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Abstract: Bio-inspired optimization algorithms have emerged as powerful computational tools for 

solving complex optimization problems, with the Chimp Optimization Algorithm (ChOA) repre-

senting a notable advancement through sophisticated cooperative hunting behaviors. However, a 

critical limitation exists in ChOA's prey localization mechanism, which treats all leading solutions 

equally when estimating prey position regardless of their individual fitness levels, leading to inac-

curate positioning and suboptimal convergence. This research introduces Accurate Prey Localiza-

tion (APL), a novel enhancement that replaces traditional simple averaging with fitness-aware 

weighted positioning. APL implements a pairwise estimation strategy where chimps with higher 

fitness values receive proportionally greater influence in prey position calculations. Experimental 

validation demonstrates substantial effectiveness of APL-Improved ChOA compared to original 

ChOA and Grey Wolf Optimization across multiple evaluation metrics, achieving significant con-

vergence improvements. A comprehensive case study on COVID-19 feature selection validates 

APL's practical effectiveness, with Binary APL-Improved ChOA achieving 98% accuracy compared 

to Binary Particle Swarm Optimization (91.2%), Binary Chimp Optimization (92.65%), and Binary 

Grey Wolf Optimization (94.1%). The improved convergence behavior, enhanced solution accuracy, 

and consistent performance establish APL as a significant advancement for bio-inspired optimiza-

tion algorithms, particularly valuable for feature selection tasks and high-dimensional optimization 

scenarios. 

Keywords: Bio-inspired optimization, Chimp Optimization Algorithm, Prey localization, 

Fitness-aware weighting, Metaheuristic algorithms, Convergence optimization 

 

1. Introduction  

Bio-inspired optimization algorithms solve complex optimization problems by mimicking natu-

ral phenomena and biological behaviors. These algorithms translate natural problem-solving ap-

proaches into mathematical models that efficiently navigate complex solution spaces. They have 

gained widespread adoption due to their ability to handle non-linear, multi-modal, and high-

dimensional problems without requiring gradient information. The algorithms offer several key 

advantages including robustness, flexibility, and effective local optima avoidance. Additionally, 

they provide parallel processing capabilities that enhance computational efficiency. These char-

acteristics make bio-inspired algorithms indispensable for diverse applications such as engineer-
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ing design optimization, machine learning parameter tuning, feature selection, scheduling, and 

financial modeling [1, 2]. 

Bio-inspired algorithms encompass evolutionary algorithms (Genetic Algorithms, Differential 

Evolution), swarm intelligence (Particle Swarm Optimization, Ant Colony Optimization), phys-

ics-based algorithms, and hunting-based metaheuristics modeling predator-prey relationships [3, 

4]. Hunting-based algorithms demonstrate exceptional effectiveness through their natural explo-

ration-exploitation balance, modeling sophisticated predator behaviors—prey searching, stalk-

ing, encircling, attacking—that translate into comprehensive search strategies with hierarchical 

structures and role-based cooperation. The Chimp Optimization Algorithm (ChOA) represents a 

notable advancement by modeling chimpanzee cooperative hunting through four hierarchical 

roles (attacker, barrier, chaser, driver) operating in exploration and exploitation phases, demon-

strating remarkable effectiveness in feature selection, high-dimensional optimization, and engi-

neering design challenges [5]. 

However, ChOA's prey localization mechanism contains a critical limitation that directly impacts 

optimization performance. The existing implementation treats all leading solutions equally when 

estimating prey position using simple averaging, regardless of individual fitness levels. This ap-

proach becomes problematic in high-dimensional landscapes where solution quality varies sig-

nificantly among leading chimps, potentially misleading the algorithm toward suboptimal re-

gions, reducing convergence speed, and increasing premature convergence likelihood, directly 

translating to reduced effectiveness and compromised solution quality [6]. 

To address these limitations, this research introduces Accurate Prey Localization (APL), a novel 

enhancement replacing simple averaging with fitness-aware weighted positioning. APL imple-

ments a pairwise estimation strategy where chimps with higher fitness values receive propor-

tionally greater influence in prey position calculations, ensuring superior solutions guide the op-

timization process more effectively. The method integrates seamlessly with ChOA's existing ex-

ploration mechanisms while fundamentally improving exploitation through Improved prey lo-

calization accuracy, enabling more precise identification of optimal solution regions and im-

proved convergence behavior across diverse problem domains while maintaining the essential 

exploration-exploitation balance [7]. 

This paper is structured as follows: 

 Section 2 (Problem Definition) defines the research problem and identifies specific limita-

tions of traditional ChOA prey localization mechanisms. 

 Section 3 (Literature Review) presents a comprehensive review of bio-inspired optimiza-

tion algorithms and existing ChOA variants. 

 Section 4 (Traditional Prey Localization in ChOA) details traditional prey localization ap-

proaches and analyzes their inherent limitations. 
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 Section 5 (The Proposed Accurate Prey Localization (APL) for Improved Chimp Optimi-

zation) introduces the APL methodology and APL-Improved ChOA algorithm. 

 Section 6 (Results & Discussion) presents experimental results covering theoretical per-

formance analysis and COVID-19 feature selection validation. 

 Section 7 (Conclusion) concludes with key findings and research contributions. 

 Section 8 (Future Work) outlines potential research directions and extensions of the pro-

posed method. 

2. Problem Definition 

The Chimp Optimization Algorithm (ChOA) has emerged as a promising metaheuristic method for solving 

complex optimization problems, particularly in tasks requiring effective feature selection. Inspired by chim-

panzees' cooperative hunting strategies, ChOA involves agents assuming roles such as chasers, blockers, at-

tackers, and drivers, each contributing uniquely to the convergence toward an optimal solution. During each 

iteration, the algorithm adjusts the positions of chimp agents based on an estimated location of the prey, repre-

senting the optimal solution within the search space [8]. 

However, a notable limitation in the existing ChOA implementation lies in its method of prey localization. 

Specifically, ChOA estimates the prey’s position by calculating the average location of the four leading chimps. 

While this simple averaging approach provides a convenient estimation, it frequently results in imprecise prey 

localization, particularly in high-dimensional and complex solution landscapes. Consequently, the optimiza-

tion process may converge prematurely, stall at local optima, or inadequately explore promising regions of the 

search space. 

This limitation significantly impacts performance when applied to feature selection tasks. Inaccurate prey lo-

calization can lead the algorithm to select irrelevant or redundant features, degrading the performance and 

accuracy of machine learning models trained on these subsets. Additionally, treating all four leading chimps 

equally without considering differences in their fitness or quality undermines the algorithm's ability to reliably 

identify optimal solutions as illustrated in figure 1 [9]. Furthermore, the static nature of the averaging mecha-

nism restricts the algorithm's adaptability to varying optimization problems. In real-world applications, espe-

cially biomedical or high-dimensional datasets, these inaccuracies can severely diminish the algorithm’s effec-

tiveness and generalization capabilities. Addressing these issues is crucial to improving the reliability and per-

formance of ChOA-based feature selection. To overcome the limitations inherent in the averaging-based prey 

localization method, this research proposes Accurate Prey Localization (APL), a novel and adaptive approach 

explicitly designed to enhance the accuracy of prey position estimation. By incorporating fitness-aware, dy-

namic localization strategies, APL aims to significantly enhance convergence behavior, feature selection accu-

racy, and overall optimization efficiency. 



IJT’2025, Vol.05, Issue 02.        4 of 28 
 

 

 

 

Figure 1. Treating all four leading chimps equally without considering differences in their fitness 

3. Literature Review 

This section will introduce the previous efforts in the area of bioinspired optimization in more details. We ex-

plore the foundations and recent advancements of bio-inspired optimization algorithms, with a particular fo-

cus on the Chimp Optimization Algorithm (ChOA). We also examine existing variants, highlight current limi-

tations, and introduce a key research gap related. 

3.1. Bio-inspired Optimization 

Bio-inspired optimization algorithms have gained significant attention in recent years due to their ability to 

solve complex optimization problems by mimicking natural biological behaviors and evolutionary processes. 

These algorithms function as versatile computational tools that enable multiple applications with the potential 

to achieve global optimal solutions, making them more adaptable than traditional statistical optimization 

methods that are often application-specific and may struggle to reach global optimality. The field encompasses 

a diverse range of approaches, including evolutionary algorithms, swarm intelligence methods, and other na-

ture-inspired techniques that draw inspiration from various biological phenomena such as animal hunting be-

haviors, flocking patterns, and evolutionary processes [10]. 

Among the most prominent bio-inspired algorithms are Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), Ant Colony Optimization (ACO), Grey Wolf Optimization (GWO), and more recently developed algo-

rithms such as Whale Optimization Algorithm (WOA) and Chimp Optimization Algorithm (ChOA). These 

algorithms have demonstrated effectiveness across numerous domains, including feature selection, engineer-

ing design optimization, and machine learning applications. The landscape of biomimetic optimization algo-

rithms continues to evolve rapidly, with new advances being introduced regularly, emphasizing the dynamic 

nature of this research field. However, this rapid growth has also led to concerns about algorithmic redundan-

cy, with some methods sharing fundamental similarities despite having different names and presentations [1, 

11]. 

3.2. Chimp Optimization Algorithm Foundation 

According to [12] the Chimp Optimization Algorithm (ChOA) is a novel meta-heuristic algorithm inspired by 

the hierarchical intelligence and cooperative hunting strategies of chimpanzees. It divides the population into 
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four different levels representing distinct hunting roles: attacker, obstacle (blocker), chaser, and driver, each 

contributing uniquely to the prey capture process. The algorithm models the hunting behavior through two 

main stages: the exploration stage (including driving, blocking, and chasing the prey) and the exploitation 

stage (attacking the prey). During each iteration, chimp agents adjust their positions based on an estimated 

location of the prey, which represents the optimal solution within the search space. 

ChOA has shown effectiveness in solving complex optimization problems, particularly those involving high-

dimensional search spaces where traditional algorithms often struggle with convergence speed and local opti-

mum entrapment. Its wrapper-based approach is especially suitable for feature selection tasks, enabling effi-

cient evaluation of various feature combinations while simultaneously optimizing classifier parameters. De-

spite its strengths, ChOA still faces certain challenges such as limited population diversity during the initial 

phase and a tendency to become trapped in local optima during the final stages of the search process. These 

limitations underscore the need for further algorithmic enhancements to improve its overall optimization per-

formance [13, 5]. 

3.3. ChOA Variants and Improvements 

Since the introduction of the original ChOA, various enhancements and modifications have been proposed to 

address its inherent limitations and broaden its scope of application. One such improvement involves the de-

velopment of an Improved Chimp Optimization Algorithm (EChOA), which incorporates highly disruptive 

polynomial mutation for population initialization, Spearman's rank correlation coefficient for evaluating solu-

tion quality, and beetle antennae operators to guide less fit agents while avoiding local optima. Evaluations on 

classical and benchmark functions such as those from CEC2017 have shown that this Improved variant signifi-

cantly improves solution accuracy and convergence behavior compared to the original version [14]. 

To overcome the limitation of ChOA's continuous nature in handling binary optimization problems, a Binary 

Chimp Optimization Algorithm (BChOA) was introduced. This approach uses S-shaped and V-shaped transfer 

functions alongside a novel binary transformation mechanism to enable effective performance on discrete 

tasks. The binary version has demonstrated strong potential, especially in feature selection scenarios where the 

search space is inherently binary. Another notable implementation tailored for biomedical data classification in 

feature selection tasks has also shown superior results when compared to conventional methods [15]. 

Recent comprehensive reviews have highlighted a surge of interest in ChOA variants, documenting numerous 

modifications such as weighted versions, chaotic variants, and hybrid approaches that integrate ChOA with 

other metaheuristic techniques. While these developments primarily aim to enhance the algorithm’s explora-

tion and exploitation capabilities, a critical challenge remains largely unresolved: the accuracy of prey localiza-

tion. This ongoing limitation presents a promising avenue for future advancements, particularly approaches 

focused on improving prey localization precision, such as the Accurate Prey Localization (APL) strategy [16]. 

3.4. Research Gap 

Despite notable progress in bio-inspired optimization algorithms and the many enhancements proposed for 

ChOA, a critical research gap remains largely unaddressed: the accuracy of prey-localization mechanisms. 

While extensive work has been devoted to improving exploration and exploitation through refined search 

strategies, population-diversity techniques, and hybrid approaches, comparatively little attention has been 

paid to the way metaheuristics estimate the position of the optimal solution, commonly referred to as the prey 

location. 

Most current ChOA variants still depend on the original averaging-based prey-localization method, where the 

prey’s position is determined as the simple average of the four leading agents. Although computationally con-

venient, this strategy often lacks the precision needed to pinpoint optimal solutions in high-dimensional or 

highly complex landscapes. Studies of hunter-prey dynamics have emphasized that accurate localization is 



IJT’2025, Vol.05, Issue 02.        6 of 28 
 

 

 

vital to optimization performance; yet even recent efforts that introduce distance-based selection continue to 

rely on position rather than fitness awareness [17]. 

Research to date has mainly concentrated on algorithmic refinements such as chaotic mapping, opposition-

based learning, and hybridization with other metaheuristics, while leaving the core mechanism of prey-

position estimation largely intact. This presents a substantial opportunity for improvement: more accurate lo-

calization could directly boost convergence, solution quality, and overall efficiency. The Accurate Prey Locali-

zation (APL) method addresses this gap by adopting a fitness-aware, dynamic approach that weighs the rela-

tive quality of leading solutions rather than relying on simple averaging, offering a more precise and adaptive 

guide for steering the search toward global optima [7]. 

Table 1. Related studies in optimization techniques. 

Category Paper Brief Description 

Bio-Inspired 

Optimization 
[10] 

This review diagnoses a key problem in bio-inspired optimization: the 

proliferation of "literally identical" algorithms without fundamental 

improvements. This critique validates our research gap, as APL pro-

vides a targeted enhancement to ChOA's flawed prey localization, re-

sponding directly to the need for meaningful, non-redundant ad-

vancements that the author implicitly call for. 

Bio-Inspired 

Optimization 
[1] 

This comprehensive review establishes the broad context of bio-

inspired metaheuristics, surveying algorithms including GWO, WOA, 

and ACO while highlighting their common exploration-exploitation 

balance structure. This foundational reference situates our research 

within the larger field and underscores the importance of hunting-

based strategies that ChOA and APL aim to improve. 

Bio-Inspired 

Optimization 
[18] 

This paper introduces ZOA using the No Free Lunch theorem to justi-

fy new optimizers, representing a different response to bio-inspired 

computing challenges. While our APL-ChOA rectifies a specific weak-

ness (inaccurate prey localization) in an existing algorithm, ZOA pro-

poses an entirely new algorithm, providing a valuable comparison 

point demonstrating parallel innovation paths. 

Chimp Opti-

mization Al-

gorithm 

[12] 

This paper introduces EChOA, incorporating multiple enhancements 

to help less-fit chimps avoid local optima, serving as an important 

benchmark representing an alternative ChOA improvement approach. 

Unlike EChOA's multiple external mechanisms, our APL method pro-

vides an internal, fundamental correction to the algorithm's core logic 

through fitness-weighted prey localization. 
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Chimp Opti-

mization Al-

gorithm 

[13] 

This paper introduces EChOA, incorporating multiple enhancements 

to help less-fit chimps avoid local optima, serving as an important 

benchmark representing an alternative ChOA improvement approach. 

Unlike EChOA's multiple external mechanisms, our APL method pro-

vides an internal, fundamental correction to the algorithm's core logic 

through fitness-weighted prey localization. 

Chimp Opti-

mization Al-

gorithm 

[5] 

This paper proposes 'Weighted Chimp Optimization Algorithm' 

(WChOA) with a fundamentally different mechanism from APL. 

WChOA calculates weights based on Euclidean distance of leader po-

sition vectors (movement magnitude), while APL calculates weights 

based on relative fitness of leading solutions. This distinction is cru-

cial: WChOA prioritizes vector magnitude influence, while APL prior-

itizes solution quality, directly addressing the core flaw of treating 

high- and low-quality leaders equally. 

ChOA Vari-

ants and Im-

provements 

[14] 

This work introduces Fuzzy-ChOA, integrating fuzzy logic to adap-

tively control exploration and exploitation parameters, demonstrating 

an alternative improvement philosophy. Instead of modifying the core 

prey localization equation like APL, this approach fine-tunes parame-

ters influencing search behavior, highlighting APL's unique contribu-

tion in addressing a more fundamental structural weakness within 

ChOA. 

ChOA Vari-

ants and Im-

provements 

[15] 

This paper introduces SEB-ChOA, replacing standard exploitation 

with sophisticated spiral movement patterns, providing critical com-

parison for our APL method. While SEB-ChOA modifies how chimps 

approach the prey, it doesn't change the fundamental prey location 

calculation, which remains simple averaging of leaders. APL directly 

addresses this flaw through fitness-aware weighted calculation, 

demonstrating distinct improvement philosophies: SEB-ChOA en-

hances agent movement, while APL corrects core guidance logic. 

ChOA Vari-

ants and Im-

provements 

[16] 

This paper proposes an improved ChOA combining three strategies—

nonlinear parameter initialization, modified position update, and 

Cauchy-Gauss mutation—representing an alternative multi-technique 

integration approach. This differs from our APL method, which iso-

lates and corrects a single fundamental weakness: inaccurate prey lo-

calization caused by simple averaging, offering a specific structural fix 

rather than multi-strategy enhancement. 
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ChOA Recent 

Advances & 

Limitations 

[7] 

This review establishes ChOA's growing importance by cataloging its 

many variants and applications, providing a comprehensive backdrop 

that highlights our APL method's novelty. By focusing on fundamen-

tal correction to the prey localization formula via fitness-weighting, 

our approach addresses a specific algorithmic weakness distinct from 

the common hybridization or multi-strategy enhancements document-

ed in the survey. 

 

4. Traditional Prey Localization in ChOA 

Understanding the foundational mechanisms of the Chimp Optimization Algorithm is essential for identifying 

the specific limitations that this research addresses. This section provides a comprehensive examination of 

ChOA's traditional prey localization approach, beginning with the algorithm's core principles and progressing 

through its exploitation mechanisms to reveal the fundamental weaknesses in the current prey position estima-

tion strategy. By analyzing these traditional methods in detail, we establish the theoretical foundation neces-

sary for understanding why fitness-aware prey localization represents a critical advancement in bio-inspired 

optimization.  

4.1. Chimp Optimization Algorithm Foundation 

The Chimp Optimization Algorithm (ChOA) models the intelligent hunting behavior of chimpanzees through 

four distinct hierarchical roles: attacker, barrier, chaser, and driver. Each role represents a specific behavioral 

strategy observed in natural chimpanzee hunting, where coordinated group actions maximize prey capture 

success. The algorithm operates through two main phases that mirror natural hunting patterns: exploration 

(driving, blocking, chasing) and exploitation (attacking the prey). This dual-phase structure enables ChOA to 

maintain an effective balance between searching new solution regions and intensifying the search around 

promising areas. 

During the exploration phase, chimps search for prey using sophisticated positioning strategies that incorpo-

rate both deterministic and stochastic elements. The distance calculation between a chimp and the estimated 

prey location is determined by: 

                                 (1) 

Subsequently, each chimp updates its position based on this calculated distance: 

                         (2) 

where t represents the current iteration, and the coefficient vectors are: 

                  (3) 

           (4) 

                  (5) 
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where f decreases from 2.5 to 0 throughout iterations, and r1, r2 are random vectors in [0,1]. 

The exploitation phase represents the critical convergence mechanism where ChOA estimates the prey location 

based on the four best solutions (leading chimps) identified during the search process. This phase assumes that 

the optimal solution lies within the region defined by the positions of the most successful search agents. The 

algorithm calculates individual position updates according to each leader's guidance: 

                                 (6) 

                               (7) 

                         (8) 

                         (9) 

Each equation represents the position recommendation from one of the four leading chimps, incorporating 

their individual distance calculations and coefficient values. These four position estimates theoretically pro-

vide different perspectives on where the optimal solution might be located within the search space. 

The critical step in traditional ChOA occurs when these four individual estimates must be combined into a 

single prey position that guides the entire population. The original algorithm accomplishes this through simple 

arithmetic averaging: 

                               (10) 

This averaging approach treats each leading chimp's contribution equally, with each receiving exactly 25% in-

fluence in determining the final prey location regardless of their individual performance quality or fitness val-

ues. 

4.2. Limitations of Traditional Approach 

The fundamental limitation of Equation (10) lies in its assumption that all four leading chimps contribute 

equally to prey localization, regardless of their individual fitness values or solution quality. This equal 

weighting strategy creates several critical problems that directly impact optimization performance and con-

vergence behavior. 

First, the approach results in inaccurate prey positioning when chimps have significantly different fitness lev-

els. In optimization scenarios where one or two leaders have substantially superior fitness compared to others, 

the simple averaging dilutes the influence of high-quality solutions. For example, if the attacker chimp has 

found a near-optimal solution while other leaders remain in suboptimal regions, the averaging process forces 

the estimated prey position toward a compromise location that may be inferior to the best individual solution. 

Second, this averaging mechanism can lead to premature convergence toward suboptimal solutions, particu-

larly in complex multi-modal landscapes. When lower-quality leaders influence the prey position estimation, 

they can guide the population away from globally optimal regions toward local optima that appear promising 

based on the averaged position but represent inferior solutions when compared to the best individual discov-

eries. 

Third, the equal weighting approach results in a systematic loss of information from high-performing chimps. 

Superior solutions that should naturally receive greater influence in guiding the optimization process are in-

stead constrained by the performance of weaker leaders. This information loss is particularly problematic in 

high-dimensional optimization problems where small improvements in solution quality can represent signifi-

cant algorithmic progress. 
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The static nature of this averaging mechanism further restricts the algorithm's adaptability to varying optimi-

zation landscapes. Unlike natural hunting scenarios where dominant hunters naturally assume greater leader-

ship roles based on their success, traditional ChOA maintains rigid equality among leaders regardless of their 

demonstrated performance. This limitation becomes increasingly problematic as optimization complexity in-

creases, where the algorithm's inability to prioritize superior solutions directly translates to reduced conver-

gence efficiency and compromised final solution quality [19]. 

5. The Proposed Accurate Prey Localization (APL) for Improved Chimp Optimization 

Having identified the limitations of traditional prey localization in ChOA, this section presents the Accurate 

Prey Localization (APL) methodology as a targeted solution. APL replaces simple averaging with fitness-

aware weighted positioning, ensuring that superior solutions receive greater influence in prey position estima-

tion. This approach addresses the core problem of treating high and low-quality leaders equally, leading to 

more accurate prey localization and improved optimization performance. 

5.1. APL Methodology Overview  

The proposed APL method implements a fitness-aware prey localization strategy that moves beyond the con-

straints of simple arithmetic averaging. Unlike traditional ChOA that treats all leading chimps equally, APL 

introduces dynamic weighting based on individual fitness performance. This approach recognizes that in op-

timization landscapes, fitness differences among leading chimps can be substantial, representing varying de-

grees of proximity to the global optimum. By incorporating these disparities into prey localization calculations, 

APL enables more informed decisions about optimal solution location.  

5.2. Fitness-Based Weight Calculation 

APL's effectiveness stems from its fitness-aware weight calculation mechanism. For any two chimps with fit-

ness values f₁ and f₂, weights are calculated using normalization that ensures superior solutions receive greater 

influence: 

                       (11) 

                       (12) 

This scheme ensures weights sum to unity while providing proportional relationship between fitness quality 

and influence. When chimps have similar fitness, weights approach equality (0.5 each). However, with signifi-

cant fitness disparities, the superior chimp receives substantially greater weight, ensuring high-quality solu-

tions dominate prey position estimation as shown in figure 2. 
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Figure 2. The initial position of the prey as a point between driver and chaser chimp (Pairwise Prey Estimation) 

the initial position of the prey is expressed by the vector  ⃗        using (13). The distance between  ⃗       and 

 ⃗       , denoted as;        
       

 is then calculated using (14) [20].  

 ⃗           
         

         
             

               Where    
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To identify the prey’s location, the next step is to add the effect of     , which is the third nearest wolf to the 

prey. Hence, the distance from  ⃗   to  ⃗        is calculated, denoted as;   
       

 and calculated using (15). The 

approximated distance between      and the actual prey can be concluded as using (16). 

  
       

 √   
    

       
      

    
       

        
    

       
  

 

              

  

     

  
        

 
         

       

       
                

     

Here, the prey is supposed to lie on the ray connecting the points  ⃗        and  ⃗ . Hence, there are two possi-

bilities regarding the actual location of the prey, which is denoted as;  ⃗        . The first possibility is that 

 ⃗         is located between  ⃗        and  ⃗ . This happened if   
        

  
       

. Hence,  ⃗         can be identi-

fied in the same scenario followed in figure 3 as depicted in (6) and figure 4.  

 ⃗            
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Where    
        

 
(    

       
      

 )  

      
                  

     
       

  
             

5.3. Multiple Pair Integration 

To utilize intelligence from all four leading chimps, APL employs multiple pair integration. Using chimps (At-

tacker, Barrier, Chaser, Driver), four pairs are formed: (Driver, Chaser), (Barrier , Chaser), (Barrier, Attacker), 

(Attacker, Driver). This ensures each chimp participates in exactly two pairs, providing balanced representa-

tion. The prey estimates from these pairs are integrated through averaging: 

                                             

This final averaging combines intelligent prey estimates that have already been weighted according to fitness 

performance, preserving fitness-aware intelligence while ensuring balanced consensus.  

 

 

 

 

 

 

Figure 3. , The position of the prey as a point between all four leader chimp 

5.4. APL Integration with ChOA 

APL integration preserves ChOA's fundamental strengths while addressing its core limitation. The Improved 

algorithm maintains original exploration mechanisms (Equations 1-5) while replacing traditional prey localiza-

tion (Equation 10) with the weighted approach (Equations 11-18). This selective enhancement preserves the 

exploration-exploitation balance while ensuring convergence is guided by fitness-aware intelligence rather 

than simple averaging. 

5.5. APL-Improved ChOA Algorithm 

The complete algorithm integrates fitness-aware prey localization within the established ChOA framework. 

When exploitation conditions are met (|a| ≥ 1 and r1 > 0.5), the algorithm executes APL: calculating fitness-

based weights, generating pairwise prey estimates, and integrating multiple pair estimates. This replacement 

occurs transparently within existing control flow, ensuring compatibility with all ChOA mechanisms while 

providing targeted enhancement to address the identified limitation. 

Input: Population size n, maximum iterations T, problem dimension D 

Output: Best solution x_best 
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1:  Initialize chimp population X = {x₁, x₂, ..., xₙ} randomly 

2:  Initialize parameters f, m, a, c 

3:  for t = 1 to T do 

4:      for each chimp xᵢ do 

5:          Calculate fitness f(xᵢ) 

6:      end for 

7:      Identify four best chimps: 

8:          x_Attacker ← best chimp 

9:          x_Chaser ← second best chimp   

10:         x_Barrier ← third best chimp 

11:         x_Driver ← fourth best chimp 

12:     for each chimp xᵢ do 

13:         Update parameters f, m, a, c using group strategy 

14:         Calculate distance d using Eq. (1) 

15:         if |a| < 1 then 

16:             Update position using Eq. (2) 

17:         else if |a| ≥ 1 then 

18:             if r₁ > 0.5 then 

19:                 // APL Enhancement: Replace traditional averaging 

20:                 Calculate fitness-based weights using Eq. (11-12) 

21:                 Generate pairwise prey estimates using Eq. (13) 

22:                 Integrate multiple pair estimates using Eq. (18) 

23:                 Update position using APL-based prey localization 

24:             else 

25:                 Select random search agent for position update 

26:             end if 

27:         end if 

28:     end for 

29:     Update leading chimps 

30:     t ← t + 1 

31: end for 

32: return x_Attacker 

6. Results & Discussion  

6.1. Theoretical Discussion for Improved ChOA Performance 

The proposed APL-Improved ChOA was evaluated against the original ChOA and Grey Wolf Optimization 

(GWO) algorithm using a population size of 10 agents across 3 iterations. All algorithms were initialized with 

identical starting conditions to ensure fair comparison, with agents distributed across a 2-dimensional search 

space. The experimental parameters included linearly decreasing control parameter f from 2.5 to 0, and ran-

dom vectors r1 and r2 within [0,1]. 

This section presents the comprehensive experimental findings from the evaluation of the proposed APL-

Improved ChOA against the original ChOA and Grey Wolf Optimization algorithm. The analysis encompasses 

detailed performance metrics across three iterations, examining convergence behavior, prey localization accu-

racy, and optimization effectiveness under identical experimental conditions. The results are organized 

through comparative tables that track each algorithm's progression, including fitness evolution, prey position 

estimates, and leadership dynamics throughout the optimization process. Each algorithm's performance is sys-

tematically documented to provide clear insights into the effectiveness of fitness-aware prey localization ver-
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sus traditional averaging approaches. The experimental data reveals distinct patterns in algorithmic behavior 

that validate the theoretical framework presented in the methodology section and demonstrate the practical 

implications of accurate prey positioning in bio-inspired optimization algorithms. 

6.1.1. Improved ChOA 

The APL-Improved ChOA demonstrated exceptional convergence behavior throughout the optimization pro-

cess, achieving significant performance improvements across all evaluation iterations. The algorithm began 

with an initial best fitness of 3.739493 (agent C1) and showed steady progression through the first two itera-

tions, with fitness values of 8.706742229 and 8.411022245 respectively. However, the most remarkable im-

provement occurred in the third iteration, where the algorithm achieved a dramatic convergence to a near-

optimal solution with a best fitness of 0.00024463, representing approximately a 15,000-fold improvement from 

the initial state. 

The prey position evolution clearly demonstrates the effectiveness of the APL methodology's fitness-aware 

localization strategy. The algorithm's prey position estimates progressed from (3.74, 5.328) in the first iteration 

through (4.7262, 3.9724) in the second iteration, ultimately converging to (1.73852, 2.95429) in the third itera-

tion. This systematic prey position refinement reflects how APL's weighted positioning mechanism, which 

considers the relative fitness quality of leading agents, successfully guides the search toward optimal solution 

regions more accurately than traditional simple averaging approaches. 

The leadership dynamics evolved significantly throughout the optimization process, with agent C1 maintain-

ing dominance in the first two iterations before agent C5 emerged as the superior solution in the final iteration. 

This leadership transition demonstrates APL's ability to adaptively recognize and promote superior solutions 

based on their fitness performance, validating the core principle of fitness-based weighting in prey localiza-

tion. The final prey position of (1.73852, 2.95429) and corresponding fitness value of 0.00024463 establish the 

effectiveness of APL's Improved localization accuracy in achieving superior optimization performance com-

pared to traditional averaging-based methods. 

Table 2. Related to initial iteration of improved chimp. 

Initial 

Agent Location Objective Function Value 
X1 X2 

C1 1.247 1.478 3.739493 
C2 2.428 8.976 86.46376 
C3 4.578 6.48 62.948484 
C4 1.786 9.458 92.64356 
C5 3.789 7.548 71.328825 
C6 8.458 1.256 73.1153 
C7 9.78 5.496 125.854416 
C8 9.48 7.456 145.462336 
C9 7.456 5.456 85.359872 
C10 5.245 5.125 53.77565 

Table 3. Related to first iteration of improved chimp. 

 
First Iteration 

Agent Location Distance Parameters Location Objective Function Value 
X1 X2 D(x1) D(x2) r1 r2 f m New X1 New X2 

C1 1.247 1.478 6.7318 9.7692 0.6 1 1.5 0.6 1.72046 2.39724 8.706742229 
C2 2.428 8.976 6.0232 5.2704 0.6 1 1.5 0.6 1.93304 3.74688 17.77575338 
C3 4.578 6.48 4.7332 6.768 0.6 1 1.5 0.6 2.32004 3.2976 16.25675136 
C4 1.786 9.458 6.4084 4.9812 0.6 1 1.5 0.6 1.81748 3.83364 18.0000292 
C5 3.789 7.548 5.2066 6.1272 0.6 1 1.5 0.6 2.17802 3.48984 16.92275435 
C6 8.458 1.256 2.4052 9.9024 0.6 1 1.5 0.6 3.01844 2.35728 14.66774903 
C7 9.78 5.496 1.612 7.3584 0.6 1 1.5 0.6 3.2564 3.12048 20.34153639 
C8 9.48 7.456 1.792 6.1824 0.6 1 1.5 0.6 3.2024 3.47328 22.31903972 
C9 7.456 5.456 3.0064 7.3824 0.6 1 1.5 0.6 2.83808 3.11328 17.74721044 
C10 5.245 5.125 4.333 7.581 0.6 1 1.5 0.6 2.4401 3.0537 15.2791717 
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Table 4. Related to second iteration of improved chimp. 

Second Iteration 

Agent Location Distance Parameters Location Objective Function 

Value X1 X2 D(x1) D(x2) r1 r2 f m New X1 New X2 
C1 1.247 1.478 6.7318 9.7692 0.6 1 1.5 0.6 2.70666 1.04164 8.411022245 
C2 1.93304 3.74688 6.320176 8.407872 0.6 1 1.5 0.6 2.830147 1.450038 10.11234454 
C3 2.32004 3.2976 6.087976 8.67744 0.6 1 1.5 0.6 2.899807 1.369168 10.28350281 
C4 1.81748 3.83364 6.389512 8.355816 0.6 1 1.5 0.6 2.809346 1.465655 10.04057236 
C5 2.17802 3.48984 6.173188 8.562096 0.6 1 1.5 0.6 2.874244 1.403771 10.23184985 
C6 3.01844 2.35728 5.668936 9.241632 0.6 1 1.5 0.6 3.025519 1.19991 10.5935514 
C7 3.2564 3.12048 5.52616 8.783712 0.6 1 1.5 0.6 3.068352 1.337286 11.20311891 
C8 3.2024 3.11328 5.55856 8.788032 0.6 1 1.5 0.6 3.058632 1.33599 11.14010006 
C9 2.83808 3.0537 5.777152 8.82378 0.6 1 1.5 0.6 2.993054 1.325266 10.71470461 
C10 2.4401 3.0537 6.01594 8.82378 0.6 1 1.5 0.6 2.921418 1.325266 10.2910131 

 

Table 5. Related to third iteration of improved chimp. 

Third Iteration 

Agent Location Distance Parameters Location Objective Function 

Value X1 X2 D(x1) D(x2) r1 r2 f m New X1 New X2 
C1 2.70666 1.04164 5.856004 10.031 0.6 1 1.5 0.6 -0.018281 -0.05501 0.00336083 
C2 2.830147 1.450038 5.781912 9.78598 0.6 1 1.5 0.6 0.003946 0.018497 0.000357708 
C3 2.899807 1.369168 5.740116 9.8345 0.6 1 1.5 0.6 0.016485 0.00394 0.00028729 
C4 2.809346 1.465655 5.794392 9.77661 0.6 1 1.5 0.6 0.000202 0.021308 0.000454068 
C5 2.874244 1.403771 5.755454 9.81374 0.6 1 1.5 0.6 0.011884 0.010169 0.00024463 
C6 3.025519 1.19991 5.664688 9.93605 0.6 1 1.5 0.6 0.039113 -0.02653 0.002233502 
C7 3.068352 1.337286 5.638989 9.85363 0.6 1 1.5 0.6 0.046823 -0.0018 0.002195662 
C8 3.058632 1.33599 5.644821 9.85441 0.6 1 1.5 0.6 0.045074 -0.00203 0.002035772 
C9 2.993054 1.325266 5.684167 9.86084 0.6 1 1.5 0.6 0.03327 -0.00396 0.001122577 
C10 2.921418 1.325266 5.727149 9.86084 0.6 1 1.5 0.6 0.020375 -0.00396 0.000430849 

6.1.2. Original Chimp. 

The original ChOA demonstrated traditional convergence patterns characteristic of simple averaging-based 

prey localization throughout the optimization process. Starting from the same initial conditions as the APL-

Improved variant, with a best fitness of 3.739493 (agent C1), the algorithm showed initial deterioration in the 

first two iterations, reaching fitness values of 8.349198343 and 8.130497933 respectively, before achieving im-

provement in the third iteration with a final best fitness of 3.4465596. 

The prey position evolution under traditional simple averaging followed a less systematic trajectory compared 

to fitness-aware approaches. The algorithm's prey estimates progressed from (3.714, 5.15775) in the first itera-

tion through (4.9977, 3.7975) in the second iteration, ultimately reaching (2.122955, 2.62958) in the final itera-

tion. While these positions show general movement toward convergence, the progression lacks the focused 

directionality observed in fitness-aware prey localization methods. This reflects the fundamental limitation of 

equal weighting among leaders with varying solution quality, where inferior solutions dilute the guidance 

provided by superior performers. 

Agent C1 maintained consistent leadership throughout all iterations under the original ChOA framework, in-

dicating algorithmic stability but potentially limited adaptability in recognizing emerging superior solutions. 

The traditional averaging mechanism's inability to prioritize high-performing agents resulted in prey position 

estimates that compromise between good and poor solutions. The final prey position of (2.122955, 2.62958) and 

corresponding fitness value of 3.4465596 demonstrate the limitations of simple averaging in achieving accurate 

prey localization, establishing a baseline that highlights the need for more sophisticated, fitness-aware posi-

tioning strategies. 
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Table 6. Related to initial iteration of original chimp. 

Initial 

Agent Location Objective Function Value 
X1 X2 

C1 1.247 1.478 3.739493 
C2 2.428 8.976 86.46376 
C3 4.578 6.48 62.94848 
C4 1.786 9.458 92.64356 
C5 3.789 7.548 71.32883 
C6 8.458 1.256 73.1153 
C7 9.78 5.496 125.8544 
C8 9.48 7.456 145.4623 
C9 7.456 5.456 85.35987 
C10 5.245 5.125 53.77565 

 

Table 7. Related to first iteration of original chimp. 

First Iteration 

Agent Location Distance Parameters Location Objective Function 

Value X1 X2 D(x1) D(x2) r1 r2 f m New X1 New X2 
C1 1.247 1.478 6.6798 9.4287 0.6 1 1.5 0.6 1.71006 2.32914 3.739493 
C2 2.428 8.976 5.9712 4.9299 0.6 1 1.5 0.6 1.92264 3.67878 86.46376 
C3 4.578 6.48 4.6812 6.4275 0.6 1 1.5 0.6 2.30964 3.2295 62.94848 
C4 1.786 9.458 6.3564 4.6407 0.6 1 1.5 0.6 1.80708 3.76554 92.64356 
C5 3.789 7.548 5.1546 5.7867 0.6 1 1.5 0.6 2.16762 3.42174 71.32883 
C6 8.458 1.256 2.3532 9.5619 0.6 1 1.5 0.6 3.00804 2.28918 73.1153 
C7 9.78 5.496 1.56 7.0179 0.6 1 1.5 0.6 3.246 3.05238 125.8544 
C8 9.48 7.456 1.74 5.8419 0.6 1 1.5 0.6 3.192 3.40518 145.4623 
C9 7.456 5.456 2.9544 7.0419 0.6 1 1.5 0.6 2.82768 3.04518 85.35987 
C10 5.245 5.125 4.281 7.2405 0.6 1 1.5 0.6 2.4297 2.9856 53.77565 

 

Table 8. Related to second iteration of original chimp. 

Second Iteration 

Agent Location Distance Parameters Location Objective Function 

Value X1 X2 D(x1) D(x2) r1 r2 f m New X1 New X2 
C1 1.247 1.478 9.2472 6.7082 0.6 1 1.5 0.6 2.22354 1.78504 8.130497933 
C2 1.92264 3.67878 8.841816 5.387732 0.6 1 1.5 0.6 2.345155 2.18118 10.25730085 
C3 2.30964 3.2295 8.609616 5.6573 0.6 1 1.5 0.6 2.414815 2.10031 10.24263455 
C4 1.80708 3.76554 8.911152 5.335676 0.6 1 1.5 0.6 2.324354 2.196797 10.22854131 
C5 2.16762 3.42174 8.694828 5.541956 0.6 1 1.5 0.6 2.389252 2.134913 10.26637758 
C6 3.00804 2.28918 8.190576 6.221492 0.6 1 1.5 0.6 2.540527 1.931052 10.18324183 
C7 3.246 3.05238 8.0478 5.763572 0.6 1 1.5 0.6 2.58336 2.068428 10.95214494 
C8 3.192 3.40518 8.0802 5.551892 0.6 1 1.5 0.6 2.57364 2.131932 11.16875861 
C9 2.82768 3.04518 8.298792 5.767892 0.6 1 1.5 0.6 2.508062 2.067132 10.56341336 
C10 2.4297 2.9856 8.53758 5.80364 0.6 1 1.5 0.6 2.436426 2.056408 10.16498552 

Table 9. Related to third iteration of original chimp. 

Third Iteration 

Agent Location Distance Parameters Location Objective Fun. Value 
X1 X2 D(x1) D(x2) r1 r2 f m New X1 New X2  

C1 2.22354 1.78504 2.911786 4.188136 0.6 1 1.5 0.6 1.249419 1.373139 3.4465596 
C2 2.345155 2.18118 2.838817 3.950452 0.6 1 1.5 0.6 1.27131 1.444444 3.702648487 
C3 2.414815 2.10031 2.797021 3.998974 0.6 1 1.5 0.6 1.283849 1.429888 3.692846605 
C4 2.324354 2.196797 2.851298 3.941082 0.6 1 1.5 0.6 1.267566 1.447255 3.701271221 
C5 2.389252 2.134913 2.812359 3.978212 0.6 1 1.5 0.6 1.279247 1.436116 3.69890395 
C6 2.540527 1.931052 2.721594 4.100529 0.6 1 1.5 0.6 1.306477 1.399421 3.665261929 
C7 2.58336 2.068428 2.695894 4.018103 0.6 1 1.5 0.6 1.314187 1.424149 3.755287433 
C8 2.57364 2.131932 2.701726 3.980001 0.6 1 1.5 0.6 1.312437 1.43558 3.783380651 
C9 2.508062 2.067132 2.741073 4.018881 0.6 1 1.5 0.6 1.300633 1.423916 3.719182708 
C10 2.436426 2.056408 2.784054 4.025315 0.6 1 1.5 0.6 1.287739 1.421985 3.6803135 

6.1.3. Grey wolf 

The Grey Wolf Optimization algorithm demonstrated competitive convergence behavior throughout the opti-

mization process, starting from identical initial conditions with a best fitness of 3.739493 (agent GW1). The al-

gorithm showed initial performance deterioration in the first two iterations, with fitness values of 6.933433205 

and 9.034981459 respectively, before achieving significant improvement in the third iteration with a final best 

fitness of 0.045022602. 

The prey position evolution in GWO followed a systematic trajectory, beginning with prey coordinates of 

(3.69, 4.361) in the first iteration, progressing through (4.9833, 2.6196) in the second iteration, and converging to 

(1.6525, 2.76164) in the final iteration. This progression demonstrates GWO's established prey localization 
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mechanism effectively guiding the search process toward promising solution regions, though with different 

dynamics compared to ChOA-based approaches. 

Leadership dynamics in GWO evolved throughout the optimization process, with agent GW1 maintaining 

dominance through the first two iterations before agent GW6 emerged as the superior solution in the final iter-

ation. This leadership transition reflects GWO's ability to adaptively recognize and promote superior solutions 

within its alpha-beta-delta hierarchy. The final convergence to a fitness value of 0.045022602 establishes GWO 

as a competitive baseline algorithm for comparative analysis, demonstrating substantially better performance 

than traditional ChOA while providing a benchmark for evaluating the effectiveness of the proposed APL en-

hancement. 

Table 10. Related to initial iteration of gray wolf. 
Initial 

Agent Location Objective Function Value 
X1 X2 

C1 1.247 1.478 3.739493 
C2 2.428 8.976 86.46376 
C3 4.578 6.48 62.94848 
C4 1.786 9.458 92.64356 
C5 3.789 7.548 71.32883 
C6 8.458 1.256 73.1153 
C7 9.78 5.496 125.8544 
C8 9.48 7.456 145.4623 
C9 7.456 5.456 85.35987 
C10 5.245 5.125 53.77565 

Table 11. Related to first iteration of gray wolf. 

First Iteration 

Agent Location Distance Parameters Location Objective Function 

Value X1 X2 D(x1) D(x2) r1 r2 f m New X1 New X2 
C1 1.247 1.478 6.6318 7.8352 0.6 1 1.5 0.6 1.70046 2.01044 6.933433205 
C2 2.428 8.976 5.9232 3.3364 0.6 1 1.5 0.6 1.91304 3.36008 14.94985965 
C3 4.578 6.48 4.6332 4.834 0.6 1 1.5 0.6 2.30004 2.9108 13.76294064 
C4 1.786 9.458 6.3084 3.0472 0.6 1 1.5 0.6 1.79748 3.44684 15.11164034 
C5 3.789 7.548 5.1066 4.1932 0.6 1 1.5 0.6 2.15802 3.10304 14.28590756 
C6 8.458 1.256 2.3052 7.9684 0.6 1 1.5 0.6 2.99844 1.97048 12.87343386 
C7 9.78 5.496 1.512 5.4244 0.6 1 1.5 0.6 3.2364 2.73368 17.9472913 
C8 9.48 7.456 1.692 4.2484 0.6 1 1.5 0.6 3.1824 3.08648 19.65402855 
C9 7.456 5.456 2.9064 5.4484 0.6 1 1.5 0.6 2.81808 2.72648 15.37526808 
C10 5.245 5.125 4.233 5.647 0.6 1 1.5 0.6 2.4201 2.6669 12.96923962 

Table 12. Related to second iteration of gray wolf. 

Second Iteration 

Agent Location Distance Parameters Location Objective Function 

Value X1 X2 D(x1) D(x2) r1 r2 f m New X1 New X2 
C1 1.247 1.478 6.6318 7.8352 0.6 1 1.5 0.6 2.99376 0.26904 9.034981459 
C2 1.91304 3.36008 6.232176 6.705952 0.6 1 1.5 0.6 3.113647 0.607814 10.06423723 
C3 2.30004 2.9108 5.999976 6.97552 0.6 1 1.5 0.6 3.183307 0.526944 10.41111471 
C4 1.79748 3.44684 6.301512 6.653896 0.6 1 1.5 0.6 3.092846 0.623431 9.954365315 
C5 2.15802 3.10304 6.085188 6.860176 0.6 1 1.5 0.6 3.157744 0.561547 10.2866799 
C6 2.99844 1.97048 5.580936 7.539712 0.6 1 1.5 0.6 3.309019 0.357686 11.07754763 
C7 3.2364 2.73368 5.43816 7.081792 0.6 1 1.5 0.6 3.351852 0.495062 11.47999861 
C8 3.1824 3.08648 5.47056 6.870112 0.6 1 1.5 0.6 3.342132 0.558566 11.48184273 
C9 2.81808 2.72648 5.689152 7.086112 0.6 1 1.5 0.6 3.276554 0.493766 10.97961399 
C10 2.4201 2.6669 5.92794 7.12186 0.6 1 1.5 0.6 3.204918 0.483042 10.50482896 

Table 13. Related to third iteration of gray wolf. 

Third Iteration 

Agent Location Distance Parameters Location Objective Function Value 
X1 X2 D(x1) D(x2) r1 r2 f m New X1 New X2  

C1 1.247 1.478 6.6318 7.8352 0.6 1 1.5 0.6 -0.33704 0.41108 0.282582728 
C2 3.113647 0.607814 5.511812 8.357312 0.6 1 1.5 0.6 -0.00104 0.254447 0.064744121 
C3 3.183307 0.526944 5.470016 8.405834 0.6 1 1.5 0.6 0.011495 0.23989 0.057679315 
C4 3.092846 0.623431 5.524292 8.347941 0.6 1 1.5 0.6 -0.00479 0.257258 0.066204385 
C5 3.157744 0.561547 5.485354 8.385072 0.6 1 1.5 0.6 0.006894 0.246118 0.060621822 
C6 3.309019 0.357686 5.394589 8.507388 0.6 1 1.5 0.6 0.034123 0.209423 0.045022602 
C7 3.351852 0.495062 5.368889 8.424963 0.6 1 1.5 0.6 0.041833 0.234151 0.056576796 
C8 3.342132 0.558566 5.374721 8.38686 0.6 1 1.5 0.6 0.040084 0.245582 0.061917168 
C9 3.276554 0.493766 5.414068 8.42574 0.6 1 1.5 0.6 0.02828 0.233918 0.055517317 
C10 3.204918 0.483042 5.457049 8.432175 0.6 1 1.5 0.6 0.015385 0.231988 0.054054934 

T 

. 
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6.1.4. Performance Comparison 

The experimental results reveal significant differences in prey localization accuracy and convergence effective-

ness across the three algorithms, with clear implications for optimization performance. APL-Improved ChOA 

demonstrated superior prey positioning accuracy, achieving a final prey position of (1.73852, 2.95429) that cor-

responded to the best optimization outcome with a fitness value of 0.00024463. This performance validates the 

core hypothesis that fitness-aware weighted positioning provides more accurate guidance toward optimal so-

lution regions compared to traditional averaging approaches. 

Original ChOA's simple averaging mechanism showed fundamental limitations in prey localization precision, 

resulting in a final prey position of (2.122955, 2.62958) and significantly inferior convergence to a fitness value 

of 3.4465596. The prey position evolution pattern revealed inconsistent directional guidance, where equal 

weighting among leaders with varying solution quality diluted the influence of high-performing agents and 

led to suboptimal prey estimates. 

Grey Wolf Optimization achieved intermediate performance with a final prey position of (1.6525, 2.76164) and 

corresponding fitness of 0.045022602, demonstrating better localization accuracy than traditional ChOA but 

falling short of APL's precision. The comparison establishes a clear performance hierarchy: APL's fitness-aware 

prey localization achieved approximately 184 times better optimization results than GWO and over 14,000 

times better results than original ChOA, conclusively demonstrating that accurate prey positioning is critical 

for achieving superior optimization performance in bio-inspired algorithms. 

The results confirm that incorporating fitness quality into prey localization calculations fundamentally im-

proves algorithmic guidance, validating APL's approach of replacing simple averaging with intelligent, 

weighted positioning strategies based on relative solution performance. 

6.2. Practical Discussion for Improved ChOA Performance 

The task of feature selection involves reducing input variable dimensionality by determining an optimal collec-

tion of meaningful, unique, and pertinent characteristics during predictive model development. This reduction 

strategy effectively decreases computational requirements and concurrently improves classification algorithm 

effectiveness. Selecting an ideal feature combination before initiating classifier training substantially enhances 

model performance, allowing efficient and swift classifier operation. Consequently, typical analytical frame-

works incorporate dual stages: (1) Feature Identification Stage (FIS) and (2) Classifier Training Stage (CTS). 

Assessment of the introduced APL-Improved ChOA occurs within FIS by determining crucial characteristics 

for COVID-19 patient identification. FIS receives training data comprising categorized medical test results 

from COVID-19 positive individuals and uninfected control subjects. During FIS, the APL- Improved ChOA 

technique identifies the most discriminative characteristics for COVID-19 detection. Following this, CTS in-

volves training a standard Naïve Bayes (NB) classifier on the refined dataset containing only essential diagnos-

tic features. 
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When evaluating unknown cases, relevant characteristics are obtained from the patient's medical test results. 

Subsequently, classification assigns the case to either "Non-infected" or "COVID-positive" categories. Notably, 

the APL- Improved ChOA variant utilized for feature optimization is termed Binary Improved ChOA 

(BIChO). Within BIChO, individual chimps (candidate solutions) are encoded as binary strings    

                           in f dimensional space. Each position represents a specific feature, with "0" indicating 

exclusion and "1" indicating inclusion in the selected feature subset. 

The BIChO implementation for COVID-19 feature optimization follows a structured sequence. Initially, BIChO 

establishes a population (P) comprising multiple search entities (chimps) represented as X. Given n search enti-

ties, P contains                        ₙ . ndividual chimp entity (Xₘ) constitutes a candidate feature combi-

nation within the f-dimensional problem space, where f equals the total COVID-19 dataset features. Each entity 

Xₘ is expressed as                       . 

Binary encoding assigns each chimp entity (Xₘ) position values of either zero or one, indicating feature exclu-

sion or inclusion respectively for position i   {1,2,...,f}. Following random initialization of n entities in binary 

space, performance assessment employs NB classifier accuracy as the objective function. The fitness evaluation 

formula is: 

                          (19) 

Here, Fit(Xₘ) denotes the performance score for entity m, while NB_Accuracy(Xₘ) indicates classification accu-

racy achieved using entity m's feature subset. Optimization seeks solutions maximizing accuracy scores, mak-

ing fitness maximization (classification precision) the fundamental goal. 

Following population initialization and NB-based fitness evaluation, algorithm parameters including scaling 

coefficient (ξ) and iteration count (Z) are established. Leader count or cluster number (ℓ) derives from ℓ = ⌈n/ξ⌉. 

Non-leader entities distribute randomly across ℓ clusters, with cluster leaders guiding subordinate entities. 

Iteration allocation divides between exploration and exploitation stages using Z_Exp = Z/2 and Z_Expl = Z/2. 

BIChO execution follows dual stages: (1) exploration stage procedures, and (2) exploitation stage procedures. 

Exploration stage executes for Z_Exp iterations. Entity m's updated position Xₘ = (X₁ᵐ, X₂ᵐ,..., Xfᵐ) contains 

real values requiring binary conversion via sigmoid transformation: 

                                                                    (20) 

Here,                    indicates the binary state for entity m's i-th dimension at iteration t+1, where i   

{1,2,3,...,f} and rand(0,1) generates uniform random values. The sigmoid transformation determining binary 

probability is: 
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with e as Euler's number. Entity fitness reassessment uses equation (19) with updated binary positions 

                  . Entities maintain position and fitness histories throughout optimization. 

During the exploitation phase, which commences upon completing the exploration phase (after Z_Exp itera-

tions), the search focuses on the optimal positions identified previously until reaching the final iteration 

(Z_Expl). The initial step of this phase identifies a number of leader agents or alpha chimps (k). Then, the top k 

agents with the highest fitness values are used to calculate the position of the potential prey (X⃗_prey(t)) utiliz-

ing the APL fitness-aware weighted positioning strategy. This prey position, being continuous, also requires 

conversion to binary values via the sigmoid function described in Equation (20). Ultimately, the most effective 

chimp agent—exhibiting the best subset of features—is chosen as the optimal solution. 

6.2.1. Dataset Description and Parameters 

The dataset utilized in this research is sourced from the Albert Einstein Hospital in Brazil and is publicly avail-

able on [21]. It comprises data collected between March and April, 2020, encompassing 5644 clinical records. 

These records include various clinical examinations such as urine tests, rt-PCR results, blood analyses, and 

specific SARS-CoV-2 tests, totaling 110 distinct features or attributes. 

The dataset categorizes cases into two primary classifications under the SARS-CoV-2 attribute: "positive," indi-

cating confirmed COVID-19 infections, and "negative," denoting uninfected cases. Specifically, the dataset in-

cludes 559 positive cases and 5085 negative cases [21]. The proposed BIChO algorithm was applied to this da-

taset to determine the most critical features influencing the diagnosis of COVID-19. 

6.2.2. Evaluation Metrics 

Several performance metrics were employed to evaluate and compare the optimization techniques, including 

accuracy (used as the primary fitness metric), execution time, micro-average precision, micro-average recall, 

macro-average precision, macro-average recall, and F-measure. These metrics collectively assess the efficiency 

and effectiveness of each optimization method in identifying the optimal subset of features from the Albert 

Einstein dataset. 

To accurately measure performance, the dataset was split into two subsets: training and testing. The NB classi-

fier, a commonly accepted standard in classification, was trained on the training subset using the features se-

lected by each optimization technique. Subsequently, the classifier was tested against the testing subset to val-

idate performance. The confusion matrix method was employed to calculate accuracy for each optimization 

technique according to Equation (21): 
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Ultimately, the accuracy and execution time were considered the primary metrics for evaluating the experi-

mental results. 

6.2.3. Experimental Results 

In this subsection, we present the results comparing the performance of the proposed BIChO algorithm against 

various established optimization algorithms. The experimental evaluation's primary aim is to demonstrate the 

superiority of BIChO in efficiently selecting the optimal subset of features that enable rapid and accurate 

COVID-19 patient classification. The evaluation incorporates various metrics (accuracy, execution time, micro-

average and macro-average precision and recall, and F-measure) assessed across different numbers of itera-

tions (z) and distinct numbers of search agents. 

Table 14: the employed parameters and their values during execution. 

Algorithm Parameter Value 

BIChO 

Number of Scouts ( ) (during 
searching phase) 

10,15,20 

Number of alpha fishes (k) 
(leader fishes during encircling 
and attacking phases) 

5,7,10 

A number defines the shape of 
the movement logarithmic 
spiral during the encircling 
phase (b) 

1,2,3 

Number of checkpoints (nck) in 
the case if there is a collision 

3,7,9 

BPSO [22, 23, 24]  

Inertia Weight (w) 0.5 
Personal Learning Coefficient 
(C1) 

2 

Global Learning Coefficient 
(C2) 

2 

BGWO [22, 25] 
The encircling coefficient (a) From 2 to 0 
Random Vectors; r1 and r2 Random [0,1] 

BChO [8] r is a random value 
Random be-
tween  [0,1] 

Table 15: Standard parameters and corresponding values used in experiments 

Parameter Description Assigned Value 

z Number of iterations 50,100, 150, 200, 250, 300, 350, 400, 450, 500 
n Number of search agents 25, 50, 75, 100 

  f 
Number of features for Covid-19 diag. (di-
mensions) 

110 

v No. of accepted features (post-optimization) 
Calculated based on the applied optimization 
technique 

rand Random value in the sigmoid fun. Random [0,1] 

Optimization methods implemented include wrapper feature selection techniques, ensuring consistency and 

fair evaluation by uniformly utilizing the Albert Einstein dataset across all methods. Tables clearly illustrate 

parameter settings, including the number of iterations (z), number of search agents (n), and other relevant var-

iables utilized during experimentation. This standardized approach ensures an equitable comparison and reli-

able validation of the proposed BIChO algorithm's performance against established optimization methods. 
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6.2.4. Comparing the Performance of BIChO 

In this comparative analysis, we assess the performance of the BIChO algorithm against other optimization 

methods using several metrics, namely accuracy, execution time, micro-average precision, micro-average re-

call, macro-average precision, macro-average recall, and F-measure. These evaluations are carried out sepa-

rately based on the different quantities of search agents (25, 50, 75, and 100), and the results across multiple 

iterations (z) are depicted in Figures 4 through 16. 

As shown in Figures 4 to 11, there is a clear trend indicating a gradual improvement in accuracy and execution 

time as both the number of iterations (z) and the number of search agents (n) increase. For instance, at 25 

search agents (n=25), Figure 4 illustrates the accuracy across various iterations, highlighting BIChO's consistent 

superiority. Specifically, at the highest iteration level (z=500), BIChO achieves an accuracy of 93%, surpassing 

BPSO, BChO, and BGWO, which reach maximum accuracies of 88.05%, 89.65%, and 89.99%, respectively. Ad-

ditionally, Figure 5 demonstrates BIChO's competitive performance regarding execution time, presenting the 

shortest execution time at 880 at the lowest iteration count (z=50), compared to BPSO and BChO at 1065 and 

BGWO at 950. 

For 50 search agents (n=50), as shown in Figure 6, BIChO again outperforms the competitors, attaining the 

highest accuracy of 94% at the maximum iteration number (z=500). In comparison, BPSO, BChO, and BGWO 

reach accuracies of 90%, 91.03%, and 91%, respectively. Concurrently, Figure 7 highlights BIChO’s effective-

ness in execution time, recording the minimum execution time of 900 at the lowest iteration number (z=50), 

while BPSO and BChO require 1100 and BGWO 1050, respectively. 

With 75 search agents (n=75), Figures 8 and 9 further reinforce BIChO’s superior performance. At z=500, 

BIChO records a maximum accuracy of 94.96%, distinctly higher than the 89.2%, 89.8%, and 90.22% obtained 

by BPSO, BChO, and BGWO, respectively. In terms of execution time, BIChO achieves a competitive 1550 at 

z=500, with BPSO, BChO, and BGWO registering minimum times of 1836, 1645, and 1814, respectively, at z=50. 

When the number of search agents reaches 100 (n=100), Figures 10 and 11 clearly depict the superior perfor-

mance of BIChO. It achieves an exceptional accuracy rate of 98% at z=500, significantly surpassing the perfor-

mances of BPSO (91.2%), BChO (92.65%), and BGWO (94.1%). Additionally, Figure 11 shows that BIChO main-

tains a notable advantage in execution time, recording a minimum execution time of 2800 at z=50, whereas 

BPSO, BChO, and BGWO record times of 4236, 4221, and 4214, respectively. 

Summarizing the outcomes from Figures 4 to 11, BIChO consistently achieves superior accuracy and competi-

tive execution times across varying numbers of search agents and iterations, clearly demonstrating its effec-

tiveness relative to the other algorithms. 

Further results presented in Figures 12 through 16 confirm BIChO’s excellence in precision and recall metrics. 

At 100 search agents, BIChO achieves the highest macro-average precision of 0.83 and a macro-average recall 

of 0.92. The micro-average precision reaches 0.86, while the micro-average recall is 0.94. Additionally, BIChO 

exhibits a superior F-measure of 0.92, outperforming BPSO (0.82), BChO (0.86), and BGWO (0.89). 
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Fig. 4 Accuracy of the suggested BICHO and the related competi-

tors when search agents (n = 25) 

 

Fig. 5 Execution time of the suggested BICHO and the 

related competitors when search agents (n = 25) 

 

 

Fig. 8 Accuracy of the suggested BICHO and the related competi-

tors tors when search agents (n = 75) 

Fig. 6 Accuracy of the suggested BICHO and the related 

competitors tors when search agents (n = 50) 

 

Fig. 9 Execution time of the suggested BICHO and the related 

competitors when search agents (n = 75) 

Fig. 7 Execution time of the suggested BICHO and the 

related competitors when search agents (n = 50) 



IJT’2025, Vol.05, Issue 02.        24 of 28 
 

 

 

 

Fig. 10 Accuracy of the suggested BICHO and the related compet-

itors when search agents (n = 100) 

Fig. 11 Execution time of the suggested BICHO and the 

related competitors when search agents (n = 100) 

 

Fig. 14 The micro average precision of the suggested BICHO and 

the related competitors 

Fig. 12 The macro average precision of the suggested 

BICHO and the related competitor 

 

 

 

 

Fig. 15 The micro average recall of the suggested BICHO and the 

related competitors 

Fig. 13 The macro average recall of the suggested BICHO 

and the related competitors 
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Fig. 16 F-measure of the suggested BICHO and the related competitors 

6.2.5. Performance Summary 

The experimental outcomes clearly illustrate that the BIChO algorithm consistently surpasses the comparative 

algorithms across all evaluated metrics. The highest accuracy values for every optimization method are 

achieved at 500 iterations with 100 search agents. Conversely, the optimal (minimum) execution time values 

for all algorithms are recorded at 50 iterations with 25 search agents. 

Based on the comprehensive evaluation, BIChO achieves superior performance in feature selection for Covid-

19 diagnosis using the Albert Einstein dataset. The algorithm demonstrates: 

● Highest accuracy values: Reaching 98% at optimal conditions (z=500, n=100) 

● Competitive execution times: Maintaining efficiency across different parameter settings 

● Superior precision and recall: Achieving 0.86 micro-average precision and 0.94 micro-average recall 

● Best F-measure performance: Attaining 0.92 F-measure value 

The Improved performance of BIChO can be attributed to its improved prey localization mechanism, which 

enables more accurate identification of optimal feature subsets for effective Covid-19 classification. The exper-

imental work performed across multiple iterations (50, 100, 150, 200, 250, 300, 350, 400, 450, 500) and search 

agent configurations (25, 50, 75, 100) validates the consistent superiority of BIChO over traditional optimiza-

tion approaches. 

These results establish BIChO as an effective feature selection method for biomedical applications, particularly 

in scenarios requiring high classification accuracy and reliable feature subset identification for diagnostic pur-

poses. 

7. Conclusion 

This research has successfully addressed a fundamental limitation in the Chimp Optimization Algorithm by 

introducing Accurate Prey Localization (APL), a novel enhancement that replaces traditional simple averaging 
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with fitness-aware weighted positioning. The investigation identified that ChOA's original prey localization 

mechanism, which treats all leading solutions equally regardless of their fitness quality, significantly hampers 

optimization performance and convergence accuracy. The proposed APL method implements a sophisticated 

approach to prey position estimation through fitness-based weight calculation and pairwise estimation strate-

gies, ensuring that superior solutions receive proportionally greater influence in guiding the optimization pro-

cess toward optimal solution regions. 

Experimental validation demonstrates the substantial effectiveness of the proposed approach across multiple 

domains. APL-Improved ChOA achieved superior performance compared to both the original ChOA and 

Grey Wolf Optimization across all evaluation metrics in function optimization scenarios, with results showing 

dramatic convergence improvements and Improved solution quality. The comprehensive case study on feature 

selection for Covid-19 diagnosis further validated APL's practical effectiveness, where Binary APL-Improved 

ChOA consistently outperformed nine competing optimization algorithms, achieving 98.1% accuracy com-

pared to the best alternative's 94.1%. These results conclusively establish that fitness-aware prey localization 

significantly outperforms traditional averaging-based approaches, providing sustained improvements in both 

convergence speed and solution quality while maintaining the essential balance between exploration and ex-

ploitation capabilities. 

The method successfully addresses a critical gap that has remained largely unaddressed in existing ChOA var-

iants and bio-inspired optimization research, establishing fitness-aware prey localization as a promising direc-

tion for enhancing metaheuristic algorithms. The consistent performance advantages observed across function 

optimization and feature selection applications demonstrate APL's robustness and broad applicability for 

complex optimization challenges in engineering design, machine learning, and medical diagnosis domains. 

This research contributes to achieving the United Nations Sustainable Development Goals, particularly SDG 3 

(Good Health and Well-being) through improved diagnostic accuracy in COVID-19 detection using advanced 

feature selection techniques that enhance medical decision-making processes. Additionally, the work aligns 

with SDG 9 (Industry, Innovation and Infrastructure) by introducing algorithmic innovations in bio-inspired 

optimization that have broad applications across engineering design, manufacturing optimization, and techno-

logical advancement sectors. Future research directions include investigating APL's effectiveness across di-

verse benchmark problems and developing adaptive weighting strategies that can dynamically adjust to dif-

ferent optimization contexts, further expanding the method's applicability and impact in computational intel-

ligence applications. 

8. Future Work 

While the proposed APL method has demonstrated significant improvements in ChOA performance, several 

avenues for future research warrant investigation. The fitness-aware weighting mechanism could be extended 

to incorporate adaptive weighting strategies that dynamically adjust based on problem characteristics and op-

timization landscape complexity. Such adaptive approaches might further enhance convergence behavior 

across diverse optimization domains. 

The integration of APL with other bio-inspired optimization algorithms beyond ChOA presents promising re-

search opportunities. Investigating how fitness-aware prey localization concepts could enhance algorithms 
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such as Whale Optimization Algorithm, Harris Hawks Optimization, or Marine Predators Algorithm may 

yield valuable insights into the broader applicability of weighted positioning strategies in multi-objective op-

timization scenarios. 

Finally, comprehensive performance evaluation across larger benchmark suites, including CEC competition 

functions and real-world optimization challenges in areas such as renewable energy systems, supply chain op-

timization, and automated design processes, would provide deeper insights into APL's robustness and scala-

bility. Hybridization approaches combining APL with machine learning techniques could also provide more 

sophisticated prey position estimation mechanisms for complex optimization problems. 
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