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Abstract 

Distance protection is crucial for maintaining power system reliability. As power systems become 

increasingly complex, the integration of advanced artificial intelligence (AI) techniques such as Deep 

Reinforcement Learning (DRL) offers a promising approach to enhance fault detection and response. This 

paper presents a DRL-Driven pilot scheme combined with the IEC 61850 communication protocol for 

optimized distance protection. The proposed method leverages real-time data, adaptive decision-making, 

and high-speed communication to minimize fault clearance time while improving grid resilience. 

Simulation results demonstrate the effectiveness of the approach under diverse fault scenarios. 

In this work, DRL is integrated with existing distance protection systems through pilot schemes using the 

IEC 61850 communication standard, specifically leveraging GOOSE messaging for real-time relay 

coordination. The fundamentals of DRL in protection systems are examined, covering aspects such as data 

collection, preprocessing, model training, and performance evaluation.  

The paper also addresses the challenges and limitations in implementing DRL within protection systems, 

including issues related to data availability, system complexity, and real-time operation. Comparative 

analysis between the proposed DRL-Driven distance relays and conventional numerical relays highlights 

the advantages of DRL, particularly in terms of fault detection time, accuracy, and adaptability to modern 

grid conditions. Finally, this paper presents a comprehensive DRL-driven protection scheme for 

transmission lines and evaluates its effectiveness against traditional approaches, paving the way for more 

resilient and reliable power system protection. 

Keywords: Distance Protection, testing and commissioning, IEC 61850 communication protocol, GOOSE, 

Sampled Values, Substation Automation (SAS), Artificial Intelligence (AI), DRL. 
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1. Introduction 

The growing complexity of power systems, characterized by increased penetration of distributed energy 

resources (DERs) and evolving grid dynamics, has presented challenges to conventional protection 

schemes. Among these, distance protection has historically served as a cornerstone for safeguarding 

transmission lines by measuring the impedance between a relay and a fault location. These traditional 

systems identify faults within designated protection zones and trigger appropriate isolation actions. 

However, with modern grid configurations, conventional distance protection methods often struggle to 

adapt to the rapid changes and variability introduced by renewable energy sources and microgrids [1,2]. 

The contemporary power grid demands a paradigm shift in protection mechanisms due to renewable energy 

integration, dynamic load behaviors, and the proliferation of microgrids. Such factors impose significant 

challenges, including delayed fault clearance and reduced reliability of conventional schemes reliant on 

static settings and threshold-based logic [2,3]. High fault impedance and transient conditions further 

exacerbate these issues, compromising grid stability and reliability [4,5]. 

Artificial Intelligence (AI), specifically machine learning (ML) and deep learning techniques, has emerged 

as a promising solution to these challenges. AI's ability to learn and adapt to fault patterns from historical 

data offers significant enhancements in fault detection accuracy and operational speed. Studies have 

demonstrated AI's superiority over traditional methods in fault classification and adaptive relay settings, 

thereby enabling protection systems to respond effectively to evolving grid conditions [6–10]. 

Moreover, advancements in communication infrastructure, particularly pilot protection schemes, have 

augmented the capabilities of distance protection systems. By enabling direct communication between 

relays at both ends of a transmission line, these schemes facilitate faster and more reliable fault detection 

and isolation [11]. The advent of the IEC 61850 standard, which underpins modern substation 

communication, has further revolutionized the field. The Generic Object-Oriented Substation Event 

(GOOSE) messaging feature of IEC 61850 enables low-latency, interoperable communication, 

significantly enhancing the reliability and efficiency of protection schemes [12–15]. 

This paper proposes a novel integration of DRL-driven algorithms with pilot protection schemes leveraging 

the IEC 61850 protocol. By harnessing the predictive capabilities of DRL for fault detection and the real-

time, high-speed communication facilitated by IEC 61850, the proposed system aims to address the 

shortcomings of traditional schemes. Specifically, it combines adaptive decision-making enabled by DRL 

with the robust communication framework provided by GOOSE messaging to achieve faster fault isolation 

and improved grid resilience [14,16, 17]. 

Research Gap Clarification:  

While existing AI-based protection schemes have shown promise in improving fault detection and 

classification, they often struggle with high-impedance faults, delayed fault clearance, and adaptability to 

dynamic grid conditions caused by the increasing integration of distributed energy resources (DERs). 

Traditional methods rely on static settings and threshold-based logic, which are insufficient for modern grid 

configurations. This paper addresses these limitations by proposing a novel integration of Deep 

Reinforcement Learning (DRL) with the IEC 61850 communication protocol, leveraging real-time data and 

adaptive decision-making to enhance fault detection accuracy and speed. 
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The research objectives are threefold: 

1. Develop an DRL-driven decision-making framework to improve the accuracy of distance 

protection. 

2. Implement a communication protocol using IEC 61850 to enhance real-time relay coordination. 

3. Compare the performance of the proposed system with traditional and IEC 61850-based protection 

schemes, evaluating metrics such as fault detection time, accuracy, and reliability. 

 

2. Background and Related Work 

2.1. Distance Protection in Power Systems 

Distance protection is a fundamental mechanism for transmission line safety, operating by measuring 

impedance to detect and isolate faults. Protection zones are typically predefined with varying time delays 

to ensure selectivity [1]. While effective in traditional grids, these systems face challenges in the modern 

context, particularly in detecting high-impedance faults and addressing the dynamic behaviors introduced 

by DERs [3,5]. 

2.2. Pilot Protection Schemes 

Pilot protection schemes enhance traditional distance protection by employing real-time communication 

between relays at both ends of a transmission line. This coordination enables faster and more reliable fault 

isolation, with common approaches including direct transfer trip (DTT), permissive overreach transfer trip 

(POTT), and blocking schemes [11]. However, these schemes heavily rely on robust and efficient 

communication infrastructures, which is where IEC 61850 demonstrates its value [12,18]. 

2.3. IEC 61850 Protocol 

The IEC 61850 standard is a groundbreaking development for substation automation, offering a unified 

communication framework for Intelligent Electronic Devices (IEDs). Using Ethernet-based 

communication, it facilitates real-time interaction via GOOSE messaging, ensuring rapid data exchange 

and low-latency fault responses. Studies confirm the protocol's effectiveness in improving system reliability 

and reducing fault clearance times [13–15,18,19]. 

2.4. AI in Power System Protection 

The application of AI in power systems has significantly advanced in recent years, with machine learning 

models excelling in fault detection and classification. These models offer adaptability to evolving grid 

conditions, outperforming conventional methods in speed and accuracy. AI-driven systems have shown 

potential in addressing complex fault scenarios, such as high-impedance and transient faults, enabling more 

robust protection schemes [6–10,20, 21]. 

Unlike existing AI-based protection schemes, our approach integrates DRL with IEC 61850 GOOSE 

messaging, enabling real-time, adaptive decision-making. While prior works have explored AI for fault 

detection, they often lack the robust communication framework provided by IEC 61850. Our system 

leverages historical fault data and real-time communication to improve fault detection accuracy and speed, 
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setting it apart from traditional AI-based methods. This integration allows for faster fault isolation and 

improved grid resilience, particularly in dynamic grid environments with high DER penetration. 

 

3. Proposed DRL-Driven Pilot Scheme 

3.1. System Architecture 

The proposed system integrates DRL with distance protection pilot schemes, incorporating the IEC 61850 

communication protocol for enhanced coordination. It features two core components: 

1. Data Acquisition: Voltage and current samples are collected via IEC 61850-compatible intelligent 

electronic devices (IEDs). 

2. DRL-Based Decision Unit: Utilizing machine learning models trained on historical fault data, this 

unit predicts fault locations and types with high accuracy. Local and remote relays are equipped 

with these models to enhance decision-making [6–9,22]. 

3. IEC 61850 Communication Framework: This layer ensures seamless and low-latency data 

exchange between relays via GOOSE messaging. The protocol's capabilities are leveraged to 

synchronize local and remote relay actions, minimizing communication delays [13,15,23]. As 

shown in figure.2 and figure.3. 

These components collectively enable advanced fault classification and zone discrimination, providing a 

resilient and scalable solution for distance protection [17,23]. 

Figure 4 illustrates the integration of the IEC 61850 protocol with the DRL-driven protection scheme. The 

flowchart shows the data flow from Intelligent Electronic Devices (IEDs) to the DRL-based decision unit, 

highlighting the role of GOOSE messaging in enabling real-time communication between local and remote 

relays. This integration ensures low-latency data exchange and synchronized relay actions, minimizing fault 

clearance times. 

 

 

Figure 1: Shows the test system for permissive scheme zone detection of faults 
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It is important to mention that in applications involving single pole operation, a three-pole trip can be 

executed in the event of an in-line single-phase fault that coincides with a fault on a different phase, also 

known as a cross-country fault. It is crucial to highlight that this cross-country fault must be within the 

reach of the local phase selector, which is significantly longer than the line itself. Nevertheless, this 

possibility of a three-pole trip occurring can be diminished by employing a two-bit channel, and it can be 

completely eradicated by utilizing a four-bit channel. By using two-bit channels, the relays possess the 

capacity to share limited information pertaining to their local fault detection algorithms. This sharing of 

information greatly enhances the accuracy of single-pole tripping when it comes to cross-country faults. 

 

 

Figure 2: Permissive scheme with IEC 61850 communication channel under remote fault case 

 

 

Figure 3: Permissive scheme with IEC 61850 4-bit communication channel 
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                                                                                                                                        Start 

 

                                      

                                        Sampled Values (V, I, Z_meas)                               Data Acquisition from IEDs 

  

 

                                                                                                                                                           DRL-Based Decision Unit 

 

 

                                  Fault Type (AG, BG, CG, MULTI-P)                                Fault Detection and Classification 

   

 

                                                 GOOSE Messages                              Communication via IEC 61850 GOOSE Messaging 

  

                                                                                                                                                 
                                                                                                                                                                     

                                                                                                                                                                    Remote Relay Coordination 

 

                          

                         Trip Signal (Single-Pole, 3-Pole) or Block Signal 

    

                                                                                                                               Trip/Block Decision 

                                                                                                                                                                                                                  Feedback Loop for DRL Model 

  

 

                                                                                                                                                                     Circuit Breaker Operation 

 

 

                                                                                                                                        End 

 

Figure 4: Illustrates the integration of the IEC 61850 protocol with the DRL-driven protection scheme 

 

3.2  DRL-Driven Pilot Scheme for Distance Protection 

3.2.1 DRL Overview 

DRL combines reinforcement learning (RL) principles with deep neural networks (DNNs) to handle high-

dimensional state spaces. In DRL, an agent interacts with the environment, observes states, takes actions, 

and learns from rewards to optimize its policy. 

Key components of DRL include: 
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1. State (𝑠𝑡): Represents the system's current status (e.g., voltage, current, and impedance 

measurements). 

2. Action (𝑎𝑡): Represents the agent's decision (e.g., tripping or blocking the relay, determining fault 

zones). 

3. Reward (𝑟𝑡): A scalar value reflecting the quality of the action (e.g., positive for accurate fault 

detection, negative for misclassifications). 

4. Policy (𝜋 (𝑎|𝑠)): Maps states to actions, guiding the agent’s behavior. 

 

3.2.2 DRL Algorithm for Distance Protection 

The DRL model was trained using a dataset of 10,000 historical fault events collected from distance IEDs 

(D90). The dataset includes single-phase, multi-phase, and high-impedance faults, ensuring diversity and 

robustness. Preprocessing steps included normalization, feature extraction, and data augmentation. The 

training process lasted approximately 48 hours and was conducted on a high-performance Intel CORE I7 

computer. This setup ensured efficient handling of the large state space and high-dimensional data required 

for accurate fault detection. 

The Deep Q-Network (DQN) algorithm is used, a popular DRL variant for discrete action spaces, or its 

extensions such as Double DQN or Dueling DQN, which improve stability and learning efficiency. 

 

Q-Learning Basics 

In Q-Learning, the agent learns a Q-value function: 

𝑄(𝑠, 𝑎) =  𝔼 [ 𝑟𝑡 +  𝛾 max
{𝑎′}

𝑄(𝑠′, 𝑎′)]                                                                                 (1) 

where: 

- (𝑠) is the current state, 

- (𝑎) is the action, 

- 𝑟𝑡 is the reward at time (𝑡), 

- 𝛾 is the discount factor, 

- (𝑠′) is the next state, 

- max
{𝑎′}

𝑄(𝑠′, 𝑎′)  is the maximum expected reward for the next state. 

 

Deep Q-Network (DQN) 

DQN approximates the Q-function using a deep neural network ( 𝑄𝜃 (𝑠, 𝑎)), 𝑤ℎ𝑒𝑟𝑒 (𝜃) represents the 

network parameters. The loss function for training is: 
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𝐿(𝜃) =  𝔼 [ ( 𝑟𝑡 +  𝛾  max
{𝑎′}

  𝑄{𝑡𝑎𝑟𝑔𝑒𝑡} (𝑠′, 𝑎′;  𝜃−) −  𝑄(𝑠, 𝑎;  𝜃))
2

]                   (2) 

Here: 

- 𝑄{𝑡𝑎𝑟𝑔𝑒𝑡} is a separate target network used for stability, 

- ( 𝜃−) are the parameters of the target network. 

 

3.2.3 DRL in Distance Protection 

In the context of distance protection: 

- State: Includes measured impedance, voltage, current, and relay status. 

- Action: Includes decisions such as tripping, blocking, or sending communication signals. 

- Reward: Encourages accurate fault detection (e.g., tripping within the correct zone) and penalizes delays 

or incorrect actions. 

 

 

Equations for Distance Protection 

The measured impedance via transmission line IEDs  𝑍{𝑚𝑒𝑎𝑠}) is calculated as: 

𝑍𝑚𝑒𝑎𝑠 =  
𝑉

𝐼
                                                                                                                                             (3) 

Where; 

- ( 𝑉 ) and ( 𝐼 ) are the voltage and current at the relay location. The relay identifies the fault zone based 

on ( 𝑍𝑚𝑒𝑎𝑠) compared with zone thresholds ( 𝑍{{𝑧𝑜𝑛𝑒1},  𝑍{{𝑧𝑜𝑛𝑒2}, etc.). 

The DRL agent refines fault zone identification using: 

1. State Input: 

 𝑠𝑡 =  { 𝑉, 𝐼, 𝑍{𝑚𝑒𝑎𝑠}, {𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝}, {𝐹𝑎𝑢𝑙𝑡𝑒𝑑 𝑃ℎ𝑎𝑠𝑒}, 𝑅𝑥{1}, 𝑅𝑥{2}, 𝑅𝑥{3}, 𝑅𝑥{4}}        (5) 

 

2. Action Output: 

𝑎𝑡 ∈  { {𝑡𝑟𝑖𝑝𝐴, 𝑡𝑟𝑖𝑝𝐵, 𝑡𝑟𝑖𝑝𝐶 , 𝑡𝑟𝑖𝑝𝐺𝑁𝐷, 𝑏𝑙𝑜𝑐𝑘, 𝑤𝑎𝑖𝑡}}                                                            (6) 

 

3. Reward Function: 

𝑟𝑡 = {
−1, if correct action in minimal time

1, if incorrect action or excessive delay
                                                               (7) 
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4. Simulation and Comparative Analysis 

4.1. Simulation Setup   

A typical power system network was modeled using Matlab software. The model features a 500 kV, 225 

km transmission line with substations located at both ends. Distance relays are installed at each end of the 

transmission line (R1 at substation 1 and R2 at substation 2) along with current transformers (CTs) and 

voltage transformers (VTs) and incorporating IEC 61850 with 4-bit pilot POTT scheme. The delay in 

distance relaying was demonstrated and tested. The testbed incorporates industrial-grade equipment, 

including an Intelligent Electronic Devices (IEDs) (D90), an Omicron® CMC 256-6 relay testing set, a 

manageable Ethernet switch, as shown in Figure 5. The Matlab simulator was used to develop the power 

system model. Transient power system data, recorded as a COMTRADE file, was replayed on real IEDs 

(D90 relays) using the Omicron CMC 256-6 setup for relay testing. 

The results were initially validated on a 500 kV transmission line network. To demonstrate the system's 

applicability across different grid configurations, then the testing is expanded the validation to include two 

additional test networks: a 220 kV network and a 66 kV network. While MATLAB simulations provide a 

controlled environment for initial testing, the author acknowledge the need for validation on industry-

standard platforms. Future work will focus on testing the proposed system on real-world industrial-grade 

grids to further validate its performance. 

 

Figure 5: Simulation Setup including real IED for distance protection (D90) and real secondary injection tester for 

fault injection incorporating COMTRADE files 
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The DRL model was trained using a dataset of historical fault events collected from event recorder of 

distance IEDs (D90). A deep learning model based on a convolutional neural network (CNN) was used for 

fault classification and prediction. 

Table.1 outlines how a 4-bit communication system is used for coordinating fault detection between remote 

and local relays in DRL-driven distance protection scheme. The system's bit patterns, corresponding fault 

determinations, and resulting trip outputs are explained, focusing on how these inputs are used to train the 

DRL model to improve decision-making in distance protection. Let’s break down the columns and their 

meanings for better clarity: 

Remote Data (RX1, RX2, RX3, RX4): 

These four bits represent the communication signals transmitted from the remote relay. They indicate the 

type of fault detected at the remote end of the transmission line. Depending on the bit pattern, a specific 

fault type is identified at the remote end. The possible values for each bit (0 or 1) are combined to form 

unique fault signatures that can be used for fault classification. 

Local Data (Bit Pattern): 

The bit pattern (combination of RX1, RX2, RX3, and RX4) defines the fault signature. Each pattern 

corresponds to a different fault condition that was determined by the remote relay. These remote 

determinations are sent to the local relay for comparison with its own fault analysis. The local relay, which 

also processes data independently, compares these patterns with its internal determination and decides 

whether to trip the circuit. 

Remote Determination of Fault Type: 

This column lists the type of fault identified by the remote relay based on the transmitted 4-bit pattern. 

Faults can include: 

AG, BG, CG: Single-phase ground faults (Phase A, B, or C with ground). And MULTI-P which indicates 

Multiple-phase faults. Finally, Unrecognized stands to Situations where the fault type is not clearly 

recognized by the remote relay. 

Local Determination of Fault Type: 

This column indicates what the local relay determines based on its own fault analysis of the electrical 

measurements (voltage, current, impedance) at its location. The local relay may detect similar or different 

fault types as compared to the remote relay. 

Trip Output: 

The trip output is the action taken by the local relay based on the comparison of the fault detected locally 

and the fault information received from the remote relay. The trip output corresponds to which phases are 

de-energized to isolate the fault. Trip options include: 

Trip Phase A/B/C: When the relay trips one of the individual phases (A, B, or C). 

Trip 3-Pole: When the relay trips all three phases to clear a multi-phase fault. 
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Each entry in the table represents a scenario where the remote and local relays make fault determinations 

and the local relay decides the appropriate trip output based on those determinations. Below is a detailed 

interpretation of selected rows from the table: 

Row 1: Bit Pattern: 0001 

- Remote Determination: MULTI-P (Multi-phase fault detected remotely). 

- Local Determination: AG (Phase A to ground fault detected locally). 

- Trip Output: Trip Phase A.  

The local relay decides to trip only Phase A because, although the remote relay detects a multi-phase fault, 

the local relay only identifies a single-phase-to-ground fault on Phase A. 

Row 4: Bit Pattern: 1000 

- Remote Determination: AG (Phase A to ground fault detected remotely). 

- Local Determination: AG, AB, ABG, CA, CAG, 3P, Unrecognized (Various faults detected locally, 

potentially affecting multiple phases). 

- Trip Output: Trip Phase A. 

The remote relay detects a Phase A to ground fault, and although the local relay detects more complex 

conditions (such as multi-phase faults), it still prioritizes tripping Phase A to ensure the isolation of the 

fault. 

Table 1: Remote fault determination and local trip output via 4-bit communication that is used in training the DRL-

Driven distance protection incorporating IEC 61850  

 Remote data Local data 

Bit pattern Remote determination of fault 
type 

Local determination of fault 
type 

Trip output 

RX1 RX2 RX3 RX4 

0 0 0 1 MULTI-P AG Trip Phase A 

0 1 0 0 BG AG Trip Phase A 

0 0 1 0 CG AG Trip Phase A 

1 0 0 0 AG AG, AB, ABG, CA, CAG, 
3P, Unrecognized 

Trip Phase A 

0 1 0 0 BG BG, AB, ABG, BC, BCG, 
3P, Unrecognized 

Trip Phase B 

1 0 0 0 AG BG Trip Phase B 

0 0 1 0 CG BG Trip Phase B 

0 0 0 1 MULTI-P BG Trip Phase B 

0 0 1 0 CG CG, BC, BCG, CA, CAG, 
3P, Unrecognized 

Trip Phase C 

1 0 0 0 AG CG Trip Phase C 

0 1 0 0 BG CG Trip Phase C 

0 0 0 1 MULTI-P CG Trip Phase C 

1 0 0 0 AG BC, BCG Trip 3-Pole 

0 1 0 0 BG CA, CAG Trip 3-Pole 

0 0 1 0 CG AB, ABG Trip 3-Pole 

0 0 0 1 MULTI-P Unrecognized Trip 3-Pole 
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Row 8: Bit Pattern: 0001 

- Remote Determination: MULTI-P (Multi-phase fault detected remotely). 

- Local Determination: BG (Phase B to ground fault detected locally). 

- Trip Output: Trip Phase B. 

Here, the remote relay sees a multi-phase fault, but the local relay only identifies a Phase B to ground fault, 

so it trips Phase B as a precaution. 

Row 12: Bit Pattern: 1000 

- Remote Determination: AG (Phase A to ground fault detected remotely). 

- Local Determination: BC, BCG (Phase B and C faults detected locally). 

- Trip Output: Trip 3-Pole. 

In this case, the local relay detects more severe faults involving Phase B and C (and possibly ground), 

prompting a full 3-pole trip, despite the remote relay identifying only a Phase A fault. 

Row 16: Bit Pattern: 0001 

- Remote Determination: MULTI-P (Multi-phase fault detected remotely). 

- Local Determination: Unrecognized (The local relay cannot confidently classify the fault). 

- Trip Output: Trip 3-Pole. 

When the local relay is unable to recognize the fault, but the remote relay detects a multi-phase fault, the 

local relay errs on.  

 

4.2 Explanation of DRL Training Context 

This 4-bit communication mechanism serves as training data for the DRL model used in the distance 

protection system. By analyzing various combinations of remote and local determinations, the DRL can 

learn to: 

1. Classify Fault Types: Based on patterns in the communication between the local and remote relays, the 

DRL learns to identify different types of faults more accurately. 

2. Optimize Trip Decisions: The DRL model observes the relay actions and the corresponding trip outputs, 

helping it predict the optimal trip actions under different conditions. 

3. Adapt to Complex Faults: With more nuanced fault data (such as the combination of multiple faults or 

unrecognized faults), the DRL learns to improve fault isolation by refining its decision-making process. 

 

5. Comparative Analysis   

To evaluate the effectiveness of the DRL-driven pilot scheme comparative analysis is performed against 

two conventional protection schemes traditional distance protection and conventional Pilot Scheme with 

IEC 61850 as shown in Table 2 and Table 3.   
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The proposed system achieves a fault detection time of 25-35 ms (± 2 ms) with a 95% confidence interval 

and an accuracy of 98.5% (± 0.5%). These metrics demonstrate the system's ability to significantly reduce 

fault detection and clearance times while maintaining high accuracy. The error analysis confirms the 

robustness of the DRL model under varying grid conditions 

Table 2: DRL-Driven pilot scheme results 

Feature/Metric DRL-Driven  

Pilot Scheme (Proposed) 

Fault Detection Time (ms) 25-35 

Fault Clearance Time (ms) 55-75 

Accuracy (%) 98.5 

Reliability (Under Varying Grid Conditions) Very High 

False Positives (%) 0.2 

Communication Latency (ms) <5 

Adaptability to DER Integration Very High (Dynamic Policy Adaptation) 

Sensitivity to High-Impedance Faults High 

System Complexity High (Requires Real-Time DRL Models) 

Maintenance Requirements Moderate-High (Requires Periodic Model Updates) 

Coordination with Other Substations Excellent (Real-Time Decision-Making with DRL) 

Resilience to Communication Failures High (DRL Prediction During Failures) 

Fault Type Classification Comprehensive (Includes Unseen Fault Scenarios) 

Integration with IEC 61850 Yes (Enhanced with DRL Optimization) 

Response to Evolving Grid Topologies High (Real-Time Adaptation Using DRL Algorithms) 

Scalability Very High (Scalable DRL Models with Large Grid Data) 

Training/Data Requirements High (Requires Historical and Real-Time Simulation Data) 

Operational Cost Medium-High (Cost of DRL Integration and Maintenance) 
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Table 3: Comparative analysis results for 500kV transmission line 

Feature/Metric Traditional 

Distance 

Protection 

Conventional Pilot 

Scheme (IEC 61850) 

DRL-Driven  

Pilot Scheme (Proposed) 

References 

Fault Detection Time (ms) 60-80 45-60 25-35 
[1], [3], [5], 

[7] 

Fault Clearance Time (ms) 100-150 80-120 55-75 [3], [5], [8] 

Accuracy (%) 89.5 93.2 98.5 [7], [11], [13] 

Reliability (Under Varying 

Grid Conditions) 
Moderate High Very High 

[2], [7], [12], 

[14] 

False Positives (%) 3.5 2.0 0.2 [6], [9], [13] 

Communication Latency 

(ms) 
N/A 5-10 <5 

[4], [10], [13] 

Adaptability to DER 

Integration 
Low Moderate 

Very High (Dynamic Policy 

Adaptation) 

[3], [9], [12], 

[14] 

Sensitivity to High-

Impedance Faults 
Low Moderate High 

[5], [11], [12] 

System Complexity Low Medium 
High (Requires Real-Time DRL 

Models) 
[8], [9], [15] 

Maintenance Requirements Low Moderate 
Moderate-High (Requires Periodic 

Model Updates) 
[8], [11], [15] 

Coordination with Other 

Substations 
Basic Good 

Excellent (Real-Time Decision-

Making with DRL) 
[7], [12], [14] 

Resilience to 

Communication Failures 
N/A Moderate 

High (DRL Prediction During 

Failures) 

[10], [11], 

[15] 

Fault Type Classification Limited Moderate 
Comprehensive (Includes Unseen 

Fault Scenarios) 
[5], [13], [14] 

Integration with IEC 61850 No Yes 
Yes (Enhanced with DRL 

Optimization) 
[9], [12], [13] 

Response to Evolving Grid 

Topologies 
Low Moderate 

High (Real-Time Adaptation 

Using DRL Algorithms) 

[12], [14], 

[15] 

Scalability High High 
Very High (Scalable DRL Models 

with Large Grid Data) 

[11], [12], 

[15] 
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Feature/Metric Traditional 

Distance 

Protection 

Conventional Pilot 

Scheme (IEC 61850) 

DRL-Driven  

Pilot Scheme (Proposed) 

References 

Training/Data 

Requirements 
N/A N/A 

High (Requires Historical and 

Real-Time Simulation Data) 

[11], [14], 

[15] 

Operational Cost Low Medium 
Medium-High (Cost of DRL 

Integration and Maintenance) 
[6], [8], [14] 

 

Table 4: Comparative analysis results between 500kV, 220kV, and 66kV transmission lines 

Parameter 
500 kV  

Transmission Line 

220 kV  

Transmission Line 

66 kV  

Transmission Line 

Line Length 225 km 150 km 80 km 

System Voltage 500 kV 220 kV 66 kV 

Fault Detection Time (ms) 25-35 (± 2 ms) 30-40 (± 3 ms) 35-45 (± 4 ms) 

Fault Clearance Time (ms) 55-75 (± 5 ms) 60-85 (± 6 ms) 70-95 (± 7 ms) 

Accuracy (%) 98.5 (± 0.5%) 97.8 (± 0.7%) 96.5 (± 1.0%) 

Reliability Very High High Moderate-High 

False Positives (%) 0.2 0.5 1.0 

Communication Latency (ms) <5 <7 <10 

Adaptability to DER Very High Very High Very High 

Sensitivity to High-Impedance Faults High Moderate Low 

System Complexity High High High 

Maintenance Requirements Moderate-High Moderate-High Moderate-High 

Coordination with Other Substations Excellent Excellent Excellent 

Resilience to Communication Failures High High High 

Fault Type Classification Comprehensive Comprehensive Comprehensive 

Integration with IEC 61850 Yes Yes Yes 

Response to Evolving Grid Topologies High High High 

Scalability Very High Very High Very High 

Training/Data Requirements High High High 

Operational Cost Medium-High Medium-High Medium-High 
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6. Discussions 

The proposed system is designed to handle real-world implementation challenges, including latency under 

heavy network loads and potential cyber vulnerabilities. To mitigate latency issues, GOOSE message 

prioritization is optimized to ensure timely communication between relays. Additionally, cybersecurity 

measures such as encryption and authentication are implemented to protect against cyberattacks. The DRL 

model's ability to operate locally in the event of communication failures further enhances the system's 

resilience. 

Also, the comparative analysis Table 4 demonstrates the performance of the proposed DRL-driven pilot 

scheme across three voltage levels: 500 kV, 220 kV, and 66 kV transmission lines. The results reveal that 

the system consistently delivers high performance across all voltage levels, with the 500 kV system 

achieving the fastest fault detection (25-35 ms) and clearance times (55-75 ms), along with the highest 

accuracy (98.5%) and reliability. The 220 kV system shows slightly longer fault detection (30-40 ms) and 

clearance times (60-85 ms), with an accuracy of 97.8%, while the 66 kV system exhibits the longest 

detection (35-45 ms) and clearance times (70-95 ms) and an accuracy of 96.5%. Despite these variations, 

all systems maintain very high adaptability to distributed energy resources (DERs), excellent coordination 

with other substations, and comprehensive fault type classification, thanks to the integration of the IEC 

61850 communication protocol. The sensitivity to high-impedance faults decreases from high in the 500 

kV system to low in the 66 kV system, reflecting the challenges of detecting subtle faults in lower-voltage 

networks. All systems exhibit high system complexity and moderate-high maintenance requirements due 

to the advanced DRL models and real-time data processing. However, they also demonstrate very high 

scalability and resilience to communication failures, making them suitable for modern grids with evolving 

topologies. The operational cost remains medium-high across all voltage levels, reflecting the investment 

required for DRL integration and maintenance. Overall, the proposed scheme proves to be versatile and 

effective across a wide range of grid configurations, with consistent performance in fault detection, 

adaptability, and scalability, while also highlighting the need for further optimization in lower-voltage 

systems to improve sensitivity and reduce operational costs. 

 

7.  Key Performance Factors Explained: 

1. Fault Detection Time (ms): The time it takes for the protection scheme to detect a fault after its 

occurrence. The AI-driven scheme significantly reduces this time by utilizing real-time data and AI-based 

predictions. 

2. Fault Clearance Time (ms): The total time from fault detection to the isolation of the fault. The proposed 

AI-driven scheme speeds up this process, thanks to fast decision-making and optimized relay coordination 

via IEC 61850. 

3. Accuracy (%): Refers to the percentage of correct fault detections out of the total number of incidents. 

The AI-driven system achieves the highest accuracy by leveraging advanced machine learning models. 

4. Reliability Under Varying Grid Conditions: The ability to maintain consistent protection performance as 

the grid evolves (e.g., with more renewable energy integration, changes in load conditions, or evolving grid 

topologies). The AI-driven scheme is highly reliable due to its adaptive learning mechanisms. 
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5. False Positives (%): The percentage of cases where the protection system incorrectly identifies a fault 

when there is none. The AI-driven scheme reduces false positives through pattern recognition and real-time 

data analysis. 

6. Communication Latency (ms): The time delay in communication between relays at local and remote 

ends. The proposed AI-driven system integrates GOOSE messaging through IEC 61850, minimizing 

communication latency. 

7. Adaptability to DER Integration: Distributed Energy Resources (DERs) introduce variability in grid 

conditions. The AI-driven system's adaptability makes it highly effective in environments with high DER 

penetration. 

8. Sensitivity to High-Impedance Faults: High-impedance faults can be difficult for traditional systems to 

detect. The AI-based system offers enhanced sensitivity by identifying subtle changes in grid conditions, 

improving the system's ability to detect such faults. 

9. System Complexity: Traditional distance protection is straightforward but less adaptable. AI-driven 

schemes are more complex due to the need for training, data processing, and algorithm development, but 

offer significantly better performance. 

10. Maintenance Requirements: AI-based systems require periodic retraining of machine learning models 

and updates to account for changes in grid conditions, which increases maintenance needs compared to 

traditional protection schemes. 

11. Coordination with Other Substations: AI-based systems provide real-time, highly coordinated 

protection by exchanging critical fault data between substations using the IEC 61850 protocol. 

12. Resilience to Communication Failures: The AI-driven system remains resilient even if communication 

between substations is compromised, as the AI models can predict and respond to fault conditions locally. 

13. Fault Type Classification: AI models can classify a broader range of fault types, including transient, 

high-impedance, and complex multi-phase faults, enhancing system protection. 

14. Integration with IEC 61850: While conventional pilot schemes use IEC 61850 for communication, the 

AI-driven system optimizes this integration by enabling real-time, data-driven decisions. 

15. Response to Evolving Grid Topologies: AI's ability to continuously learn from changing grid conditions 

allows the proposed system to adapt dynamically to new configurations, which is a significant advantage 

in modern grids with frequent topology changes. 

16. Scalability: AI systems can scale well across large networks, as the same AI models can be trained and 

applied across different sections of the grid, providing consistent protection performance. 

17. Training/Data Requirements: The AI-driven system requires significant amounts of historical fault data 

to train its machine learning models, which introduces an additional setup phase compared to traditional 

methods. 
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18. Operational Cost: Although AI-driven systems incur higher initial setup and maintenance costs due to 

the need for model training and data handling, these costs are offset by improved system performance and 

fault detection reliability. 

Finally, the table offers a more detailed comparison that highlights the advantages of DRL-driven protection 

schemes that proposed in this work over traditional and conventional pilot schemes, especially in terms of 

performance under modern grid conditions and the need for high-speed communication. 

The proposed system is highly scalable, capable of handling large state spaces through feature selection 

and dimensionality reduction techniques. The DRL model can be scaled across multiple substations by 

leveraging distributed computing resources. This scalability ensures consistent protection performance 

across large-scale grids with numerous DERs, making the system suitable for modern power systems with 

increasing complexity. 

 

8. Conclusions 

This paper presented a novel DRL-driven pilot scheme for optimized distance protection in power systems, 

integrating the IEC 61850 communication protocol. By leveraging Deep Reinforcement Learning (DRL) 

and real-time GOOSE messaging, the proposed system significantly improves fault detection accuracy, 

reduces fault clearance times, and enhances grid resilience under dynamic conditions. The integration of 

DRL with IEC 61850 enables adaptive decision-making, allowing the system to respond effectively to 

complex fault scenarios, including high-impedance and multi-phase faults. Simulation results demonstrated 

that the proposed scheme achieves a fault detection time of 25-35 ms and an accuracy of 98.5%, 

outperforming traditional protection methods. The system's scalability and adaptability to distributed 

energy resources (DERs) make it particularly suitable for modern power grids with evolving topologies. 

Furthermore, the use of a 4-bit communication channel enhances coordination between local and remote 

relays, minimizing the risk of incorrect tripping. Future work will focus on validating the system on larger, 

real-world grid networks, optimizing the DRL models for more complex fault scenarios, and exploring 

advanced cybersecurity measures to ensure robust operation. The proposed framework represents a 

significant step toward intelligent, adaptive, and resilient power system protection, paving the way for 

future advancements in AI-driven grid management. 
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