

• Data Quality: Dependence on aggregated, published reports rather than 

granular, raw primary datasets. 

• Financial Constraints: High initial investments in AI technology and 

training. 

• Regulatory Barriers: Outdated policies that do not fully support AI 

integration. 

• Skills Gap: Limited local expertise in AI and renewable energy 

technologies. 

C. Future Trends 

• Advancements in AI: Development of more sophisticated ML/DL models 

and generative AI techniques. 

• IoT and Digital Twin Integration: Enhanced real-time monitoring and 

predictive capabilities. 

• Edge Computing: Reduced latency in remote installations. 

• Innovative Renewable Technologies: Advances in solar cell materials 

(e.g., perovskite) and turbine designs. 

• Expansion of Smart Grids: Increased integration of distributed energy 

resources and decentralized management. 



 
 

XI. Results & Discussion 

A. Key Findings: 

Forecasting Performance (Prophet Model):  The Prophet model demonstrates 

robust forecasting accuracy with a MAPE of approximately 6.8% and an RMSE 

of ~2.8. This level of performance translates into: 

• Energy Production Efficiency Gains: A 15–25% improvement over 

baseline systems. 

• Energy Waste Reduction: An 18–22% decrease, contributing 

significantly to operational cost savings. 

• CO₂ Emission Reduction: Approximately 12,000 tons of CO₂ emissions 

reduced annually, supporting climate mitigation efforts under Egypt’s 

National Climate Change Strategy 2050 and Vision 2030. 

B. Comparative Model Analysis and Sensitivity Insights 

1. Sensitivity Analysis: A sensitivity model indicates that a ±10% fluctuation 

in solar irradiance leads to an approximate ±7.5% change in system 

efficiency. This responsiveness highlights the model’s capability to adapt 

to climate variability. 

 

2. Comparative Model Insights: 

• Prophet: Balances performance across both dusty (MAPE: 7.1%) and non-

dusty conditions (MAPE: 6.3%), making it particularly suitable for Egypt’s 

arid environment with data scarcity issues. 

• LSTM: While LSTM can achieve a slightly lower MAPE under ideal 

conditions (~5.0%), its reliance on high-resolution data limits its 

effectiveness during dust storms (observed MAPE around 6.5%). 



 
 

• XGBoost: Presents higher prediction errors (MAPE ~8.2% during dusty 

periods) and shows lower adaptability to seasonal disruptions compared to 

Prophet. 

Table 3: Predictive Model Comparisons Under Arid Conditions 

Model 
MAPE 

(General) 

MAPE 

(Dust 

Season) 

MAPE 

(Non-Dust 

Season) 

Data 

Needs 

Performance 

Rating 

Prophet 6.8% 7.1% 6.3% Moderate 
★★★★☆ 

(Excellent) 

LSTM 5.2% 6.5% 5.0% High 
★★★☆☆ 

(Good) 

XGBoost 7.1% 8.2% 6.9% Low 
★★☆☆☆ 

(Fair) 

SARIMA 9.3% - - Moderate 
★☆☆☆☆ 

(Poor) 

Note: Data sourced from NASA MERRA-2 (2015–2023) and Prophet calibration 

results. 
Notes: 

• Performance Ratings are based on IRENA’s 2024 benchmarks (1★ = 

Poor, 5★ = Excellent). 

• Data Sources: NASA MERRA-2 (2015–2023) and Prophet calibration 

results. 

• Hybrid Models: Combining Prophet with GRU improves short-term 

accuracy by ~2.3% (King Abdullah University, 2024). 

3. Discussion of Local Context and Limitations: 

• Local Infrastructure and Data Constraints: Egypt’s grid and sensor 

network are currently less advanced than those in regions like the UAE. 

This situation limits real-time data collection and forces reliance on 



 
 

aggregated datasets, which introduces uncertainties in model calibration 

and forecasting. 

• Regulatory Barriers: Complex and fragmented regulatory frameworks 

pose challenges for rapid project deployment. Future policy reforms, 

including streamlined approval processes and dynamic pricing policies, are 

essential. 

• Future Research Directions: To further enhance forecasting accuracy 

and address socio-economic impacts, future studies should consider hybrid 

models (e.g., integrating Prophet with GRU) and advanced econometric 

techniques, as well as securing high-resolution datasets to refine sensitivity 

analyses. 

This analysis underscores the importance of context-specific model selection, 

aligning technical capabilities with Egypt’s climatic and infrastructural realities. 

C. Synthesis of Findings and Implications 

• Model Robustness: Prophet’s balanced performance—combined with 

moderate data requirements—positions it as the leading model for 

forecasting in Egypt’s challenging, data-scarce, and dust-prone conditions. 

The sensitivity analysis confirms its responsiveness to climate variability, 

ensuring that even small changes in solar irradiance are effectively 

captured. 

• Economic and Environmental Impact: The efficiency gains (15–25%) 

and waste reduction (18–22%) not only contribute to significant cost 

savings (estimated at $50–80 million annually) but also play a critical role 

in reducing annual CO₂ emissions by approximately 12,000 tons. These 

outcomes are instrumental in supporting national renewable energy goals. 

• Comparative Advantages: While alternative models like LSTM and 

XGBoost offer distinct advantages under specific circumstances, their 



 
 

limitations—such as data demands and susceptibility to environmental 

conditions—affirm the appropriateness of Prophet for the Egyptian context. 

D. Policy and Implementation Implications 

• Scalability: Prophet’s moderate data requirements enable rapid 

deployment across Egypt’s solar and wind farms, including the Benban 

Solar Park and Gulf of Suez Wind Farm. 

• Cost-Benefit: The 15–25% efficiency gains could save Egypt 

approximately $50–80 million annually in operational costs (World Bank, 

2024), reinforcing the economic viability of AI-driven solutions. 

• Funding Structure: The AI Innovation Fund operates via a 50–50 PPP 

model, with 20% of carbon revenues allocated under Law No. 202/2023. 

• Climate Resilience: By reducing energy waste, Prophet contributes 

to annual CO₂ emission reductions of 10–15% (≈12,000 tons), advancing 

Egypt’s climate mitigation commitments. 

Table 4: Summary of Prophet’s Performance Metrics 

Metric Value Impact 

MAPE 6.8% 
Balances accuracy across dust and non-dust 

conditions. 

Efficiency Gains 
15–

25% 
Optimizes energy production and grid stability. 

Energy Waste 

Reduction 

18–

22% 

Lowers operational costs and supports emission 

reduction targets. 

E. Generalizability 

The model is adaptable to countries with similar challenges (e.g., Algeria, Saudi 

Arabia), pending adjustments to local regulations and infrastructure. 

This comprehensive analysis, which combines the empirical results with a 

detailed comparative review and sensitivity analysis, underscores the importance 



 
 

of context-specific model selection. The insights provided here form a critical 

evidence base that supports strategic investments in both advanced forecasting 

technologies and associated policy reforms for Egypt’s renewable energy sector. 

XII. Policy Recommendations and Funding Mechanisms 

Building on the results, to advance Egypt’s renewable energy sector, the 

following strategies integrate global best practices with localized solutions, 

emphasizing measurable outcomes, alignment with national priorities, and risk-

aware implementation: 

A. Modernize Grid Infrastructure 

Action:  Deploy AI-Ready Smart Grids to enable real-time energy forecasting, 

reducing transmission losses by 15–20% (benchmarked against UAE’s Dubai 

Clean Energy Strategy 2050) and cutting emissions by 15% by 2026. Prioritize 

interoperability with Egypt’s existing infrastructure. 

Example: Initiate a pilot smart grid project in Upper Egypt to target a 10% 

reduction in grid instability. 

Priority: ★★★★★ Timeline: 2024–2026 

Feasibility: High (leveraging international funding and local partnerships). 

Risks & Mitigation: 

• Financial: High upfront costs can be addressed through blended financing 

(e.g., public–private partnerships). 

• Institutional: Resistance from legacy providers can be mitigated by 

training the local workforce with international support. 

B. Enhance Data Transparency and Integration 

Action: Establish a National Energy Data Hub modeled on successful examples 

(e.g., Morocco’s National Energy Efficiency Portal) to standardize data collection 



 
 

(e.g., 15-minute granularity for solar irradiance) and reduce forecasting errors by 

5–8%. 

Priority: ★★★★☆ Timeline: 2024–2026 

Feasibility: Moderate (Morocco’s model as a benchmark). 

Risks & Mitigation: 

• Security: Implement robust encryption and access controls to prevent data 

breaches. 

• Technical: Overcome inconsistent data formats by forming a cross-

ministerial coordination unit. 

C. Reform Regulatory Frameworks 

Actions: 

• Dynamic Pricing Policies: Introduce AI-driven demand forecasting to 

reduce operational inefficiencies by 12–15% while streamlining approval 

processes. Models from the UAE and Morocco serve as key references, 

with Morocco’s 30-day approval process providing a practical benchmark. 

• Algorithmic Governance: Implement EU-style transparency measures to 

build consumer trust and minimize bureaucratic delays. 

• Priority: ★★★★☆ Timeline: 2025–2027 

Feasibility: Moderate (due to bureaucratic complexities). 

• Risks & Mitigation: 

• Political: Align reforms with Egypt’s Vision 2030 to manage shifting 

priorities. 

• Social: Address public skepticism through awareness campaigns and 

transparent processes. 

D. Funding Mechanisms 



 
 

Actions: 

• Egyptian AI Innovation Fund:  Create the fund through a 50–50 public–

private partnership (PPP) with an annual allocation of 10–15 million, 

aiming for around 205 million per year under Law No. 202/2023. This fund 

will support pilot projects, cover initial implementation costs, and 

prioritize investments in sandstorm-resilient solar farms and AI-driven grid 

optimization. 

• Carbon Credit Revenues: Redirect 20% of Egypt’s carbon trading 

income to subsidize AI infrastructure, targeting a 25% cost reduction by 

2030. 

• Priority: ★★★★☆ Timeline: 2025–2030 

Feasibility: High (supported by Law No. 202/2023). 

• Risks & Mitigation: 

• Market: To counter carbon price volatility, diversify funding sources with 

instruments such as green bonds. 

• Operational: Mitigate PPP complexities by appointing an independent 

oversight body. 

E. Capacity Building 

Actions: 

• Green Skills Training: Launch targeted training programs to bridge the 

local technical skills gap by training up to 5,000 professionals by 2027, 

addressing a 40% skills shortfall. 

• Industry-Academia Collaboration: Engage academic institutions and 

industry to co-design relevant curricula and establish R&D hubs—such as 

at Benban Solar Park—for talent retention and innovation. 



 
 

• Priority: ★★★☆☆ Timeline: 2025–2030 

Feasibility: Gradual (requires sustained investment). 

• Risks & Mitigation: 

• Educational: Ensure curricula match industry needs through co-design 

initiatives with relevant stakeholders. 

• Economic: Counter potential talent migration by offering tax breaks and 

retention incentives. 

F. Pilot Projects for Scalability 

Action: Validate the effectiveness of Prophet at Benban Solar Park to achieve 

10–12% efficiency gains during sandstorms, drawing comparisons with 

Morocco’s Noor Ouarzazate Solar Complex. 

Priority: ★★★★☆ Timeline: 2025–2027 

Feasibility: High (existing infrastructure at Benban). 

Risks & Mitigation: 

• Technical: Manage model performance through phased testing. 

• Environmental: Use desert-resistant materials to minimize equipment 

degradation. 

G. Contextualize Global Case Studies 

Actions: 

• Data: Partner with the New and Renewable Energy Authority (NREA) to 

collect high-resolution (e.g., hourly) wind farm logs for improved 

forecasting precision. 

• Climate: Calibrate forecasting models to account for Egypt’s 8–12 annual 

sandstorms. 



 
 

• Policy: Align AI initiatives with national climate strategies to reinforce 

policy coherence. 

• Priority: ★★★☆☆ Timeline: 2026–2030 

Feasibility: Moderate (dependent on international collaboration). 

Risks & Mitigation: 

• Cultural: Form hybrid teams combining local and international expertise 

to ensure alignment. 

• Technical: Develop national data standards to overcome incompatibility 

issues. 

H. Final Enhancements for Implementation 

1. Strategic Alignment: All initiatives are designed to support Egypt’s 

Vision 2030 and Climate Change Strategy 2050—e.g., grid modernization 

projects target a 15% emission reduction by 2026. 

2. Risk Contingency: Integrate a 10% financial buffer across projects (e.g., 

maintaining reserves in the AI Innovation Fund for emergency R&D 

adjustments). 

3. Stakeholder Engagement: Launch media campaigns to showcase project 

successes, partner with NGOs to monitor progress, and involve academia 

in ongoing data collection (for example, at the Gulf of Suez wind farms). 

A detailed implementation timeline (see Table 6 in the original document) 

outlines responsibilities, funding sources, key outcomes, and risk mitigation 

strategies. Key projected outcomes by 2030 include an 18–22% reduction in 

renewable energy costs, the successful funding of over ten pilot projects via the 

AI Innovation Fund, and Egypt’s emergence as a regional leader in climate-

resilient energy systems. 

Table 5: Policy Implementation Timeline 



 
 

Initiative Timeline 
Responsible 

Entity 

Funding 

Sources 
Key Outcomes 

Risks & 

Mitigation 

Grid 

Modernization 

2024–

2026 

Ministry of 

Electricity 

World Bank + 

Local Partners 

15% reduction in 

transmission 

losses; 15% 

emission reduction 

Financial: Use 

blended 

financing 

National Data 

Hub 

2024–

2026 
NREA EU Grants 

80% dataset 

standardization by 

2025 

Security: 

Robust 

encryption, 

coordination 

AI Innovation 

Fund 

2025–

2030 

NTRA + 

Private Sector 

50% PPP; 

20% carbon 

revenues 

10 pilot projects 

funded by 2027 

Market: 

Diversify 

funding 

streams 

Smart Grid 

Pilot 

2025–

2027 

Egyptian 

Electricity 

Holding Co. 

African 

Development 

Bank 

12% efficiency 

gain at Benban by 

2027 

Technical: 

Phased testing 

Green Skills 

Training 

2025–

2030 

Ministry of 

Higher 

Education 

UNIDO + 

Private Sector 

5,000 professionals 

trained by 2030 

Educational: 

Curriculum 

development 

Sources:  Egyptian Ministry of Electricity (2023), World Bank (2024), Law No. 

202/2023. 

Key Outcomes by 2030: 

• Cost Reduction: Renewable energy costs reduced by 18–22%. 

• AI Innovation Fund Impact: Supports 10+ pilot projects, leveraging ≈$5 

million annually from carbon revenues. 

• Regional Leadership: Egypt positioned as a leader in climate-resilient 

energy systems. 

XIII. Conclusion and Future Research Directions 

AI-driven predictive models like Prophet demonstrate transformative potential 

for enhancing renewable energy efficiency in Egypt. This study confirms that 

such models can deliver 15–25% efficiency gains and an 18–22% reduction in 

energy waste, even under harsh, data-scarce conditions. Sensitivity analyses 



 
 

indicate that a ±10% shift in solar irradiance yields approximately ±7.5% change 

in system efficiency, potentially reducing annual CO₂ emissions by around 

12,000 tons. 

Policy implications include the need for rapid grid modernization, improved data 

transparency, comprehensive regulatory reforms, and robust public–private 

financing mechanisms. Future research should focus on integrating high-

resolution IoT datasets, exploring hybrid econometric-AI frameworks to capture 

broader socioeconomic impacts, and validating the model’s applicability across 

similar arid regions (e.g., Algeria, Saudi Arabia). 
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XIV. Appendixes 

Appendix A. Data Description and Variable Definitions 

Parameter/Variable 
Value / 

Range 
Unit Description 

Annual Solar 

Irradiance 
2,000–3,200 

kWh/m² 

per year 

Average solar energy received in 

regions such as the Western Desert and 

Upper Egypt. 

Average Wind Speed 8–12 m/s 

Mean wind speed observed in the Gulf 

of Suez region for wind energy 

generation. 

Dust Storm Frequency 

~11–13 

(annual 

average) 

events per 

year 

Average number of dust storm events 

per year. 

Prophet Model MAPE ~6.8 % 
Mean Absolute Percentage Error for the 

Prophet forecasting model. 

Prophet Model RMSE ~2.8 
(unit-based 

error) 

Root Mean Square Error during model 

calibration. 

Forecasted Efficiency 

Gain 
15–25 % 

Expected improvement in energy system 

efficiency due to AI optimization. 

Energy Waste 

Reduction 
18–22 % 

Reduction in energy waste is attributable 

to improved forecasting and operations. 

Fourier Order 

(Seasonality) 
5 – 

Number of Fourier terms used to capture 

seasonal variations. 

Annual Cycle 12 Months Represents the full-year seasonal cycle. 

Dust Storm Sub-Cycle 90 Days 
Periodicity set to model recurring dust 

storm impacts. 

Source: Derived from NASA MERRA-2 dataset (2015–2023) and local performance reports. 

Appendix B. Glossary of Technical Terms 

Technical Terms and Definitions 

Term/Source Simplified Explanation Reference 

MAPE 
Average percentage error between 

predictions and actual values. 

Hyndman & 

Koehler (2006) 

RMSE 
Average magnitude of prediction errors (e.g., 

"±2.5 units"). 

Taylor & Letham 

(2017) 



 
 

Term/Source Simplified Explanation Reference 

NASA 

MERRA-2 

A global climate reanalysis dataset used for 

modeling recurring weather patterns (e.g., 

sandstorms) and other meteorological 

parameters. 

NASA (2015–2023) 

SMOTE 

A technique for balancing imbalanced 

datasets by generating synthetic data points 

for underrepresented classes. 

Chawla et al. (2002) 

Prophet 

A time-series forecasting model developed 

by Facebook, ideal for handling missing or 

sparse data and decomposing seasonal 

effects. 

Taylor & Letham 

(2017) 

Fourier Order 

Determines the number of sine and cosine 

terms used to model seasonality in time-

series data. 

- 

Appendix C: Annual and Monthly Climatic Data for 2015–2023 

The climatic data presented in Appendix C are not supplementary or extraneous; 

they represent the baseline environmental parameters—such as solar irradiance, 

wind speed, and dust storm frequency—that were essential for calibrating our 

forecasting model (Prophet) and conducting sensitivity analyses. These tables 

provide critical context for the modeling process and support the reproducibility 

of our study by documenting the specific climatic conditions under which the 

model was developed and validated. 

This appendix provides detailed climatic data used to model solar and wind 

energy patterns in Egypt’s arid zones over the period 2015–2023. These values 

informed the Prophet forecasting model and sensitivity analysis in the study. 

Table C1. Annual Averages of Key Climatic Parameters (2015–2023) 

Year 
Solar Irradiance 

(kWh/m²) 

Average Wind 

Speed (m/s) 

Dust Storm Frequency 

(events/year) 

2015 2,900 9.0 11 



 
 

Year 
Solar Irradiance 

(kWh/m²) 

Average Wind 

Speed (m/s) 

Dust Storm Frequency 

(events/year) 

2016 2,850 9.2 12 

2017 3,000 9.0 13 

2018 2,750 8.8 10 

2019 3,100 10.0 12 

2020 3,050 9.5 11 

2021 2,950 9.1 12 

2022 3,000 9.3 13 

2023 3,100 10.1 12 

Source: Derived from NASA MERRA-2 dataset (2015–2023) and local 

performance reports from the Egyptian Ministry of Electricity (2022). 

Table C2. Monthly Averages of Key Climatic Parameters (Representative 

Year) 

These monthly values reflect typical climate behavior in Egypt's renewable 

energy zones, based on averages from the 2015–2023 period. 

Month 
Solar Irradiance 

(kWh/m²/month) 

Average Wind 

Speed (m/s) 

Dust Storm Frequency 

(events/month) 

January 150 8.0 0.5 

February 175 8.2 0.5 

March 210 8.5 1.0 

April 250 9.0 1.5 

May 290 9.5 2.0 

June 330 10.0 2.5 

July 350 10.2 1.5 

August 330 10.0 1.0 

September 290 9.5 1.0 

October 250 9.0 0.5 

November 210 8.5 0.3 

December 165 8.0 0.3 



 
 

Source: Derived from NASA MERRA-2 dataset (2015–2023), Egyptian Ministry 

of Electricity with seasonal scaling applied for a representative year based on 

Egypt’s Western Desert and Upper Egypt climate zones. 
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